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We address the issue of automatically determining the semantic contribution of the
particle in a verb-particle construction (VPC), a task which has been previously ignored in
computational work on VPCs. Adopting a cognitive linguistic standpoint, we assume that
every VPC is compositional, and that the semantic contribution of a particle corresponds
to one of a small number of senses. We develop a feature space based on syntactic and
semantic properties of verbs and VPCs for type classification of English VPCs according
to the sense contributed by their particle. We focus on VPCs using the particle up
since it is very frequent and exhibits a wide range of meanings. In our experiments on
unseen test VPCs, features which are motivated by properties specific to verbs and VPCs
outperform linguistically uninformed word co-occurrence features, and give a reduction

in error rate of around 20-30% over a chance baseline.
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Chapter 1

Introduction

1.1 Background

Multiword expressions (MWEs), defined as “idiosyncratic interpretations that cross word
boundaries” (Sag et al., 2002), include a wide range of phenomena such as fixed expres-
sions (e.g., to and fro, ad hoc), idioms (e.g., kick the bucket, spill the beans), and light
verb constructions (e.g., take a walk, give a smile). Recent work on lexical knowledge
acquisition has recognized the important role of applying computational learning tech-
niques to MWEs (Sag et al., 2002; Villavicencio et al., 2005). However, the learning of
semantic properties of MWEs poses a particular challenge because of the varying degrees
of their compositionality—the contribution of each component word to the overall seman-
tics of the expression. MWEs fall on a continuum from fully compositional (i.e., each
component contributes its meaning, as in frying pan) to non-compositional or idiomatic
(as in hold water). Because of this variation, researchers have explored automatic meth-
ods for learning whether, or the degree to which, an MWE is compositional (e.g., Lin,

1999; McCarthy et al., 2003; Bannard, 2005; Fazly et al., 2005).

However, such work leaves unaddressed the basic issue of which of the possible mean-

ings of a component word is contributed when a MWE is (at least partly) compositional.
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Words are notoriously ambiguous, so that even if it can be determined that an MWE
is compositional, its meaning is still unknown, since the actual semantic contribution
of the components is yet to be determined. We address this problem in the domain of
verb-particle constructions (VPCs) in English, a rich source of MWEs.

VPCs combine a verb with any of a finite set of particles, as in jump up, figure out,
or give in. Particles such as up, out, or in, with their literal meaning based in physical
spatial relations, show a variety of metaphorical and aspectual meaning extensions, as

exemplified here for the particle up:

(1la) The sun just came up.' [vertical spatial movement]
(1b) She walked up to him. [movement toward a goal]
(1c) Drink up your juice. [completion]

(1d) He curled up into a ball. [reflexive movement]

Cognitive linguistic analysis, as by Langacker (1987) and Lindner (1981), can provide

the basis for elaborating this type of semantic variation.

1.2 Statement of Purpose

In this study, our goal is to automatically determine the meaning of a particle when used
with a given verb in a VPC. We classify English VPCs using the particle up according to
their particle sense. In doing so, we adopt a cognitive linguistic standpoint, and assume
that every VPC is (at least somewhat) compositional. We base our classification on the
senses of up identified by Lindner’s (1981) cognitive analysis of VPCs using this particle.

We hypothesize that the semantic contribution of a particle when used in a VPC

with a given verb is related to that verb’s meaning. We therefore develop the following

'In examples of VPCs, the verb and particle will be underlined.
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statistical features which are motivated by specific semantic and syntactic properties of

verbs. Note that we will refer to the verb in a VPC as the base verb of that VPC.

Slot Features capture the semantics of a VPC by measuring the frequency of occur-
rence of the base verb of the VPC with an argument or adjunct in various syntactic

slots.

Adverb Features also capture the semantics of a VPC, but do so based on the fre-

quency of co-occurrence of the base verb of the VPC and adverbs.

Nominal Features exploit the fact that the meaning of a VPC may be related to how

frequently its base verb is used as a noun.

We also hypothesize that patterns of co-occurrence of the base verb of a VPC and particles
are indicative of the semantics of the VPC. The following set of features captures this

hypothesis.

Particle Features indicate the semantics of a VPC by measuring the ability of the
base verb of the VPC to combine with other particles, and the ability of the VPC to be

used with other words occurring between its verb and particle.

We contrast these features with simple word co-occurrence features, which are often
used to indicate the semantics of a target word. We show that our features which are
motivated by syntactic and semantic properties of verbs and particles perform best, and
give a substantial reduction in error rate over a chance baseline.

In our experiments, we focus on VPCs using the particle up. Up is the most frequent
particle in the corpus used in this study; therefore by focusing on up, we avoid problems
associated with data sparseness that may plague studies of less frequent particles. Up

also exhibits a wide range of meanings, as exemplified in sentences (1la—d), giving us the
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opportunity to explore classification tasks using differing numbers of classes. Although
we focus on up, it is worth emphasizing that, for the most part, our feature space draws
on general properties of VPCs, and is not specific to this particle.

A VPC may be ambiguous, with its particle occurring in more than one sense. For
example, in contrast to (1a) above, up may contribute the goal-oriented sense to the
expression come up, as in The deadline is coming up. While our long-term goal of VPC
research is token classification (disambiguation) of a particle instance in context, following
other recent work on VPCs (e.g., Bannard et al., 2003; McCarthy et al., 2003), we focus
on the task of type classification—i.e., classification of the use of an expression, in our case
a VPC with up, across a corpus. Given our use of features which capture the statistical
behaviour relevant to a VPC across the corpus, we assume that the outcome of type
classification yields the predominant sense of the particle in the VPC. Predominant sense
identification is a useful component of sense disambiguation of word tokens (McCarthy
et al., 2004), and we presume our VPC type classification work will contribute to later

token disambiguation.

1.3 Outline of Study

This study continues as follows:

Chapter 2: Syntax and Semantics of VPCs situates VPCs with respect to other
similar constructions, and discusses many of their syntactic properties. We then turn to
consider the semantics of VPCs, and after a brief introduction to cognitive linguistics,

give a detailed cognitive linguistic account of the semantics of VPCs using the particle

up.

Chapter 3: Related Work examines previous work on computational approaches

to verb-particle constructions. This chapter also discusses relevant pieces of work on
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preposition semantics and the semantic classification of verbs.

Chapter 4: Computational Models of Particle Semantics describes the two sets
of features, linguistic features and word co-occurrence features, used in our experiments.
The first set of features, the linguistic features, are motivated by syntactic and semantic
properties of VPCs introduced in Chapter 2. This chapter concludes by describing the

the sense classes of up used in our experiments.

Chapter 5: Materials and Methods describes the data used in our experiments, the
calculation of the machine learning features using corpus statistics, and the evaluation

metrics and classification software used in this study.

Chapter 6: Experiments and Results presents and discusses our results.

Chapter 7: Conclusions summarizes the contributions of this study and discusses

some of its limitations.



Chapter 2

Syntax and Semantics of VPCs

In this chapter we will examine some of the syntactic properties of VPCs and two con-

trasting analyses of their semantics.

2.1 Syntactic Properties of VPCs

Many studies have examined English VPCs (Bolinger, 1971; Fraser, 1976; Biber et al.,
1999; Dehé et al., 2002). Here we will consider the description given by Biber et al., since
it situates VPCs with respect to other similar constructions.

A multiword lexical verb (MLV) is the combination of a verb with one or more words
which functions similarly to a simple verb. MLVs come in several flavours of which three

are relevant to this work: VPCs, prepositional verbs, and phrasal-prepositional verbs.

2.1.1 VPGCs

A VPC is composed of a verb and particle.! Particles form a distinct syntactic category,

but are generally homonymous with a subset of the prepositions; examples are up, down,

!Biber et al. (1999) distinguish between “phrasal verbs” and “free combinations”, both of which are
composed of a verb and particle. However, a phrasal verb is interpreted as a single semantic unit, while
both the verb and particle in a free combination contribute their meaning. We will refer to both phrasal
verbs and free combinations as VPCs, since we are interested in any combination of a verb and particle.
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in, out, on, and off. Sentences 2 and 3 contain examples of VPCs.

(2) I looked up the number.

(3) She turned off the lights.

Since particles and prepositions are homonymous, the interpretation of a given verb and
particle/preposition can be ambiguous between a VPC and a verb with a prepositional
phrase adjunct or argument (V+PP). Consider the following two sentences which use the

particles from sentences 2 and 3 as prepositions.

(4) I looked up the chimney.

(5) She turned off the freeway.

One property of VPCs which can be used to distinguish them syntactically from
V+PPs is that a transitive VPC may appear in both the split and joined constructions.
In the split construction, shown in sentences 6 and 7, one or more words occur between the
verb and particle, while in the joined construction the verb and particle occur together,

as in sentences 2 and 3.

(6) I looked the number up.

(7) She turned the lights off.

The split construction is not grammatical for a V+PP, as is shown by the following

sentences.
(8) *I looked the chimney up.

(9) *She turned the freeway off.

The split construction is mandatory when the object of a transitive VPC is a pronoun

as in:
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(10) I looked it up.

(11) *I looked up it.

However, when the object of a transitive VPC is a heavy noun phrase, the joined con-

struction is preferred:

(12) I looked up the number for the house with the white door on Bloor Street.

(13) 71 looked the number for the house with the white door on Bloor Street up.

Studies examining the split and joined constructions have determined that a number of
factors relating to processing efficiency affect particle placement (Hawkins, 1994; Gries,
2002; Lohse, 2004). In some cases, a third construction in which the particle occurs

before the verb, as in Sentences 14 and 15, is acceptable.

(14) Up walked the delivery man.

(15) On went the boring lecture.

This construction is discussed at length by Cappelle (2002), but will not be further
considered in this study.

Another important syntactic feature of VPCs is that an adverb may be allowed be-
tween the verb and particle as in sentences 16 and 17; however, for transitive VPCs this
is only acceptable in the split construction, and the adverb must appear to the right of

the direct object.

(16) The handle broke clean off.

(17) I looked the number right up.
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2.1.2 Prepositional Verbs

Prepositional verbs (PVs) are composed of a verb and preposition and come in two

varieties:
e verb + preposition + NP
e verb + NP + preposition + NP

We will only further consider the first type of PV, since the interpretation of a verb +
particle/preposition + noun-phrase may be ambiguous between a PV and a transitive

VPC. Examples of prepositional verbs are:
(18) Alfred relied on his parents for financial support.
(19) The scientist referred to Wikipedia.

One property which may be used to distinguish PVs from transitive VPCs is that
PVs do not allow the split construction; the verb and preposition occur joined even when

the noun-phrase complement is a pronoun, as in the following sentences.
(20) Alfred relied on them.

(21) *Alfred relied them on.

(22) He referred to it.

(23) *He referred it to.

The interpretation of a verb + preposition + noun-phrase may also be ambiguous between
a PV and a V4+PP. These may be distinguished since PVs are more acceptable when

used in the passive form, as shown below.
(24) His parents were relied on

(25) Wikipedia was referred to.
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2.1.3 Phrasal-Prepositional Verbs

Phrasal-prepositional verbs (PPVs) are typically composed of a verb, particle and prepo-
sition, and require a noun-phrase direct object. Examples of PPVs are given in sen-

tences 26 and 27.

(26) Mary came up with an idea.

(27) John stood up to his father.

PPVs are similar in structure to intransitive VPCs which take a prepositional phrase
argument. This analysis of PPV structure accounts for the lack of particle movement

which PPVs exhibit.

In this work we are concerned with constructions involving a verb and particle. We
will use the term VPC to refer to both VPCs and PPVs, and will not distinguish between

these two types of MLVs.

2.2 VPC Semantics

In the following subsections we will examine two analyses of VPC semantics: a traditional

linguistic analysis and a cognitive linguistic analysis.

2.2.1 Traditional Approaches to VPC Semantics

Accounts of the semantics of VPCs are given by Bolinger (1971), Fraser (1976), Jackendoff
(2002) and others. Here we choose to focus on the analysis of Jackendoff.
Jackendoff gives a three-way classification of VPCs according to the semantics con-

tributed by their particle. The three classes which Jackendoff identifies are directional,
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aspectual and idiomatic.? In directional VPCs, examples of which are given below, the

particle contributes its basic directional sense.

(28) Work just keeps piling up.

(29) The artist took the painting down.

The following sentences contain examples of aspectual VPCs.
(30) The World’s oil supplies will be used up by 2050.

(31) The carpenter banged away at the nail.

In sentence (30) the particle contributes a notion of completeness, while in sentence (31)
the particle contributes the notion that the action is continuing—in this case in an
iterative manner. The distinguishing property of idiomatic VPCs is that the meaning of
the particle cannot be easily identified. According to Jackendoff, examples of idiomatic

VPCs are:
(32) The clown blew up the balloon.
(33) Fred saw a spider and freaked out.

One problem with Jackendoft’s analysis of VPC semantics is that it classifies many
VPCs as idiomatic; however, some of the particles in these VPCs seem to contribute,
to varying degrees, a meaning. For example, in sentence (32) there is a sense in which
the balloon is expanding, and therefore may be interpreted as being or becoming up. In
sentence (33) there is a sense in which Fred is exiting from his normal mental state, and
therefore may be out. Such shortcomings in this analysis motivate further investigation of
VPC semantics. Mclntyre (2002) uses the idea of construction-specific senses of particles

to account for the meaning of many VPCs, but still considers some VPCs to be idiomatic.

2Jackendoff also identifies the time away construction. This construction is composed of a verb, a
time expression and away, as in Mary drank the night eway and John slept the whole day away. This
construction will not be analyzed here.
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2.2.2 Cognitive Linguistic Approaches to VPC Semantics

Several studies have addressed VPCs from a cognitive linguistic standpoint (Lindner,
1981; Morgan, 1997; Hampe, 2000). Here we choose to concentrate on the work of
Lindner.

Lindner gives an analysis of many VPCs which use the particles out and up, and then
classifies these VPCs according to the meaning contributed by their particle. In doing
so, Lindner gives an account for the semantics of many VPCs which would be considered
idiomatic in terms of the analysis given by Jackendoff. Although Lindner’s work looks
at VPCs with both out and up, here the focus will be on VPCs with up.

Lindner’s analysis is grounded in cognitive grammar (previously known as space gram-
mar) which is described by Langacker (1987). Three key terms from cognitive grammar

are trajector, landmark and schema.
Trajector (TR) The object which is conceptually foregrounded.

Landmark (LM) The object against which the TR is foregrounded.

Schema An abstract conceptualization of an experience. Here we focus on schemas
depicting a TR, LM and their relationship in both the initial configuration and the

final configuration communicated by some expression.

These concepts can be used in analyzing the semantics of a VPC since the semantic
contribution of a particle corresponds to a schema. For example, in sentence (34), the

TR is the balloon and the LM is the ground from which the balloon is moving away.
(34) The balloon was carried up by the wind.

The schema describing the semantic contribution of the particle in the above sentence is
shown in Figure 2.1, which illustrates the relationship between the TR and LM in the
initial and final configurations. Lindner identifies four schemas corresponding to senses

of the particle up, each of which is described in turn below.
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TR

O

O TR
LM LM
I nitial Fi nal

Figure 2.1: Schema for Vert-up.

Vertical up (Vert-up)

In this schema (shown in Figure 2.1), the TR moves away from the LM in the direction
of increase along a vertically oriented axis. This includes prototypical spatial upward
movement such as that in sentence (34), as well as upward movement along an abstract

vertical axis as in sentence (35).

(35) The price of gas jumped up on Tuesday.

In Lindner’s analysis, this sense also includes extensions of upward movement where a
vertical path or posture is still salient. Note that in some of these senses, the notion
of verticality is metaphorical; the contribution of such senses to a VPC might not be
considered compositional in a traditional analysis. Some of the most common sense

extensions are given below, with a brief justification as to why verticality is still salient.

e Up as a path to increased salience in viewer’s perceptual field. Objects
which are spatially high are generally easier to perceive.

Examples: crop up, dish up, show up, spring up, strike up, whip up
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e Up as a path into mental field. This is similar to the previous sense except
that here up codes a path for mental objects as opposed to physical objects.

Examples: call up, come up (with), dream up, dredge up, think up

e Up as a path into possession. The prototypical way of acquiring an object is
to raise it to hand-level.

Examples: grab up, pick up, snatch up

e Up as a path into a state of activity. The prototypical way of bringing an
object into an active state is to bring it into an erect posture.

Examples: fire up, gear up, get up, prick up, set up, start up, wake up

e Up as a path out of possession. Objects which are spatially high are out of
the range of possession.

Examples: fork up, give up, pass up

e Up as a path into a state of inactivity. Objects which are spatially high are
in a typical place of storage and therefore not in an active state.
Examples: hang up, lay up
Goal-oriented up (Goal-up)

Goal-oriented up is characterized by the TR approaching the LM, which represents a
goal, but the movement is not necessarily oriented along a vertical axis (see Figure 2.2).

Prototypical examples of this sense are given below.

(36) The bus drew up to the stop.

(37) He walked up to the bar.

This sense also includes extensions into the domain of social interaction as in sentences 38

and 39, and into the domain of time as in sentences 40 and 41.
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O O

LM = goal LM = goal

Initial Fi nal

Figure 2.2: Schema for Goal-up.

(38) He always tries to kiss up to his teacher.

(39) She sucks up to her boss in the hope of a promotion.
(40) The deadline is coming up quickly.

(41) We moved the meeting up to Monday.

Completive up (Cmpl-up)

Completive up is a sub-sense of Goal-up in which the goal represents an action being
done to completion. This sense shares its schema with Goal-up (Figure 2.2), but it is
considered as a separate sense since it is very frequent and corresponds to uses of up as

an aspectual marker. Examples of Cmpl-up are given below.

(42) Clean up your room!
(43) Suzy drank up all her milk.

(44) I filled up the car.

Reflexive up (Refl-up)

Reflexive up is a sub-sense of Goal-up in which the sub-parts of the TR are approaching

each other. The schema for Refl-up is shown in Figure 2.3; it is unique in that the TR
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O

LM = TR LM = TR

Initial Fi nal

Figure 2.3: Schema for Refl-up.
and LM are the same object. Examples of Refl-up are given below.
(45) The CEO bottled up her anger until she burst.
(46) He crumpled up the piece of paper and threw it out.

(47) Tie up your skates!

Lindner (1982) notes that the opposite of up should be down, but gives examples,

such as the following, in which this is not the case.
(48) Roll out the carpet and then roll it up.
(49) He crumpled up the letter and then smoothed it out.

Lindner uses the differing schemas for up (and out) to account for this phenomenon.

Structure of senses

Hierarchical relations among schemas can be shown in a “schematic network” (Langacker,
1987). The relationship between Vert-up and Goal-up (and the latter’s sub-senses) is
difficult to characterize in such a hierarchy, particularly because it is not clear whether
Vert-up and Goal-up are both sub-senses of another schema. Therefore, we choose to
represent the senses of up in a simplified schematic network, shown in Figure 2.4, in

which we connect more similar senses with shorter edges.
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Vertical up

Goal -Oriented up

Compl etive up
Ref | exi ve up

Figure 2.4: Simplified schematic network for up.

Limitations of Lindner’s analysis

One major limitation of Lindner’s analysis is that, in some cases, Vert-up and Goal-up
(and the sub-senses of the latter) overlap. For example, in sentence (50), up could be
considered to be Cmpl-up since the screw is being tightened completely; however, it
could also be considered to be Vert-up since the level of tightness of the screw is being

increased.
(50) John tightened up the screw.

This is an issue for any sense of up in which the achievement of a goal-state involves
the increase of some object or property along a physical or abstract vertical axis. In her
analysis, Lindner claims to have classified VPCs according to which sense of up is more
salient.

A second limitation of Lindner’s analysis is that she discusses ways in which senses
of up may be extended to other domains, but for the most part, does not discuss the
role of metaphor in these extensions. Lakoff and Johnson’s (1980) conceptual metaphor
theory claims that metaphor is not limited to language, but rather exists in, and pro-
vides structure for, our conceptual system. Lindner’s analysis could be strengthened by
accounting for these extensions of senses of up in terms of a system of metaphors, such as
that described by Lakoff and Johnson. This type of approach is taken by Morgan (1997)

in her analysis of VPCs using the particle out.



Chapter 3

Related Work

Studies in the computational linguistic community have examined VPCs, and the related

areas of the semantic classification of verbs and preposition semantics.

3.1 Research on VPCs

Work on VPCs has focused on three issues: the identification of VPCs in text, their

compositionality and their productivity.

3.1.1 Identification of VPCs

Several studies have focused on the identification of non-compositional terms (Melamed,
1997; Lin, 1999). In this section we consider work on identifying instances of VPCs,
which are often non-compositional, in text.

Since the interpretation of the use of a verb and particle/preposition is ambiguous
between a VPC and a verb followed by a prepositional phrase, the task of identifying
VPCs in text is not trivial. Furthermore, since a transitive VPC may occur in the
split construction with an arbitrary number of words between the verb and particle,

n-gram based collocation identification techniques are limited (Baldwin, 2005a). Bald-

18



CHAPTER 3. RELATED WORK 19

win and Villavicencio (2002) examine three methods for extracting VPCs from text:
a part-of-speech—based method, a chunk-based method, and a chunk grammar-based
method. They evaluate their system on the Wall Street Journal corpus and find the
chunk grammar-based method to perform best. They combine these three extraction
techniques and augment the combined classifier with several linguistically motivated fea-
tures, such as the frequency of the deverbal noun form of the VPC and the length of the
verb in the VPC, to achieve an F-score of 0.865 which is better than that of any of the
extraction methods used individually.

Baldwin (2005a) builds on the work of Baldwin and Villavicencio (2002), and considers
the more difficult task of extracting VPCs according to their valence—i.e., extracting
transitive or intransitive VPCs. He builds supervised classifiers which incorporate the
three basic methods of VPC identification described by Baldwin and Villavicencio (2002),
as well as a parser-based method. Again, the basic features are combined, and this
combined classifier achieves F-scores of 0.969, 0.749 and 0.897 on valence under-specified,
intransitive and transitive VPC extraction, respectively, from the BNC.

In other work on VPC identification, Blaheta and Johnson (2001) automatically iden-
tify verb + particle/preposition compounds. One limitation of their study is that it does
not make the distinction between VPCs and prepositional verbs. Baldwin (2005b) exam-
ines the related task of automatically extracting English prepositional verb types from

text.

3.1.2 VPC Compositionality

Several studies have attacked the issue of VPC compositionality. In one of the first such
studies, McCarthy et al. (2003) attempt to place the compositionality of a VPC on a
scale of 0 to 10—0 being completely non-compositional, 10 completely compositional.
Guided by the intuition that a compositional VPC will be semantically similar to its

base verb, they use an automatically created thesaurus to find the nearest neighbours



CHAPTER 3. RELATED WORK 20

of each VPC and its corresponding simplex verb (i.e., the base verb of the VPC). They
examine several measures of overlap between neighbours, and find that a measure which
takes into account the number of neighbours of the VPC which use the same particle
as the VPC minus the number of simplex neighbours having the same particle as the
VPC performs best. The intuition given for this measure is that when an expression
is compositional, the particle is making a contribution to its meaning. Subtracting the
number of simplex neighbours having the same particle as the VPC prevents VPCs
whose simplex neighbours also include VPCs with this particle from being given larger
compositionality scores. This measure gives a Spearman rank-order correlation coefficient
of 0.49 with gold-standard human judgements of VPC compositionality. One limitation of
this work is that it does not consider the extent to which the verb and particle contribute
their semantics separately.

Bannard (2002) performs one of the first studies of VPC compositionality which
distinguishes the semantic contribution of the particle from that of the verb. Some of
the limitations of this initial study are addressed by Bannard et al. (2003), who consider

the following four binary classification tasks involving the compositionality of VPCs.

1. Both the verb and particle contribute their simplex meaning.!
2. Either the verb or particle (or both) contributes its simplex meaning.
3. The verb contributes its simplex meaning.

4. The particle contributes its simplex meaning.

These tasks are interesting in that they consider the semantic contribution of the verb and
particle separately; however, they are limited in that they are binary. In some cases, it
can be difficult for a human judge to make a binary distinction as to whether the simplex

meaning of a verb or particle is contributed in a given VPC. The gold-standard data for

! The simplex meaning of a particle is its basic directional sense.
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this study, which consists of the compositionality judgements of twenty-six non-experts
for forty VPCs, supports this. For example, in the case of pay off, eleven judges thought
the verb’s meaning was being contributed while twelve did not (the other judges gave
“don’t know” responses). Similarly, thirteen judges believed that in is implied by throw
in while twelve did not. Bannard et al. experiment with four distributional measures of
VPC compositionality which are based on the idea that non-compositional expressions
are distributionally different from expressions formed by substituting semantically similar
terms for the original expression’s component words. However, their measures do not
generally perform better than the baseline of assigning the most common class (i.e.,

compositional or non-compositional).

Bannard (2005) builds on the work of Bannard et al. (2003), and examines the extent
to which both the verb and particle contribute their meaning in a VPC. The gold-standard
data for this study is improved from that of Bannard et al. (2003); two judges with expert
linguistic knowledge are also employed in addition to using non-expert judges. The
expert judges were asked to rate their confidence that the verb and particle individually
contribute their simplex meanings in a VPC on a scale of 1-7. The non-expert judges were
asked to perform a binary classification of the simplex meaning contribution of the verb
and particle. The non-expert judgements were converted to a compositionality score by
dividing the total number of positive judgements by the total number of judgements. For
each VPC type, Bannard creates a feature vector by counting the frequency of occurrence
of all words within a small window to the left and right of the verb in each instance of that
VPC across a corpus. Bannard similarly creates a feature vector for each simplex verb. He
then uses the cosine of two feature vectors as a measure of their similarity. When applied
to the feature vectors for a VPC and its corresponding simplex verb, this similarity
measure gives a compositionality score. This score is found to correlate significantly with
the compositionality judgements for the verbs, but not for the particles. Although the

correlation for the verbs is significant, the strength of the correlation is very weak. The
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strongest correlation achieved has a Spearman rank-order correlation coefficient of just
0.25, which implies that the automatic compositionality score accounts for just 6.25% of

the variation in the human judgements.

Patrick and Fletcher (2005) examine the compositionality of VPC tokens as opposed
to VPC types as in the previously discussed studies. Patrick and Fletcher recognize the
need for a more fine-grained classification of VPC semantics; however, in their study they
only make a 3-way distinction of compositional, non-compositional and not a VPC. The
third category is important since a given candidate VPC token may actually be a verb
followed by a prepositional phrase. Patrick and Fletcher train a classifier using a simple
set, of features, which includes the particle in the VPC, the number of words occurring
between the verb and particle, and the transitivity of the VPC. They achieve their best
results when they exploit the fact that the verb in a VPC is usually of Germanic origin
by including the last three letters of the verb as a feature. Using this set of features they
achieve F-scores of 0.674, 0.633 and 0.551, respectively, on their three classes of non-
compositional, compositional and not a VPC. Patrick and Fletcher also consider as a
feature whether the arguments of a VPC are metaphorical. They annotate the arguments
of VPCs as literal or metaphorical; however, in doing so they treat metaphoricity as a
binary property, when in fact arguments may be metaphorical to varying degrees. They
find that metaphorical arguments are relatively infrequent, but are able to show that if
the ratio of VPCs in the training data which have metaphorical arguments to those which
do not is sufficiently high, using the metaphoricity of the arguments of a VPC as a feature
may improve classification accuracy. However, since they must create a corpus with an
appropriate ratio of VPCs with metaphorical to non-metaphorical arguments, they are
prevented from directly comparing results using features which capture the metaphoricity

of arguments to results using the original set of features.

Uchiyama et al. (2005) examine the semantics of Japanese Compound Verbs (JCVs),

which are a type of MWE that is composed of two verbs and bears some similarity to
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English VPCs. In particular, the sense of the second verb (V2) can be either aspectual,
spatial or adverbial, and the semantics of a given V2 in JCVs may be ambiguous between
these senses. Uchiyama et al. seek to classify JCV tokens according to the sense con-
tributed by their V2. They compare two methods for doing this: a statistical method and
a rule-based method. In the statistical method, a feature vector is formed for each JCV j
by concatenating the senses of the V2 in JCVs which use one of the component verbs of
j. A classifier is trained using these features to perform word sense discrimination—i.e.,
reduce the number of candidate senses for the V2 in a JCV. Then from the constrained
set of senses for the V2 in a JCV, the most frequent sense is returned. This method is
evaluated individually on each class (i.e., aspectual, spatial and adverbial) and achieves
an average accuracy of 90%. This is substantially better than the baseline of assigning
the most frequent class, which has an average accuracy of 68%. The good performance
is attributed to the fact that most JCVs are monosemous. In the rule-based method,
a set of semantic and syntactic rules is manually developed to determine the semantic
class of the V2 in a JCV. This method achieves an accuracy of 95%, but is not currently

automatic—it requires a human to apply the rules.

3.1.3 VPC Productivity

Villavicencio (2005) builds on her previous work (Villavicencio, 2003) which explores
the productivity of VPCs. Villavicencio notes that the number of VPCs is “constantly
growing” and that the coverage of VPCs varies between existing lexical resources. Villav-
icencio explores a way to automatically expand the coverage of VPCs in a lexicon. Her
work is based on the observation that VPCs tend to be productive across semantic classes
of verbs. For example, she notes that some verbs of cooking, such as bake, cook, fry and
broil, can all combine with the particle up to form a VPC. However some cooking verbs,
such as saute, are less acceptable when combined with up. In this study, Villavicencio

generates candidate VPCs by combining verbs from Levin’s (1993) classes with the par-
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ticles away, down, in, on, out and up. Candidate combinations which are not found in a
set of lexical resources are searched for in the World Wide Web using the Google search
engine. Villavicencio uses a restricted search pattern which requires that one of a small
set of prepositions occurs after the particle in a VPC to prevent matching uses of a verb
followed by a prepositional phrase. For example, when looking for evidence for walk up,
Villavicencio searches for walk up from, to avoid the possibility that up is the head of
a prepositional phrase. VPCs which are found in the search are considered to be valid
VPCs. Villavicencio finds that verbs of similar semantic classes tend to form VPCs with
similar sets of particles. One drawback of this study is that the evaluation is somewhat
unsatisfactory in that it does not actually verify, using any sort of human judgments,

that the automatically generated VPCs are valid.

3.2 Verb Classification

Work on verb classification—automatically assigning a verb to a semantic class—is crucial
to the task of particle sense classification, since the meaning of a VPC appears to be
related to the meaning of its base verb. Here we examine some of the research in this
area.

Merlo and Stevenson (2001) classify English verbs into three classes according to the
thematic role assigned to their arguments. For classification they use five simple features
which can easily be extracted from text pre-processed using standard tools such as a
part-of-speech tagger and parser. They report an accuracy of 69.8% on a task which
has a baseline of 34% and an upper bound of 86.5%. One drawback to this work is
that the features they use are manually designed specifically for this application, and
might not be useful for other tasks. Joanis and Stevenson (2003) and Joanis et al. (2006)
address this shortcoming by devising a general feature space, based on verb alternations

identified by Levin (1993), to classify verbs according to their semantic class. They
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evaluate their features on several classification tasks and report reductions in error rate
of 49-90%. They find that their features which capture the syntactic slots in which the
arguments and adjuncts of a verb are expressed, which are heavily relied on in this thesis,
are particularly useful for verb classification.

Schulte im Walde (2003) addresses the task of clustering German verbs according to
their semantic class. To do this she uses a set of features based on sub-categorisation
frames and selectional preferences. Schulte im Walde’s results are better than the baseline
of randomly assigning verbs to classes, but are well below the upper bound performance
achieved by manually assigning verbs to clusters. Schulte im Walde (2005) applies the
same features used by Schulte im Walde (2003) to the task of identifying semantic nearest
neighbours of German particle verbs, a somewhat related phenomenon to English VPCs.
Schulte im Walde claims that determining the semantic nearest neighbour of a particle
verb is a first-step towards being able to determine its compositionality. In particular,
more-compositional particle verbs will be more similar to their simplex verbs (Schulte im

Walde, 2004).

3.3 Preposition Semantics

There is a clear relationship between preposition and particle semantics. Since there has
been little work done in the computational linguistic community addressing the issue of
determining the semantic contribution of a particle, we also examine the work done on
determining the semantic contribution of a preposition.

Some work has addressed the issue of preposition semantics in general. O’Hara and
Wiebe (2003) seek to classify a use of a preposition according to the semantic role con-
veyed. They use standard word-sense disambiguation features such as the words and
parts-of-speech surrounding the target word to be disambiguated. In addition to words

which occur near the target, they also consider WordNet (Fellbaum, 1998) hypernyms of
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these words, to capture the semantic categories which occur near the target. O’Hara and
Wiebe report an accuracy of 86.1% for identifying the more coarse-grained Penn Tree-
Bank (Marcus et al., 1994) semantic roles and 49.4% for the more fine-grained FrameNet
(Fillmore et al., 2001) semantic roles. These results are a significant improvement over
the baseline of assigning the most frequent class, which is 48.0% and 14.9% for the Penn
TreeBank and FrameNet roles respectively. In a very different study of the semantics
of prepositions, Litkowski (2002) uses a dictionary to create a directed graph where
vertices represent prepositions and edges represent hypernymic relations between prepo-
sition senses. Litkowski describes how such a graph can be used to find a basic set of

prepositions from which other prepositions may be derived.

Baldwin (2006) investigates the use of distributional measures of similarity for prepo-
sitions and particles; such measures have previously been applied to parts-of-speech such
as nouns and verbs, but not prepositions and particles. Baldwin uses a similarity score
based on Latent Semantic Analysis (LSA, Deerwester et al., 1990) and compares it to
similarity measures based on lexical conceptual structures (LCS, Dorr, 2001) and a the-
saurus. He finds a modest correlation between his LSA-based score and the LCS-based
measure. Baldwin finds a good correlation between his score and the thesaurus-based
measure, but only for particles and only when information about the semantic class of

the VPC in which the particle participates is included.

Some work has also examined the more fine-grained semantics of a particular preposi-
tion. Alam (2004) identifies senses of over and creates two sets of features: the first based
on complements of prepositional phrases with over, the second on heads governing such
prepositional phrases. From these sets of features, Alam builds two decision trees, one
using the complement features, the other using the head features, to disambiguate uses of
over. Alam manually applies the decision trees to 295 uses of over as a preposition, and
reports an accuracy of 93.6%, but does not give a baseline for this task. Alam notes that

automatic application of the decision trees would require recognition of prepositional uses
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of over, and identification of the semantic class of the head and complement. Boonthum
et al. (2005) analyze the senses of with from the LCS preposition database (Dorr, 2001),
and come up with a set of rules based on the complements and heads which are used
with this preposition in its various senses. These rules are applied to instances of with
to identify a set of its possible senses. Boonthum et al. evaluate their algorithm on eight
sentences for each of fifteen manually selected verbs which are used as heads governing
with. Out of the 120 test sentences, their system returns exactly the correct sense of with
twenty-six times, and a set of senses of with containing the correct sense sixty times.
There exist lexical resources for verbs and nouns such as VerbNet and WordNet, but
until recently, there have been no similar resources for prepositions. Two projects which
are working to fill this gap are The Preposition Project (Litkowski, 2005) and PrepNet
(Saint-Dizier, 2005). These resources are not suitable as the basis for the sense classes
in this thesis because they do not address the range of metaphorical extensions that a
preposition or particle can take on; however, future work may enable larger scale studies

of the type needed to adequately address VPC semantics.



Chapter 4

Computational Models of Particle

Semantics

In this study, we aim to classify VPCs using the particle up according to the semantics of
their particle. However, we would like to develop a general set of features that captures
distinctions among the different senses of any particle, not just up, and which may be used
for sense classification of other particles in the future. In this chapter we first describe
the features used for sense classification of particles, and then examine the classes, which

correspond to senses of up, that serve as the basis for our classification task.

4.1 Features Used in Classification

We develop two sets of features, linguistic features and word co-occurrence features,
which differ in terms of their motivating principles. Each set of features is described in

turn in the following subsections.

28
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4.1.1 Linguistic Features

The linguistic features are composed of the slot, adverb, nominal, and particle features.

These features are motivated by specific semantic and syntactic properties of verbs and

VPCs.

Slot Features

We observe that VPCs which are formed from verbs of the same semantic class, and which
use a common particle, often draw on the same meaning of that particle. As evidence
of this, consider the VPCs drink up, eat up and gobble up; all of these draw on the
completion sense of up. As another example, each of the VPCs puff out, spread out and
stretch out draws on the extension sense of out. Villavicencio (2005) has noted that verbs
of the same semantic class will tend to form VPCs with similar sets of particles. Here
we further hypothesize, from observations such as those noted above, that the semantic
contribution of a particle when combined with a given verb is related to the semantics of
that verb. That is, the particle contributes the same meaning when combining with any
of a semantic class of verbs. The prevalence of the aforementioned patterns suggests that
features which have been shown to be effective for the semantic classification of verbs
may be useful for our task of semantic classification of particles.

We adopt simple syntactic “slot” features which have been successfully used in the
automatic semantic classification of verbs (Joanis and Stevenson, 2003; Joanis et al.,
2006). These features are motivated by the fact that semantic properties of a verb are
reflected in the syntactic expression of the participants in the event the verb describes
(Levin, 1993). The syntactic slots are subject, direct and indirect object, and object of a
preposition, the latter distinguished by the identity of the preposition (i.e., we consider
arguments of different prepositions separately). The slot features encode the relative
frequencies of the syntactic slots that the arguments and adjuncts of a verb appear in.

We calculate the slot features separately over the following three contexts for each target
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expression (a VPC using up in our experiments):

All uses of the base verb of the target expression. To capture the semantics of

the base verb of the target VPC, and thus the semantics of the target.

All uses of the target expression. To directly learn about the semantics of the

target VPC.

All uses of the base verb of the target expression in a VPC with any of a set
of high-frequency particles. To gain information about the semantics of the base

verb of the target VPC when used in VPCs in general.

These three sets of features together form the slot features for a target VPC to be

classified.

Adverb Features

Another indication of the semantic class of a verb is its pattern of co-occurrence with
adverbs; verbs of similar semantic classes will tend to occur with similar sets of adverbs.
We therefore hypothesize that verbs with similar patterns of co-occurrence with adverbs
will behave similarly semantically when used in a VPC. For each target expression, we
count the relative frequency of occurrence of each of a set of high-frequency adverbs in
each of the three contexts described above for the slot features. Our adverb features are

similar to features used by Joanis et al. (2006).

Nominal Features

Lindner (1981) notes that denominal verbs which describe applying or providing one
object to another tend to combine with up in similar ways. Consider the following

examples, which are taken from Lindner (1981):
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(51) The bay silted up.

(52) Don’t doodle up your handout.

(53) John saddled up his horse and rode out of town.
(54) GM tooled up their new factory.

In sentences 51 and 52, silt and doodles are being put into the bay and onto the handout
respectively, while in sentences 53 and 54, a horse and a factory are being provided with
a saddle and tools. Furthermore, in the second two examples, the horse and factory are
being brought into a state of readiness for some action as a result of being provided with
these objects. To capture these trends as a feature, we count the relative frequency of
occurrence of any noun which has the same form as the base verb of the target expression,

in a manner similar to Joanis et al. (2006).

Particle Features

Two types of features are motivated by properties specific to the semantics and syntax
of particles and VPCs.

First, Wurmbrand (2000) notes that compositional particle verbs in German (a some-
what related phenomenon to English VPCs) allow the replacement of their particle with
semantically similar particles. This property may also be true of English VPCs. For
example, both bring up and move up are compositional and their base verbs form VPCs
with the particles back, down, in and out as well. In contrast, muck up is relatively
non-compositional, and does not form a VPC when combined with any of the particles
back, down, in or out.

Based on Wurmbrand’s observations about German particle verbs and similar pat-
terns in English VPCs, we hypothesize further that when a verb combines with a particle
such as up in a particular sense, the pattern of usage of that verb in VPCs using all

other particles may be indicative of the sense of the target particle (in this case up) when
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combined with that verb. To reflect this hypothesis, we count the relative frequency of
any occurrence of the base verb of the target expression used in a VPC with each of a
set of high-frequency particles, described in detail in Section 5.2.2.

Second, as noted in Section 2.1, one of the striking syntactic properties of VPCs
is that they can often occur in either the joined construction or the split construction.
Bolinger (1971) notes that VPCs which are idiomatic according to his analysis may show a
preference for occurring in the joined construction. Bolinger argues that the final position
receives “semantic focus” and therefore a particle that has little meaning is unlikely to
occur in this position. One situation in which this is particularly evident is when the
object of a transitive VPC is a clause beginning with a wh-word. Sentences 55 and 56,
taken from Bolinger (1971), demonstrate that a so-called idiomatic VPC is not valid in
the split construction, while sentences 57 and 58 show that a literal VPC is acceptable

in both the split and joined constructions.

(55) I can’t make out who it is.

(56) *I can’t make who it is out.

(57) Regretfully, he gave back what he had found.
(58) Regretfully, he gave what he had found back.

Bolinger also gives the following examples which show that when a literal VPC undergoes
nominalization it may appear in both the joined and split constructions (sentences 59
and 60), while idiomatic VPCs are generally only acceptable in the joined construction

(sentences 61 and 62).
(59) His throwing up of the ball was stupid.

(60) His throwing of the ball up was stupid.

1 This example is not given in Bolinger (1971); however, it is included here to contrast with sen-
tence (58).
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(61) His throwing up of his dinner was stupid.
(62) *His throwing of his dinner up was stupid.

Recall from Section 2.1 that many VPCs allow the insertion of an adverb between the
verb and particle. Bolinger notes that idiomatic VPCs resist insertion of adverbs more
than literal VPCs. In the following examples, taken from Bolinger, the first contains a
literal VPC which allows insertion of an adverb, while the second contains an idiomatic

VPC which does not.

(63) They clattered noisily on.
(64) *He caught quickly on.

In this study we assume that all VPCs are compositional; however, we also believe
that they lie on a continuum from literal to idiomatic. In the spirit of Bolinger’s analysis,
we hypothesize that more idiomatic VPCs will tend to favour the joined construction,
while more literal VPCs will be more flexible. To encode this as a feature, we calculate
the relative frequency of the verb co-occurring with the particle up with each of 0-5

words between the verb and up, reflecting varying degrees of verb-particle separation.

4.1.2 Word Co-occurrence Features

These features differ from the linguistic features in that they are not motivated by se-
mantic and syntactic properties specific to verbs or VPCs. Instead these are general
context features, in the form of word co-occurrence frequency vectors, which have been
used in numerous approaches to determining the semantics of a target word. However, it
is important to note that unlike the task of word sense disambiguation, which examines
the context of a target word token to be disambiguated, here we are looking at aggregate
contexts across all instances of a target VPC, in order to perform type classification (i.e.,

classification of the semantics of the particle used in this VPC expression overall).
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We adopt very simple word co-occurrence features (WCFs), calculated as the fre-
quency of any (non-stoplist) word within a small window to the left and right of the
target expression. We noted above that the target particle semantics is related both to
the semantics of the verb it co-occurs with, and to the occurrence of the verb across
VPCs with different particles. Thus we not only calculate the WCF's of the target VPC
(a given verb used with the particle up), but also the WCFs of the verb itself, and the
verb used in a VPC with any of the high-frequency particles. These WCF's give us a very
general means for determining semantics, whose performance we can contrast with our

linguistic features.

4.2 The Sense Classes Used for Our Study

We classify target VPCs according to which of the senses of up, described in Section 2.2.2

and repeated below for convenience, is contributed to the expression.

Vert-up

Goal-up

Cmpl-up

Refl-up

For example, the expressions jump up and pick up are designated as being in the class
Vert-up since up in each of these VPCs has the vertical sense, while clean up and drink
up are designated as being in the class Cmpl-up since up in these expressions has the
completive sense.

Recall that the senses of up can be organized into a schematic network, as discussed
in Section 2.2.2. One of the main motivations for basing our sense classes on a cognitive

linguistic analysis is the structure of the schematic network of senses; combining closely
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related senses allows us to alter the granularity of our classification in a linguistically
motivated fashion. For example, Cmpl-up or Refl-up could be merged with Goal-up, since
they are both sub-senses of, and semantically similar to, Goal-up, as shown in Figure 2.4.

Thus we can explore the effect of different sense granularities on classification.



Chapter 5

Materials and Methods

5.1 Experimental Expressions

We created a list of English VPCs using the particle up based on a publicly available
list of VPCs (Mclntyre, 2001) and a list of VPCs created by two human judges, both
of whom were native English speakers. The judges then independently rated each VPC
as acceptable or not, and any VPC which either judge thought to be unacceptable was
discarded. The final list contained 389 VPCs.

The VPCs in this list are split into three frequency ranges according to how often their
base verb occurs with any verb part-of-speech tag in the British National Corpus (BNC,
Burnard, 2000), a corpus of approximately 100M words. Base verb frequency, as opposed
to VPC frequency, is used for splitting the expressions into frequency ranges, since many
of the features used in classification, described in Section 4.1, depend on the use of a
verb. Furthermore, the frequency of a VPC is only approximate, since automatic VPC
identification is challenging. Training, verification, and test sets of sixty VPCs each are
formed by randomly selecting VPCs from the frequency ranges, such that the proportion
of VPCs in each frequency range is the same in each dataset. The frequency ranges,

number of VPCs in each frequency range, and number of VPCs per dataset in each

36
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Frequency Range of Base Verb | Total #VPCs | #VPCs per Dataset
freq < 100 42 0

100 <= freq < 1000 143 25

1000 <= freq < 5000 101 17

5000 <= freq 103 18

Table 5.1: Number of VPCs in frequency range of base verb.

frequency range are given in Table 5.1.

Each VPC in each dataset is independently annotated by each judge according to
which of the four senses of up identified in Section 4.2 is contributed by its particle. The
observed inter-annotator agreement for this task is 0.80 for each dataset. The unweighted
kappa scores are 0.73, 0.64 and 0.55, for the training, verification and test sets respec-
tively. After this initial round of annotation, the judges discussed VPCs on which they
disagreed, and together determined a consensus classification.

It is important to note that VPCs may be ambiguous with respect to their particle
sense; for example, come up may be used with up in the vertical sense as in sentence (65),

or in the goal-oriented sense as in sentence (66).
(65) The sun came up.
(66) The deadline is coming up.

However, following the type-based approaches to VPCs of McCarthy et al. (2003) and
Bannard et al. (2003), we simplify our task by having the judges assign each VPC to a
single sense class for up according to their assessment of its predominant usage. Further-
more, the use of up in a VPC may draw on multiple senses of this particle, as discussed
in Section 2.2.2. In such cases, the judges were asked to choose the sense which they
thought was most salient. The particle sense contribution judgements are given in full

in Appendix A.
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5.2 Calculation of the Features

In the following subsections we describe how our features are calculated for each VPC
using counts extracted from the BNC. Since we calculate the slot, adverb and word co-
occurrence features over three different contexts, as described in Section 4.1.1, the term
target expression will refer to the following: a VPC using up, the base verb of the VPC,
and the base verb of the VPC used in a VPC with any of the high-frequency particles,
defined below.

5.2.1 VPC Identification

The calculation of many of our features requires the identification of VPCs in text. We
identify VPCs using a simple heuristic based on part-of-speech (POS) tags, similar to the
POS-based method used by Baldwin (2005a). According to our heuristic, a use of a verb
v is considered part of a VPC if it occurs with a particle p (any word tagged AVP) within
a six-word window to the right with neither another verb nor another particle occurring
between v and p. We feel that six words is a reasonable window size since, as discussed
in Section 2.1, VPCs with heavy noun-phrase complements tend to occur in the joined
construction, and a larger window size would give noisier results. Over a random sample
of 113 VPCs extracted using our heuristic, we find the precision to be 88%, somewhat
below the performance of Baldwin’s (2005a) best extraction method, indicating potential
room for improvement. (The recall cannot be estimated since we do not know the true

number of VPCs in the BNC.)

5.2.2 Linguistic Feature Calculation

The features motivated by syntactic and semantic properties of verbs and VPCs (the
slot, adverb, nominal and particle features) are calculated using a modified version of the

ExtractVerb software provided by Joanis et al. (2006), which runs over the BNC. The
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slot and adverb features require that the corpus be pre-processed using the Cass chunker

(Abney, 1991).

Slot Features

The slot features capture information about the syntactic slots with which a target ex-
pression occurs. We count the relative frequency of the target expression with each of

the following slots (see Joanis et al. (2006) for details):

e subject

e subject of a transitive verb

e subject of an intransitive verb
e object

e direct object

e indirect object

e prepositional phrase (identified by the particular preposition)

We also count the relative frequency of occurrence of the target expression with
prepositional phrases headed by each of a set of high-frequency prepositions, listed in
Table 5.2. Joanis et al. (2006) define the high-frequency prepositions to be those which
occur more than 10 000 times in the BNC. We also include the preposition up, even
though it does not meet the frequency cut-off, since it is homonymous with the particle
which we are investigating, and there is a clear relationship between preposition and
particle semantics. Joanis et al. permit spelling variation for some prepositions; these
prepositions are listed in Table 5.3 with their alternative spelling.

To capture information about less frequent prepositions, Joanis et al. (2006) group

prepositions that are similar in meaning or expected to be used similarly. We follow their
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about as by like rather than until
above as well as  despite near round up
according to at during of since upon
across away from for off such as up to
after because of from on through with
against before in outside throughout within
along behind including  out of to without
among between into over towards

around beyond in terms of per under

Table 5.2: High-frequency prepositions, taken from Joanis (2002), with the exception of

up.

Preposition | Alternative Spelling
about "bout

for fer

of o’

over o'er

with wi’

Table 5.3: Prepositions for which an alternative spelling is allowed, taken from Joanis

(2002).
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approach, and count the relative frequency of occurrence of the target expression with
any preposition from each of a set of nineteen groups of prepositions, which are given in
Table 5.4.

The slot features also capture a very limited amount of information about the pattern
of occurrence of the target expression with adverbs. In particular, we follow Joanis
et al. (2006) and count the relative frequency of occurrence of an adverb following the
target expression. Levin (1993) notes that in some cases a transitive verb may be used
intransitively with a modifier. Therefore we again follow Joanis et al., and capture this
pattern by counting the relative frequency of an adverb following the target expression

when it is used intransitively.

Adverb Features

The adverb features expand on the limited information which the slot features provide
about the target expression’s pattern of occurrence with adverbs. Here we count the
relative frequency of occurrence of each of the adverbs in Table 5.5 in a verb chunk with
the target expression, and each of the adverbs in Table 5.6 occurring after a verb chunk

containing the target expression.

Nominal Feature

The nominal feature is calculated by counting the number of times the base verb of the

VPC occurs as a noun, divided by the number of times it occurs as either a noun or verb.

Particle Features

To calculate the particle features, we count the number of times the base verb of each
target VPC occurs in a VPC (according to our identification heuristic) with each of a
set, of fifteen high-frequency particles, and then divide by the total number of times the

base verb of the target VPC occurs. The high-frequency particles, given in Table 5.7,
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Group Name

Prepositions in Group

above
add
behind
between
cause
despite
dest
during

except

inside
instead
like

near

path

regard

reltime
source

spatial

under

above, on top of

as well as, besides, including, in addition to, in conjunction with, plus

behind, in front of

among, amongst, amid, amidst, between, in between

because of, for fear of, on account of

despite, in spite of, notwithstanding

into, onto, on to

during, throughout

apart from, aside from, bar, barring, but, but for, except, excepting,

except for, excluding, other than, save, save for

inside, outside, outside of

instead of, rather than

like, unlike

adjacent to, beside, close to, near, nearer, nearest, near to, nearer to, nearest to,
next to, opposite

across, along, around, beyond, down, past, round, through, toward, towards, up
as for, as regards, as to, concerning, in regard to, in view of, pertaining to,

re, regarding, with regard to, with respect to

after, before, prior to, since, till, until

away from, off, off of, out, out of

adjacent to, above, behind, below, beneath, beside, close to, in front of,

near, nearer, nearest, near to, nearer to, nearest to, next to, on top of, opposite,
outside, outside of, over, o’er, under, underneath

below, beneath, under, underneath

Table 5.4: Preposition groups, taken from Joanis (2002).
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n’t also just now still never
always so already  really  even actually
often in order ever enough probably simply
usually sometimes certainly much thus therefore

Table 5.5: High-frequency adverbs in verb chunk.

away again together there forward here
now  too SO home just about
more both aside over yesterday today
not  all more than at all further at least
right up to either seriously straight  slowly
even

Table 5.6: High-frequency adverbs following verb chunk.

are those which occur more than 100 times in the BNC with the POS tag AVP. We also
count the number of times the target VPC occurs with each of 0-5 words between the

verb and particle, and divide by the total number of times the target VPC occurs.

5.2.3 Word Co-occurrence Feature Calculation

To compute the word co-occurrence features (WCFs), we first determine the relative
frequency of all words which occur within a five-word window to the left and right of
any of the target expressions in the training data. From this list we eliminate the most
frequent 1% of words as a stoplist, and then use the next n most frequent words as
“feature words”. For each target expression, we then calculate the relative frequency of
occurrence of each feature word within the same five-word window to the left and right.

We use n = 200 and n = 500 to create feature sets WCF9q9 and WCF 5oy respectively.
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Particle | Frequency
up 158064
out 145706
back 75233
down 72709
on 54956
off 37751
in 34411
over 32526
about 12587
round 10895
around 10384
through 2796
along 4925
by 371
under 313

Table 5.7: High-frequency particles and their frequency in the BNC.
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#VPCs in Sense Class

Sense Class | Train | Verification | Test
Vert-up 24 33 27
Goal-up 1 1 3
Cmpl-up 20 23 22
Refl-up 15 3 8

Table 5.8: Frequency of items in each sense class.

5.2.4 Feature Contexts

Recall from Section 4.1 that the slot, adverb and WCF features are calculated indepen-
dently for three contexts, in which the target expression differs: all uses of the VPC, the

base verb of the VPC, and the base verb of the VPC used in a VPC with any of the

high-frequency particles.

5.3 Experimental Classes

Table 5.8 shows the distribution of senses in each dataset. Each of the training and
verification sets has only one VPC corresponding to Goal-up. Recall from Section 2.2.2
that the network in which the senses of up are arranged gives linguistic motivation for
combining senses. Goal-up shares a schema with Cmpl-up, and is therefore very close
to it in meaning, as indicated spatially in the sense network in Figure 2.4 (page 17).
We therefore merge Goal-up and Cmpl-up into a single sense, to provide more-balanced
classes.

One of the goals of this study is to explore the effect of differing granularities of senses
on classification. We run each experiment as both a 3-way and 2-way classification task,
merging senses as shown in Tables 5.9 and 5.10 respectively. In the 3-way task, the sense

classes correspond to the meanings Vert-up, Goal-up merged with Cmpl-up (as noted
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#VPCs in Sense Class

Sense Class | Train | Verification | Test
Vert-up 24 33 27
Goal-up + 21 24 25
Cmpl-up

Refl-up 15 3 8

Table 5.9: Frequency of items in each class for the 3-way task.

#VPCs in Sense Class

Sense Class | Train | Verification | Test
Vert-up 24 33 27
Goal-up + 36 27 33
Cmpl-up +

Refl-up

Table 5.10: Frequency of items in each class for the 2-way task.

above), and Refl-up. In the 2-way task, we further merge the classes corresponding to
Goal-/Cmpl-up with that of Refl-up, because as illustrated in Figure 2.4 (page 17), Refl-
up is also a sub-sense of Goal-up. Moreover, all three of these senses contrast with Vert-up,
in which increase along a vertical axis is the salient property. It is worth emphasizing that
the 2-way task is not simply a classification between literal and non-literal up—Vert-up

includes extensions of up in which the increase along a vertical axis is metaphorical.

5.4 Evaluation Metrics

The variation in frequency of the sense classes of up across the datasets makes the true

distribution of the classes difficult to estimate. Furthermore, there is no obvious informed
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baseline for this task. Therefore, we make the assumption that the true distribution of
the classes is uniform, and use the chance accuracy 1/C as the baseline (where C is
the number of classes—in our experiments, either 2 or 3). Given this assumption and
corresponding baseline, our measure of classification accuracy should weight each class
evenly. Therefore, we report the average per class accuracy, which gives equal weight to

each class.

5.5 Classifier Software

Before describing the classifier employed, we describe the pre-processing which we apply
to the data.

Following Joanis et al. (2006), we begin by replacing any missing value—a feature
value that could not be calculated due to division by 0—by the 60% trimmed mean for
that feature in the dataset in which the missing value occurs. The 60% trimmed mean is
computed by eliminating the 30% highest and lowest values, and then taking the mean
of the remaining values. We then eliminate any feature which takes on the same value
across all data points in the training data. For each remaining feature, we calculate its
60% trimmed mean and mean-absolute-deviation in the training data. Then for each
feature in both the training and testing data, we subtract the corresponding trimmed
mean and divide by the appropriate mean-absolute-deviation. Finally, we take the arctan
of each dataset to reduce the effects of outliers (Sarle, 2002).

For classification we use LIBSVM (Chang and Lin, 2001), an implementation of a
support-vector machine (SVM). LIBSVM provides many different options for classifi-
cation; following Joanis et al. (2006), we use the default parameters suggested by Hsu
et al. (2003). They recommend setting the SVM type to C-SVC and the kernel type
to a radial basis function. These choices require us to set two additional parameters,

cost and gamma. Using the same method as Joanis et al. (2006), we perform a grid
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search through possible values of these parameters to find the optimal combination. For

~17 " For each

cost we consider the range 2'7,2!5 213275 and for gamma 23,2',271...2
combination of values we perform 10-fold cross-validation on the training data using ten
random restarts.

Since we use a uniform baseline, as described in Section 5.4, we again follow the
approach of Joanis et al. (2006) and assign a weight of % to each class c. This
has the effect of increasing the penalty for misclassification of datapoints in low-frequency
classes, so that the classifier will not be biased towards higher frequency classes.

Note that our choice of accuracy measure and weighting of classes in the classifier is
necessary given our assumption of a uniform random baseline. Since the accuracy values

we report incorporate this weighting, these results cannot be compared to a baseline of

always choosing the most frequent class.
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Experiments and Results

We present experimental results for both verification and unseen test data, on each set
of features described in Section 4.1, used individually and in combination.

Recall from Section 4.1 that the slot features, adverb features and WCF's are calcu-
lated separately over three different contexts. Preliminary experiments on verification
data indicated that combinations of contexts which include the target expression to be
classified—a VPC with up in our experiments—gave the best results. Therefore, we per-
form experiments on test data calculating the slot features, adverb features and WCFs

for the following combinations of contexts:

VPCs with up and verbs All uses of the target expression + all uses of the base

verb of the target expression.

VPCs with up and all VPCs All uses of the target expression + all uses of the base
verb of the target expression used in a VPC with any of the high-frequency particles,

described in Section 5.2.2.

All contexts All uses of the target expression + all uses of the base verb of the target

expression + all uses of the base verb of the target expression used in a VPC with any

49
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3-way Task | 2-way Task

Features Ver | Test | Ver | Test
Particles 37 33 65 47
Slots 41 51 53 67

Slots + Particles | 54 54 59 63

All Linguistic 54 90 68 63

Table 6.1: Accuracy (%) using linguistic features.

of the high-frequency particles.

We find that features which are calculated for the combination of all contexts generally
perform better than features calculated for other combinations of context. Therefore,
in this chapter we focus on experiments using the full combination of contexts, but also
present results for experiments using other combinations of context in Appendix B. All
experiments are run on both the 3-way and 2-way sense classification task, described in
Section 5.3, which have a chance baseline of 33% and 50%, respectively. Tables 6.1-6.4

give results for experiments using the full combination of contexts.

6.1 Experiments Using Linguistic Features

The results for experiments using the features which are motivated by semantic and
syntactic properties of verbs and VPCs are summarized in Table 6.1, and discussed in

turn below.

6.1.1 Particle Features

We examine the performance of the particle features on their own, since experiments

using just these features indicate the extent to which patterns of combination of a verb
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with particles can indicate the semantics of a specific particle when combining with that
verb. The results are disappointing, with only the verification data on the 2-way task
showing substantially higher accuracy than the baseline. An analysis of errors reveals no

consistent explanation, suggesting that the variation may be due to small sample sizes.

6.1.2 Slot Features

Experiments using the slot features alone test whether features that tap into semantic
information about a verb are sufficient to determine the appropriate sense class of a
particle when that verb combines with it in a VPC. Although accuracy on the test data
is well above the baseline in both the 2-way and 3-way tasks, for verification data the
increase over the baseline is much less. The class corresponding to the sense Refl-up in the
3-way task is relatively small in both the verification and test sets, as shown in Table 5.8
(page 45). This means that a small variation in classification of these VPCs may lead to
a large variation in accuracy, since our measure reports the average per class accuracy
as discussed in Section 5.4. However, this is not the cause of the variation in accuracy
across the verification and test sets, since the accuracy on VPCs in the sense class for
Refl-up is similar in both datasets. Although these features show promise for our task,
the variation in accuracy between verification and test data indicates the limitations of

our small sample sizes.

6.1.3 Slot + Particle Features

We hypothesize that the combination of the slot features with the particle features will
give an increase in performance over either set of features used individually, given that
they tap into differing properties of verbs and VPCs. Although we do not find the
combination of the slot and particle features to give an increase in performance in all
cases, we do find that the use of these features together gives more consistent performance

across verification and test data than either feature set used on its own. This indicates
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that the classifier is learning a more general model that is less sensitive to variation
amongst the datasets. We analyze the errors made using the slot and particle features
separately, and find that they tend to classify different sets of verbs incorrectly. Therefore,
we conclude that these feature sets are at least somewhat complementary. By combining
these complementary feature sets, the classifier is better able to generalise across different

datasets.

Further examining the results, we note that in the case of verification data for the
3-way task, the accuracy increases substantially from the experiment using just the slot
features. This occurs because this experiment classifies incorrectly one fewer VPC whose
true sense class corresponds to Refl-up. These findings demonstrate that results for the
3-way task are highly sensitive to small differences in classification of VPCs in the Refl-up

sense class, especially on verification data.

6.1.4 All Linguistic Features

We would like to see how well the classifier performs using all and only those features
which are motivated by syntactic and semantic properties of verbs and VPCs. We there-
fore consider the full set of linguistic features—i.e., the combination of the slot, adverb,
nominal and particle features. Only one experiment, the 2-way task on verification data,
shows an improvement over the corresponding experiment using just the slot and par-
ticle features. A detailed analysis of the errors made by the latter classifier shows that
it classifies too many verbs as the sense class corresponding to the amalgamation of the
senses Goal-up, Cmpl-up and Refl-up. This does not occur in the experiment using all
the linguistic features; however, we are unable to account for why this is the case. We
conclude that the additional linguistic features capture little, if any, information which

is not provided by the combination of the slot and particle features.
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3-way Task | 2-way Task

Features | Ver | Test | Ver | Test

WCFqy | 45 42 59 51

WCF5p | 38 34 %) 48

Table 6.2: Accuracy (%) using WCFs.

6.2 Experiments Using WCF's

Our goal is to compare the more knowledge-rich linguistic features to an alternative
feature set, the WCFs, which does not rely on linguistic analysis of the semantics and
syntax of verbs and VPCs. Recall that we experiment with both 200 feature words,
WCFygg, and 500 feature words, WCF5qg, as shown in Table 6.2. For each combination
of task and dataset, the accuracy using all the linguistic features is higher than that
for both WCFyp and WCF5q9. From these results, it appears that features based on
semantic and syntactic properties of verbs and VPCs are better suited to our task than

linguistically uninformed WCFs.

6.3 Experiments Combining Linguistic Features and

WCPFs

Although the WCF's perform worse than the linguistic features, an analysis of errors shows
the two sets of features to be at least somewhat complementary, since they tend to classify
different verbs incorrectly. We hypothesize that as with the slot and particle features, the
different types of information provided by the linguistic features and WCFs may improve
performance in combination. We perform two experiments which combine linguistic
features and WCFs: the slot and particle features combined with the WCF's (Table 6.3),

and all linguistic features combined with the WCFs (Table 6.4). However, contrary to our
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3-way Task | 2-way Task

Features Ver | Test | Ver | Test

Combinedsyy | 53 45 63 23

Combined500 54 46 65 49

Table 6.3: Accuracy (%) combining slot and particle features with WCFs.

3-way Task | 2-way Task

Features Ver | Test | Ver | Test

Combined200 57 45 62 55

Combinedg,oo 65 47 60 50

Table 6.4: Accuracy (%) combining all linguistic features with WCFs.

hypothesis, the experiments using the combination of the two feature sets do not show
these features to consistently perform better than the linguistic features on their own.
This variation indicates that larger sample sizes are needed to draw firmer conclusions

about the effects of using the WCFs in combination with the linguistic features.

6.4 Discussion of Results

The best performance on unseen test data for the 3-way task is achieved using the slot
and particle features calculated over the combination of all contexts. The best results on
test data for the 2-way task are achieved using just the slot features, also calculated for
the combination of all contexts. The linguistically uninformed WCF's perform worse on
their own, and do not consistently help (and in some cases hurt) the performance of the
linguistic features when combined with them. We conclude then that features based on
semantic and syntactic properties of verbs and VPCs are motivated for this task. Note

that the features are still quite simple, and straightforward to extract from a corpus—i.e.,
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linguistically informed does not mean expensive (although the slot features do require

access to chunked text).

Interestingly, in determining the semantic nearest neighbor of German particle verbs,
Schulte im Walde (2005) found that WCF's that are restricted to the arguments of the
verb outperform simple window-based co-occurrence features. Although her task is quite
different from ours, similarly restricting our WCFs may enable them to encode more

linguistically-relevant information.

In our experiments using all the linguistic features, we find that for each task and
dataset, calculating the slot and adverb features over all three contexts achieves the
highest accuracy—the results using all linguistic features in Table 6.1 are higher than
those in Table B.1 in Appendix B. This is as we expect, since the classifier is provided
with the most information. However, we do not observe this trend in the experiments
which use just the WCFs, the results for which are shown in Tables 6.2 and B.2. The
linguistic features and WCFs are very different types of features, and it appears that
calculating the linguistic features over different contexts enables them to encode more

information, whereas this is not the case for the WCFs.

The accuracies which we achieve with the slot and particle features calculated over all
three contexts (an experiment which gives consistently high accuracies over verification
and test data) correspond to a 30-31% reduction in error rate over the chance baseline
for the 3-way task, and an 18-26% reduction in error rate for the 2-way task. Although
we expected that the 2-way task may be easier, since it requires fewer fine-grained dis-
tinctions, it is clear that combining senses that have some motivation for being treated

separately comes at a price.

The reductions in error rate that we achieve with our best features are quite re-
spectable for a first attempt at addressing this problem, but more work clearly remains.
In particular, there is a relatively high variability in performance across the verification

and test sets, indicating that we need a larger number of experimental expressions to be
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able to draw firmer conclusions.
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Chapter 7

Conclusions

While progress has recently been made in techniques for assessing the compositionality
of a VPC, work thus far has left unaddressed the problem of determining the particular
meaning of the component verb and particle. We have focused here on the semantic
contribution of the particle—a part-of-speech whose semantic complexity and range of
metaphorical meaning extensions has been largely overlooked in prior computational
work. We adopted a cognitive linguistic perspective, and assumed that all VPCs are (at
least partly) compositional and classified VPCs according to the meaning contributed
by their particle. We developed features that capture linguistic properties of VPCs that
are relevant to the semantics and syntax of particles and verbs, and showed that they
outperform linguistically uninformed word co-occurrence features, achieving around a

20-30% reduction in error rate over a chance baseline.

7.1 Summary of Contributions

Particle Sense Classification While previous studies have focused on VPC composi-
tionality, they have not addressed the issue of which meaning of the verb and particle is
contributed. This study was the first to consider the issue of determining the semantics

of the components of a VPC, and did so by classifying VPCs according to the meaning

o7
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contributed by their particle.

Cognitive Linguistic Motivation Previous computational studies of VPCs have de-
termined whether, or the extent to which, a VPC is compositional; doing so makes the
assumption that some particles do not contribute any meaning to a VPC. In contrast,
we based our classification of particle semantics on a cognitive linguistic analysis, which
assumes that all VPCs are compositional. The network structure into which the senses
of a particle may be organized allowed us to alter the granularity of classification in a

linguistically motivated fashion.

Feature Space A set of features for particle sense classification was developed. Op-
erating under the hypothesis that particle semantics is related to verb semantics, we
demonstrated that features which have previously been used for the semantic classifica-
tion of verbs can be directly used for the semantic classification of particles. A new set of
features based on syntactic and semantic properties of particles was developed. Although
these features were not found to perform well on their own, they did give more consis-
tent performance across datasets when used in combination with other complementary

linguistically motivated features.

Sense Annotation of Data We annotated a set of 180 VPCs using the particle up
according to the sense class contributed by their particle. This data can be used in

further studies of VPC semantics.

7.2 Limitations and Future Work

Size of Datasets The training, verification and test sets used in this study were each
composed of sixty VPCs. Larger datasets were not used due to the expense of manually

annotating the data. As discussed throughout Chapter 6, there was a large amount of
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variation between results on verification and test data, which may have been due to the
small sample sizes used. Larger datasets would have allowed us to draw firmer conclusions

from our results.

Type Classification In this study, we chose to focus on type-based, as opposed to
token-based, classification. We did so partly because of the significant extra expense
of manually annotating sufficient numbers of tokens in text. Previous studies into the
semantic classification of verb tokens have shown information about the semantic class
of a verb type to be a useful prior for a naive Bayes classifier (Lapata and Brew, 2004).
We similarly believe that the semantic contribution of a particle in a VPC type is an
informative prior for token-based particle sense classification. Thus our work will be a

useful component of future work on the semantics of VPC tokens.

WCFs Features which are motivated by semantic and syntactic properties of verbs
and VPCs seemed to outperform linguistically uninformed WCF's for the task of particle
sense classification. However, the WCFs employed in this study were very simple. One
modification of these features would be to restrict them to the arguments of a verb,
as is noted in Section 6.4. This may allow them to encode more linguistically relevant

information, and therefore perform better.

Additional Particles Although this study focused on the particle up, the feature
space which we developed does not rely on syntactic and semantic properties which are
specific to this particle. Therefore, our work may form the basis for future studies on the

semantic classification of other particles.

Natural Language Understanding In order to effectively perform natural language
processing tasks such as automatic machine translation and automatic text summariza-

tion, the semantics of each lexical item in a text must be determined. The coverage of
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VPCs in lexical resources is known to be sparse, and furthermore, new combinations are
constantly being generated. Therefore, automatic methods for determining the seman-
tics of the components of a VPC are essential to improving the performance of natural

language processing systems.



Appendix A

Human Judgements of Particle

Sense Contribution

The following tables show the particle sense contribution judgements used in this study.

The columns of the tables contain the following information:

Verb The VPC in question is composed of this verb and up.
Judge 1 The sense contributed by up according to judge 1.
Judge 2 The sense contributed by up according to judge 2.

Final The sense contributed by up used in classification tasks in this study. This corre-
sponds to either the common sense given by both judges, or to the sense reached

by the judges after discussion when their individual judgements disagreed.

VPCs on which the judges disagreed are shown in bold.
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APPENDIX A. HUMAN JUDGEMENTS OF PARTICLE SENSE CONTRIBUTION

Verb Judge 1 | Judge 2 | Final
balance Cmpl Cmpl | Cmpl
beat Cmpl Cmpl | Cmpl
bind Refl Refl Refl
bolster Vert Vert Vert
bottle Refl Cmpl | Refl
bugger Cmpl Cmpl | Cmpl
bunch Refl Refl Refl
button Refl Refl Refl
connect Refl Refl Refl
couple Refl Refl Refl
cuddle Refl Refl Refl
dish Vert Vert Vert
draw Goal Vert Vert
drink Cmpl Cmpl | Cmpl
feel Vert Vert Vert
firm Vert Cmpl | Cmpl
flare Vert Vert Vert
freeze Cmpl Cmpl | Cmpl
give Vert Vert Vert
go Vert Vert Vert
grow Vert Vert Vert
heat Vert Vert Vert
keep Vert Goal | Vert
lace Refl Refl Refl
let Vert Vert Vert
lift Vert Vert Vert
load Cmpl Cmpl | Cmpl
loosen Vert Cmpl | Cmpl
measure | Vert Vert Vert
move Goal Vert Goal
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Verb Judge 2 | Judge 2 | Final
muck Cmpl Cmpl | Cmpl
notch Vert Cmpl | Vert
pair Refl Refl Refl
pile Vert Vert Vert
prick Vert Vert Vert
quicken Vert Vert Vert,
rest Cmpl Cmpl | Cmpl
roll Refl Refl Refl
scratch | Cmpl Cmpl | Cmpl
screw Cmpl Cmpl | Cmpl
shut Refl Cmpl | Refl
slip Cmpl Cmpl | Cmpl
slow Vert Vert Vert
squeeze Refl Refl Refl
stay Vert Vert Vert,
steam Vert Vert Vert
stick Vert Vert Vert
store Vert Vert Vert
strap Refl Refl Refl
sum Vert Cmpl | Cmpl
take Vert Vert Vert
tape Refl Refl Refl
tone Vert Cmpl | Cmpl
train Vert Cmpl | Cmpl
twist Vert Refl | Cmpl
use Cmpl Cmpl | Cmpl
wax Cmpl Cmpl | Cmpl
whip Vert Vert Vert
wipe Cmpl Cmpl | Cmpl
7ip Refl Refl Refl

Table A.1: Human annotator judgements for training set.




APPENDIX A. HUMAN JUDGEMENTS OF PARTICLE SENSE CONTRIBUTION

Verb Judge 1 | Judge 2 | Final
act Vert Cmpl | Cmpl
blow Cmpl Cmpl | Cmpl
bring Vert Vert Vert
brush Cmpl Cmpl | Cmpl
call Vert Vert Vert
chalk | Cmpl Vert | Cmpl
clear Cmpl Cmpl | Cmpl
clock | Cmpl Vert Vert
cough Vert Vert Vert
cover Cmpl Cmpl | Cmpl
curl Refl Refl Refl
drag Vert Vert, Vert,
dream Vert Vert Vert
dress Vert Cmpl | Vert
drum Vert Vert Vert
fire Vert Vert Vert
foul Cmpl Cmpl | Cmpl
fry Cmpl Vert | Cmpl
gear Vert Vert Vert
get Vert Vert Vert
gobble | Cmpl Cmpl | Cmpl
head Vert Vert Vert
hole Vert Refl Refl
key Vert Cmpl | Cmpl
kiss Goal Goal Goal
mock Vert Vert Vert
nick Cmpl Cmpl | Cmpl
paste Vert Vert Vert
prop Vert Vert Vert
rake Cmpl Cmpl | Cmpl
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Verb Judge 1 | Judge 2 | Final
read Cmpl Cmpl | Cmpl
rustle Vert Vert Vert
save Vert Vert Vert
saw Cmpl Cmpl | Cmpl
send Vert Vert Vert
serve Vert Vert, Vert,
sober Cmpl Cmpl | Cmpl
soften Cmpl Vert | Cmpl
speak Vert Vert Vert
speed Vert Vert Vert
spoon Cmpl Vert Vert
spring Vert Vert Vert
staff Vert Cmpl | Vert
start Vert Vert Vert
step Vert Vert, Vert,
stir Cmpl Cmpl | Cmpl
straighten | Vert Cmpl | Vert
study Cmpl Cmpl | Cmpl
stuff Cmpl Cmpl | Cmpl
surge Vert Vert Vert
team Refl Refl Refl
tear Cmpl Cmpl | Cmpl
think Vert Vert Vert
tidy Cmpl Cmpl | Cmpl
toss Vert Vert Vert
trade Vert Vert Vert
tuck Vert Refl Vert
weigh Cmpl Cmpl | Cmpl
work Vert Vert Vert
wrap Cmpl Cmpl | Cmpl

Table A.2: Human annotator judgements for verification set.




APPENDIX A. HUMAN JUDGEMENTS OF PARTICLE SENSE CONTRIBUTION

Verb Judge 1 | Judge 2 | Final
back Goal Goal Goal
brew Vert Vert Vert
bubble Vert Vert Vert
buck Vert Vert Vert
build Vert Vert Vert
cart Vert Vert Vert
chop Cmpl Cmpl | Cmpl
clean Cmpl Cmpl | Cmpl
coil Refl Refl Refl
count Cmpl Vert | Cmpl
crease Cmpl Cmpl | Cmpl
crush Cmpl Refl Refl
double Refl Refl Refl
end Cmpl Cmpl | Cmpl
fill Cmpl Cmpl | Cmpl
finish Cmpl Cmpl | Cmpl
fold Refl Refl Refl
follow Vert Vert Vert
free Vert Vert Vert
grab Vert Vert Vert
heal Cmpl Cmpl | Cmpl
hitch Refl Refl Refl
hold Vert Refl Refl
hook Refl Refl Refl
jumble Cmpl Cmpl | Cmpl
knock Cmpl Cmpl | Cmpl
lap Cmpl Vert Vert
lead Goal Vert Goal
light Vert Vert Vert
lighten | Cmpl Vert Vert

Table A.3: Human annotator judgements for test set.
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Verb Judge 1 | Judge 2 | Final
line Cmpl Cmpl | Cmpl
march Goal Vert Goal
mark Cmpl Cmpl | Cmpl
mess Cmpl Cmpl | Cmpl
muddle | Cmpl Cmpl | Cmpl
open Vert Cmpl | Cmpl
order Vert Vert Vert
pack Cmpl Refl Refl
pay Vert Vert Vert
phone Vert Vert Vert
puff Vert Cmpl | Vert
pump Vert Cmpl | Vert
queue Cmpl Cmpl | Cmpl
raise Vert Vert Vert
rear Vert Vert Vert
ring Vert Vert Vert
scale Vert Vert Vert
settle Cmpl Cmpl | Cmpl
show Vert Vert Vert
size Cmpl Cmpl | Cmpl
stoke Vert Vert Vert
stop Cmpl Cmpl | Cmpl
sweeten Vert Vert Vert
swell Vert Vert Vert
throw Vert Vert Vert
tip Vert Vert Vert
type Cmpl Cmpl | Cmpl
wait Vert Goal Vert
wash Cmpl Cmpl | Cmpl
whisk Cmpl Cmpl | Cmpl
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APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Slots 43 45 61 58
Slots + Particles | 40 49 62 56
All Linguistic 43 47 60 57

Context: VPCs with up and verbs.

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Slots 44 51 47 o8
Slots + Particles | 48 37 58 60
All Linguistic 45 39 62 54

Context: VPCs with up and all VPCs.

Table B.1: Accuracy (%) using linguistic features.
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APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

3-way Task | 2-way Task

Features | Ver | Test | Ver | Test

WCFqy | 43 38 60 92

WCF50 | 35 37 61 49

Context: VPCs with up and verbs.

3-way Task | 2-way Task

Features | Ver | Test | Ver | Test

WCFqy | 36 20 54 93

WCF5q | 43 38 60 o7

Context: VPCs with up and all VPCs.

Table B.2: Accuracy (%) using WCFs.



APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Combinedyy, | 48 47 65 56
Combinedsy, | 65 47 62 49

Context: VPCs with up and verbs.

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Combinedyyy | 42 42 63 54
Combinedsyy | 56 42 67 47

Context: VPCs with up and all VPCs.
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Table B.3: Accuracy (%) combining slot and particle features with WCFs. Note that

the slot and particle features are calculated over all three contexts, while the WCF's are

calculated for the specific contexts given above.



APPENDIX B. ADDITIONAL EXPERIMENTAL RESULTS

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Combinedyy, | 56 51 65 59
Combinedsyy | 57 47 59 52

Context: VPCs with up and verbs.

3-way Task | 2-way Task
Features Ver | Test | Ver | Test
Combinedsgy | 45 45 62 49
Combinedsyy | 56 45 59 52

Context: VPCs with up and all VPCs.
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Table B.4: Accuracy (%) combining all linguistic features with WCFs. Note that the

linguistic features are calculated over all three contexts, while the WCF's are calculated

for the specific contexts given above.
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