

repr int

58 acm Inroads 2013 March • Vol. 4 • No. 1

A Framework for
Enhancing the Social
Good in Computing
Education:

A Values Approach
Michael Goldweber • John Barr • Tony Clear • Renzo Davoli • Samuel Mann • Elizabeth Patitsas • Scott Portnoff

RepRInted wIth peRmIssIon fRom ItICse-wGR ’12, ItICse’12, July 3–5, 2012, haIfa, IsRael.
© CopyRIGht 2012 aCm 978-1-4503-1246-2/12/07

This paper addresses two interrelated problems currently

confronting computer science education, motivating

students while simultaneously providing them with the skills they’ll

need to solve complex interconnected problems. We describe a

framework for motivating computer science students by adding

the context of social good to introductory computing assignments.

Adding the context in this manner also goes some way to addressing

the need for graduates to have skills, attributes and behaviours

appropriate to contributing to social good outcomes. Accompanying

this, we provide 14 concrete examples of introductory computing

projects that convey and reinforce computing’s social relevance and

potential for positive societal impact.

Best ITiCSE’12 Working Group Report
The ACM ITiCSE 2012 working groups included members from a number of
countries who worked together well before, during, and after the conference. At
least three reviewers reviewed each report, deeming all of them valuable and
worthy of publication in the ACM Digital Library and on the SIGCSE end-of-year
CD, where they reside now. Additional knowledgeable colleagues then reviewed
and ranked the reports to determine a “best” report for possible publication in
ACM Inroads. These colleagues commented that the reports were all excellent
and that ranking them was “tough” and much harder than they had expected.
We are pleased to inform you that the working group led by Michael (Mikey)
Goldweber produced the best working group report. Its title is “A Framework
for Enhancing the Social Good in Computing Education” and it appears in this
March issue of ACM Inroads. We hope that this and the other working group
reports will be fodder for other excellent reports in the future. We thank all the
working group members, working group chairs, reviewers and knowledgeable
colleagues for their participation. —Liz Adams and Noa Ragonis

Working Group Co-Chairs
ITiCSE 2012

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 59

what a Computer Science major entails.” This same study found that
“students choose not to major in CS because they have an incorrect or
no perception of what the field is... The vast majority of students could
not provide a description of what Computer Science majors learn”[17].
Although there is a growing number of outreach programs such as CS-
Unplugged[9], CS4FN[24], LEGO League(s)[47], Digital Divas[23],
Project Impact[50, 31], the Computer Science Inside Project[25], and the
Bebras contest[26] that work to correct the myths and misconceptions as-
sociated with the discipline, those best positioned to influence and alter
computing’s image are CS educators themselves.

1.1.1 Introductory courses
Introductory courses that consistently fail to showcase in an integrated way
the social value of CS across a broad spectrum of fields are wasted op-
portunities to recruit those who may be academically prepared, but reside
outside the traditional CS student demographic. Furthermore, it may be
that such courses reinforce student misconceptions instead of working to
dismantle them.

Introductory computing courses provide what may be the only oppor-
tunity for introducing examples of the social value of CS to students with
no prior exposure to CS. Pedagogical approaches need not, however, be
limited to solving problems in external domains at the application level.
Bioinformatics algorithms, developed specifically to process genomic and
proteomic data, are introductory-level topics for which the social value is
both apparent and implicit. A course that interweaves the teaching of both
introductory biology and CS showed not only that participants gained the
same level of CS1 knowledge and skills as their standard CS1 counterparts,
but they also enrolled in CS2 at equal or greater numbers[29]. Courses in
computational journalism have utilized CS algorithms and social science
principles to mine data for patterns that uncover stories that would oth-
erwise go unreported[70]. In fact, the emergence of Big Data in an ever
growing list of disciplines presents an opportunity for students to grasp
computing’s potential for social impact in a large number of (non-tradi-
tional) ways[56].

Students come with a great and varied amount of background knowl-
edge that can serve as the starting points of problems for which CS can
indicate solutions. Pedagogically, the more connections students can make
for new concepts, especially to prior knowledge, the better the reten-
tion[49].

United States enrollment data consistently shows near equal or over-
representation of women in biology, chemistry, environmental science, cal-
culus, statistics, history, and the humanities[1]. Making clear connections
of CS to a wide variety of topics and disciplines – especially to ones that
students already perceive as meaningful as indicated by current participa-
tion rates – is one strategy to motivate students, particularly those tradi-
tionally underrepresented, to enroll in subsequent CS courses.

1.1.2 Making the projects work
Regardless of how attractive CS educators may believe game program-
ming, mobile app development, or duck counting may be for introductory
students, we have a professional obligation to introduce CS as a discipline
in a widely framed and significant manner. While this perspective does not
necessarily banish game programming from the introductory curriculum,
it does argue for the inclusion of CSG-Ed projects.

CSG-Ed projects need not necessarily be based on external domains.
The current CS Principles pilot courses scattered across the U.S.A. have
been incubators for innovative, and sometimes impressive, curricular ideas
[5]. A steganography lesson, developed at the Univ. of Washington, show-
cases the use of bit-shifting operations to hide one image inside anoth-
er[81]. The “wow” factor cannot be overemphasized when one sees a color
photograph of a “subversive” Tahrir Square protest emerge from a conven-
tional B&W photo of a foggy fishing scene. In the following sections we
describe previous work in this area and then ask why CSG-Ed is not more
prevalent. The barriers identified are then used as the basis for a rubric to
describe example CSG-Ed assignments.

#1.
IntroductIon

This paper addresses two interrelated problems. It describes a framework
for motivating computer science (CS) students by adding the context of
social good to introductory computing assignments. Adding the context
in this manner also goes some way to addressing the need for graduates to
have skills, attributes and behaviours appropriate to contributing to social
good outcomes such as those described by Paterson[66].

There are many factors that influence students’ perception of comput-
ing. Some of the misconceptions are due to a lack of correct knowledge
of what computing practitioners actually do coupled with the reinforcing
by the popular media of longstanding myths and stereotypes. One often
cited study of STEM oriented high school students describes students’
perception of the computing discipline(s) as boring, tedious and irrel-
evant[40, 85].

Some of these factors are outside the control of CS educators, while
others are not. To what degree does a given introductory curriculum1 ei-
ther reinforce student held myths and misconceptions or work to dismantle
them? Buckley, in a 2009 CACM Viewpoint column[12], complained that
introductory computing students, based on the unscientific examination of
the textbooks in his office, are seemingly obsessed with animals (e.g. count-
ing ducks, separating cows from horses), games (e.g. Tetris, Checkers), and
food (e.g. donut counting, lemonade stands). He concludes with empathy
for the student exposed to such motivating examples who quits CS and
goes on to study something important.

CS educational activities for the social good (CSG-Ed), a refinement
of the acronym CSG[38], is an umbrella term meant to incorporate any
educational activity, from small to large, that endeavors to convey and rein-
force computing’s social relevance and potential for positive societal impact.
Besides the obvious benefit to society, CSG-Ed endeavors to exploit the
finding that students’ desire to have a positive societal impact is a strong
determinant regarding their selection of a major[14]. A side effect of incor-
porating CSG-Ed activities, particularly in the introductory curriculum, is
that it could potentially broaden participation in computing. It is worth
noting that this “positive societal impact” is considered an inclusive term:
CSG-Ed therefore includes sustainability [57], ICT4D [42], ICT4Peace
[44], HFOSS [84], value sensitive design [61] and so on.

1.1 Motivation
It is reasonable to hypothesize that incorporating CSG-Ed activities into
the introductory curriculum will address motivational issues on many lev-
els. Students wanting to work in a field in which they can make a pur-
poseful or meaningful social contribution have little difficulty seeing such
connections for disciplines like political science, art, education, nursing, ar-
chaeology, or STEM fields such as biology, environmental science, or civil
engineering. Currently, no such connections exist for CS. Furthermore,
there is evidence that students’ inability to see CS’s potential social con-
tributions impacts female enrollments. Although girls enroll in secondary
math and science classes at or near gender parity and perform as well as or
better than boys[45], many avoid taking computer science classes because
they do not perceive a computing career as having “the power to do good
and make a difference”[10].

A survey of American high school students who had the aptitude and
academic preparation (calculus, pre-calculus) for CS “had no concept of

1 We utilize the term introductory curriculum or introductory courses to represent those
courses which first expose a student to computer science and lay the foundation for
continuing study in the discipline. These courses, sometimes referred to as CS0, CS1,
CS2, AP-CS, Pre-AP CS, etc., may occur at the University level or pre-University level
(e.g. high school, or college).

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

60 acm Inroads 2013 March • Vol. 4 • No. 1

2 We do not differentiate between a context-free assignment (e.g. create a stack class)
and a universal-context assignment (e.g. bank account or movie rental service).

#3. barrIers to IntegratIon
of csg-ed

Given that there are many advantages to CSG-Ed, the obvious question
is why so few CSG-Ed projects exist for the introductory level. There is,
of course, no simple answer, but rather many interrelated factors that have
delayed CSG-Ed development. Here we subjectively comment on a few of
the most significant elements of this problem.

Historical reasons. Concurrent with the dot-com bust, enrollments in
CS courses dropped precipitously [86]. Instructors desperate to fill courses
tried making introductory courses more “attractive” to students. Unfortu-
nately, “attractive” was usually defined as graphics and game projects which
appealed to the contemporary CS student.

What is the role of a teacher? In Teaching as a Subversive Activity,
Postman and Weingartner argue that teachers do not inject social values
into their teaching because they do not conceive themselves as having
this role [69]. Instead, they see themselves as information providers, or
job trainers. We see this in the current culture of computer science: CS
instructors see themselves as information providers and trainers of future
computing practitioners (or graduate students), rather than deep educators.

Extraneous load. Cognitive load theory posits that we should reduce
the extraneous load of our assignments[27]; as such, many instructors have
done what they can to strip the context of their assignments. By omitting
context, the idea is that students will focus on the CS materials and not be
distracted. However, context provides motivation to students [48], and the
evidence for cognitive load theory is mixed [43].

Overworked teachers. With little time for curriculum design, most in-
structors will turn to existing assignments. Many will reuse previous assign-
ments, their colleagues’ assignments, or textbook-provided assignments/re-
sources. Overworked teachers are less likely to navigate domain knowledge,
and hence are more likely to produce context-free assignments.2

Examples in textbooks. Prior to the wide-spread adoption of Java and
Python in the introductory curriculum, CS textbooks had examples and
exercises with scientific contexts. Indeed, there was a rich body of work
providing Pascal projects for instructors to use, such as [20]. However, in
the switch to Java, the new generation of textbooks provided examples and
exercises with no context, such as bank accounts. Two reasons may be be-
hind this move: first, the switch to Java represented a cultural shift towards
producing professional practitioners, rather than educating scientists. The
second lies in the notion that the medium is the message [59]: Pascal and
similar languages were set up for line output, allowing for easy abstractions
and a primary focus on algorithm development; the shift to Java also rep-
resents a shift to simple graphics – and from there, a shift to assignments
such as to move a circle across a screen.

Scoping issues for CS1. While some work has already been done in
adding social context to software engineering courses, databases, and other
higher level courses (see Section 2 for more details), introductory courses
present more difficulty. Typically the “meaty” problems that are interest-
ing to tackle require a level of depth, expertise, or commitment that we
cannot expect at the introductory level. Further, if an instructor consults a
colleague in, say, chemistry, for advice on CS assignments with a chemistry
context, the chemist is likely to provide an example that is too complex for
the introductory level.

Instructors’ lack of domain knowledge. Our educational model pro-
duces specialists: computer scientists who know computer science, and
little of the disciplines which use it. Without a rich understanding of, for
example, physics, it can often be difficult for a CS instructor to find and
motivate a physics-influenced introductory assignment.

Fears of instructors. In talking to CS instructors, we’ve encountered
two fears. First, instructors’ lack of domain knowledge leads them to fear

#2.
related work

The inclusion of social good in CS education is not a new notion. Schnei-
derman, back in 1971, argued that students should be equally stimulated
to study sociological modeling as faster algorithms for eigenvalue calcula-
tions[79]. Along with an increasing recognition of the socially valuable
contributions of computing [46, 83], there is a consequent call for inclusion
of CSG-Ed activities in the computing curricula [22, 38, 51, 58].

Such approaches have clear direct benefit in the involvement in social
good, but also there is some evidence to suggest that success in broaden-
ing participation may be improved when computing is shown to connect
with students’ values rather than their more superficial interests[6, 16, 28,
36]. There is a growing body of experience reports describing CSG-Ed
experiences in upper division courses such as software engineering (e.g.
[13, 32, 67]), the senior capstone project (e.g. [4, 53, 80]), service learning
experiences (e.g. [74, 78]), sustainability (e.g. [15, 33]), and within fields
such as HCI (e.g. [60, 65]). Hence only those students who have survived
one to two years of duck counting and Checkers will finally get exposed to
the potential social value contributions of computing.

Unfortunately, the literature describing CSG-Ed activities for intro-
ductory computing students is thin[29, 37, 64, 68].

Delaying the inclusion of CSG-Ed projects until the third or final year
is at best problematic. In addition to the obvious problem of potentially
losing interested students to more “meaningful” majors in the first (or sec-
ond) year, there is evidence which suggests coverage of such material is
more effective when it is not segregated into a separate course. The in-
clusion of both ethics in CS curricula[39] and writing across the curricu-
lum[76] have been shown to be more effective when spread or “integrated”
throughout the curriculum.

One recent study endeavored to test the effect that CSG-Ed program-
ming projects have on CS students[72]. After incorporating a CSG-Ed
project into both their CS1 and Software Engineering courses, first year
students and CS seniors were surveyed regarding their interest in humani-
tarian projects. Both cohorts indicated that they liked humanitarian proj-
ects (79% & 92%), with the seniors reporting the higher approval ratings.
Only 11% of the first year students were CS majors, with the majority
being declared engineering majors.

When comparing CSG-Ed projects to more traditional assignments,
the CSG-Ed projects did not fare so well; especially when compared to
game-based projects. While women, in comparing CSG-Ed projects to
other projects still ranked CSG-Ed projects positively, none of the CSG-
Ed projects received a positive ranking from the male students. The sur-
vey’s results are of limited scope due to the lack of female participation
in the study and that the CS1 cohort contained a majority of students
(engineering majors) who admittedly disdain programming. The study did
reveal that while it is possible to successfully deploy CSG-Ed projects into
introductory courses, the perceived increased difficulty and open-ended
nature of their particular CSG-Ed project (search and rescue) affected stu-
dent appeal. The study concludes by observing that care must be exercised
to ensure that CSG-Ed programming projects for introductory courses
require “the same level of difficulty and require the same level of program-
ming skills as the other problems in the course”[72], a sentiment echoed in
an Australian study of engineering curricula infused with topics of social
and environmental justice[63].

Finally we observe that academic service learning experiences have the
potential for introductory student participation in CSG-Ed projects. Given
the extent of introductory students’ disciplinary knowledge, it is not surprising
that the academic service learning projects for these students fall back on the
expertise of their instructor and center around social good through providing
educational resources (e.g. [3, 19, 30, 62, 71, 75]). The canonical example,
which one of the authors is involved with, is to have introductory students
assist at an after school Scratch/Alice/Kodu/Lego club at a local (disadvan-
taged?) middle school, or to help run a computer recycling program.

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 61

looking incompetent in front of their students. Should students ask do-
main-based questions when doing the assignment, the instructors worry
about being unable to answer the questions. Second is the issue of student
feedback. While there is evidence that students appreciate context-based
assignments in CS [34], instructors may fear shifting away from popular
assignments on games or mobile development. In a system which focuses
on student evaluations, the reward system is set up to select for popular
assignments rather than valuable assignments.

#4.
approach

The potential scope of CSG-Ed can be considered as the set produced
from the interaction of computer science domains, social good domains
and approaches to educational engagement. Clearly this is a very large set
that we cannot hope to describe completely. Therefore, we propose that
for any non-theoretical computer science domain, topic, or even task, one
should be able to articulate a useful CSG-Ed assignment. The key here is
useful. We argue that utility in this case is to provide a vehicle for teaching
an aspect of the introductory curriculum, engage in social good, and over-
come the barriers described in Section 3 above.

It is not our intention to attempt to provide a comprehensive list of
these possible projects, however. Rather, we provide a set of framing ex-
amples that provide the basis for a discussion of the characteristics of
CSG-Ed.

The case studies are presented in the Appendix and summarized below.
It should be noted that the collection of case studies is not intended as a
complete course in CS.

When addressing domains covered in the projects it became difficult
to conceive of a specific ontology that might be suitable, as the scope of
domains addressed was simply too broad. The Software Engineering cur-
riculum[52, 54] outlined a set of systems and application specialities which
addressed some application domains, but these again were framed some-
what restrictively at a system level (e.g. network-centric systems, financial
and e-commerce systems, highly secure systems, bio-medical systems).
Furthermore, even when addressing CS as a single domain, the CS ontol-
ogy project has found itself facing huge challenges[18]. Therefore we have
opted for a categorisation scheme which captures the six elements which
we have considered essential, and augmented those with a narrative de-

scription applying the practice bundle pattern proposed by Fincher, Petre
& Clark[35]. Each case study, then, is described according to a computer
science project work practice bundle. In addition to this meta-data and
basic description, a rubric is used to elaborate specific CSG-Ed aspects;
See Table 1.

Case studies have in common that all contribute to introductory comput-
ing. All are designed to be completed as an assignment, series of assignments,
or programming project, each taking approximately two weeks to a month.

4.1 CSG-Ed Rubric Table Explained
■ Student directed: Describes the extent to which the assignment

is determined by the student. Such learner control aids
engagement and is considered a fundamental aspect of values
based education[82]. Reeves [73], cited in Clear[21], describes the
pedagogical dimensions of interactive learning from which these
categories are derived.

■ Scaffolding - Instructor resourced: Reflects the amount of
instructor prepared material required to support the learning. We
observe that a project can be student directed and still require
support from the instructor. Prepared material can take two forms:
frameworks, libraries or classes upon which a solution program is
built and code that can be used directly in a solution. This category
addresses only the latter.

■ External domain knowledge: Reflects the amount of non-computer
science material that is needed to support a student’s engagement
in the assignment. The delivery mechanism of the material is not
distinguished in this category–rather each case study describes whether
this is instructor delivered, student delivered, or a combination.

■ Social Good contribution: An adaptation of a description of
student engagement in sustainability projects [11]. A self-referenced
project (i.e. without external context) or a traditional not-social good
assignment (such as a Tower of Hanoi game) would be classified
here as “none.” Projects with a non-traditional context, such as
biological systems would be classified as “some.” A project that
explicitly addresses a social good problem such as a sorting system for
a humanitarian mission would be medium, and high indicates a real
world problem brought by stakeholders and with real world benefits
rather than just an exercise. Note that the intention here is to consider
the social good contribution of each specific class exercise and
assignment per se rather than the social good of CS education itself.

None Some Medium High Basis for scale
student
directed

Students carry out work
as directed. Outcome
predetermined. Reductionist.

Students select topics from
predetermined list.

Students
negotiate tasks.

Learners select goals, inquiry based
learning. Constructivist pedagogy.

[73] in [21]

scaffolding:
Instructor
resourced

No resourcing required. Some scaffolding provides
overview for solution sets.
Tight sequencing.

Skeleton
frameworks or
code.

Extensive code structures supplied. [73] in [21]

external
domain
knowledge

None – entirely in CS
traditional suite, or
universally known context.

Brief introduction required.
(Some Wikipedia may be
needed.)

Requires
reading.

Requires subject expertise. External domain
knowledge (fear
factor)

social Good
Contribution

None. Something done in external
context (e.g. biological
humanities).

Explicitly social
good.

Actual good contribution. (i.e. Has
real world outcomes.)

[11]

Coolness Difficult to engage. Not
tractable. What’s this got to
do with computing?

Fosters interest Retains interest.
Is considered
relevant.

“Sexy,” immediate engagement.
Relevant. Inspirational.

explicit
reflection on
social good
aspects

None. Technical reflection. (What
I did, related to personal
experience) *social good
aspect.

Reflection
on action.
(Descriptive –
best practice)

Dialogic – viewpoints, alternative
solutions *about social good
aspects. Critical – role of profession,
impact on other and wider forces.

[41]

Table 1: The CSG-ed RubRiC Table

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

62 acm Inroads 2013 March • Vol. 4 • No. 1

■ Coolness: Attempts to describe elements of ease of student
engagement. Most studies of engagement count process (e.g. class
attendance) or changed attitudes towards a subject but few attempt
to predict the sexiness of assignments. Maybe we are deluded.

■ Explicit reflection: Describes the extent to which students are
encouraged to reflect on the social good aspects of the assignment.
The metric here is derived from Hatton and Smith [41]. Reflecting
on the technical aspects without reference to the social good
is considered “none.” The degree of reflection increases from
the technical reflection through reflection on action (including
descriptive) to dialogic and critical reflection. The last class includes
consideration of multiple viewpoints and consideration on the role of
the profession.

#5.
the case studIes

The Appendix includes a variety of ready-to-use introductory CSG-Ed
projects. These projects reflect the varied interests of the authors in both
domains and approaches. As a result, the topics covered range from largely
scientific issues (e.g. astronomy) to disaster management to voting systems.
Furthermore, the approaches utilized a range from typical first year pro-

gramming projects transformed into a CSG-Ed project (e.g. a shortest
path implementation becomes a Red Cross disaster response program.) to
projects that are centered on particular social issues. Despite this range, the
projects presented in the Appendix demonstrate certain characterizations
for each of the four categories used in their classification. In the following
paragraphs we list the projects, discuss the computer science topics they
cover, and summarize the project characterizations.

5.1 The CSG-Ed projects
■ Radioactive mice - Simulation of a robot seeking out and catching

contaminated mice: Section A.
■ Red Cross disaster relief - Application of the shortest path

algorithm to determine which red cross office should respond to a
disaster: Section B.

■ The use of nuclear power - GIS application examining safety of
nuclear plant sites: Section C.

■ Water pollution - GIS application examining point-source water
pollution: Section D.

■ Ad hoc emergency Wi-Fi networking - Simulation of an emergency
ad hoc WiFi-based network: Section E.

■ A mini package manager for software distribution: Section F.
■ Voting simulation - An examination of how different voting systems

affect democratic elections: Section G.

Radioactive
Mice

Red Cross
Disaster Relief

The use of
Nuclear Power

Water
Pollution

Ad Hoc
Emergency

Wi-Fi

A mini
package
manager

Voting
Simulation

‘ Random # Gen. X X
Encapsulation/Classes X

Inheritance/Polymorphism
Iteration X X
Selection X X X
1-D arrays X
2-D arrays X
ArrayLists X X

File I/O X X
Dictionaries X
Searching X X
Sorting X X

Graphs/Algs X X X
Software Eng

GUI/Event driven
Other

STI modeling
Banana
Republic

Kiwi
Population

Molecular
Modeling and

DNA

Around the
world

Social good
website

Social good
scholarly work

Random # Gen. X X
Encapsulation/Classes X X X X

Inheritance/Polymorphism X
Iteration X X X X
Selection X X X
1-D arrays X X X X
2-D arrays
ArrayLists X X

File I/O X
Dictionaries
Searching
Sorting

Graphs/Algs X X X
Software Eng X X

GUI/Event driven X X
Other X X

Table 2: CS ConCepTS CoveRed

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 63

■ STI modeling - Using graph models to examine disease propagation
through a population of sexual partners: Section H.

■ Banana republic - Modeling population growth, crop growth, boat
migrations for a set of island populations: Section I.

■ Kiwi population - Modeling of various aspects of food production,
population growth and food distribution: Section J.

■ Molecular modeling (MM) and DNA - Building a 2-D MM
program to study hydrogen bonding between bases in the DNA
double helix: Section K.

■ Around the world - Simulation of a rotating Earth to examine the
“Around the World in 80 Days” phenomenon: Section L.

■ Social good website - Web development for community
organization or development initiative: Section M.

■ Social good scholarly work - Formally analyze an aspect of
communication technology: Section N.

5.2 Computer Science Topics
The computer science topics covered in the projects presented here fall
mainly in the ACM knowledge areas[2] Fundamental programming struc-
tures (PF1), Algorithms and problem solving (PF2), and Fundamental data
structures (PF3). Not all topics in these knowledge areas are covered, but
a significant number of the topics typically covered in an introductory se-
quence are addressed. Table 2 relates the CS topics to individual projects.
The breadth of topics covered indicates how easily socially relevant issues
can be incorporated into introductory courses.

Although the topics in the projects range from the very introductory
level to a relatively sophisticated level, most projects cover topics that re-
quire students to have mastered some simple programming skills. Examin-
ing Table 2, it is clear that most of the projects use aggregate data structures
(arrays, lists, dictionaries) and at least a third of the projects cover relatively
sophisticated graph or searching algorithms.

5.3 Summary of project set categorizations
The projects presented in this paper vary greatly in the emphasis given to
each of the categories. In the following paragraphs we summarize the proj-
ects in terms of their category emphasis to give interested instructors a feel
for the breadth and types of projects offered in this paper. Table 3 provides
complete categorization for all projects.

Student Directed: Most of the projects in this paper require at least
some student self-initiative, though only one allows students complete free-
dom to determine the direction of the project. In the projects that do allow
some student participation in the project direction, the involvement usually
takes the form of choosing among a list of topics or uses guided discovery
(such as the “Molecular Modeling and DNA” project). Two projects, the nu-
clear power project and the water pollution project, require students to deter-
mine the criteria that they use in their analysis and several projects (such as
the “Ad Hoc Wi-Fi” project and “the mini package manager”) allow students
to extend the project or add features for credit. Several projects (“Radioactive
Mice,” “Red Cross Disaster Response”) also have flexible assessment rubrics
that allow students some flexibility in how they complete assignments.

Scaffolding: Most of the projects presented here provide minimal scaf-
folding for the student. Several (including the “Nuclear Power” and “Water
Pollution” projects) provide frameworks or classes that can be used by stu-
dents in their solution. In several projects (such as the “Banana Republic”
and “Kiwi Population” projects) code similar to the solution is provided to
give students an understanding of the program structure. Three of the proj-
ects provide extensive scaffolding. The “DNA,” “Around the World,” and
“Voting” projects provide the outline of at least some of the solution code
to students. The former two projects use a guided discovery approach and
much of the code used by students is created in the classroom.

External Domain Knowledge: Only two of the projects presented here
require extensive knowledge of an external field, the “Molecular Modeling
and DNA” and “Around the World” projects. These projects both use the
guided discovery approach. The former requires instructors to present geom-

Radioactive
Mice

Red Cross
Disaster Relief

The use of
Nuclear Power

Water Pollution
Ad Hoc

Emergency
Wi-Fi

A mini package
manager

Voting
Simulation

Student directed some some some some none none none
Scaffolding.
Instructor
resourced

none none some some none none high

External domain
knowledge

none none medium medium some none some

Good
contribution

some medium medium medium medium medium medium

Coolness some medium medium high medium high medium
Explicit reflection
on social good

aspects
medium medium high high high medium medium

STI modeling
Banana
Republic

Kiwi Population
Molecular

Modeling and
DNA

Around the
world

Social good
website

Social good
scholarly work

Student directed none some some medium medium medium high
Scaffolding.
Instructor
resourced

some medium medium high high some some

External domain
knowledge

none some some high medium some none to medium

Good
contribution

some some or medium some or medium high high high medium

Coolness high medium medium high high some medium
Explicit reflection
on social good

aspects
some some some medium medium medium high

Table 3: pRojeCT CaTeGoRizaTion

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

64 acm Inroads 2013 March • Vol. 4 • No. 1

etry, trigonometry, and molecular biology principles while the latter requires
the instructor to have a good grasp on geography. Four of the projects require
neither student nor instructor to have knowledge of an external domain; the
projects are motivated by the external domain but the problem has been re-
duced to pure computer science concepts. The remaining projects are split
between requiring “some” or “medium” external domain knowledge. In the
projects that require “some” knowledge the knowledge is usually well known
to the target audience (“Banana Republic,” “Kiwi Population,” “Voting,”
“Ad Hoc Emergency Wi-Fi,” “Social Good Website”). In the projects rated
“medium” the knowledge is discovered by the students themselves (“Nuclear
Power,” “Water Pollution,” “Social Good Scholarly Work,” “STI Modeling”).

Social Good: Given the purpose of this paper, all of the projects pro-
vided here contribute in some way to the social good. The “high” rating
requires real community engagement and only a few of the projects reach
that goal (“Molecular Modeling and DNA,” “Around the World,” “Social
Good Website”). Several of the projects are framed by social issues (“Ra-
dioactive Mice,” “Red Cross Disaster Relief,” “Ad Hoc Emergency Wi-
Fi,” “Mini Package Manager”) but don’t require students to investigate or
reflect on those issues. The remaining projects require students to either
research, reflect on, or in some way confront social good issues.

Coolness: The projects included in this paper tend to be more highly
rated in this category. The idea of social relevancy often captures student
attention and these projects focus, for the most part, on high-profile issues.
In some of the projects, such as “Nuclear Power” or the role of computer
science in emergency situations (“Red Cross Disaster Relief ” or “Ad Hoc
Emergency Wi-Fi”), the topic itself is engaging. In other exercises, simula-
tions (“Banana Republic” or “Radioactive Mice”) are used for engagement.
Although these latter projects are less realistic or less directly related to
social good, they provide an environment similar to those of virtual world
games and encourage students to think more broadly about social issues.

Reflection: All of the projects presented in this paper require some re-
flection on social issues, though this reflection is, for many of the projects,
indirect. Through their focus on socially relevant issues and through the pro-
cess of developing a program that deals with some aspect of a socially rel-
evant issue, students are forced to reflect, to some degree, on the issue. There
are some projects, however, that make this reflection more purposeful. The
“Nuclear Power,” “Water Pollution,” and “Social good scholarly work” proj-
ects all require explicit reflection in the form of a paper or technical report.

5.4 Limitations of our work
While the CSG-Ed approach can capture the interest of students who did
not realize the social applications of computer science, more techie students
may not appreciate these projects. In fact, their main interests are more re-
lated to methods and technical details rather than to motivations and means.

The assignments presented here are class-tested to varying degrees.
While it is hoped that instructors could use them “as is,” we make no
promises as to their robustness. Rather the intention of including them
here is to provide material to support the exploration of the proposition
that for any non-theoretical computer science domain topic, one should
be able to articulate a useful CSG-Ed assignment. A significant number of
the topics typically covered in the first year are addressed.

5.5 Allaying the barriers
The barriers described in Section 3 can be daunting, but are by no means
insurmountable. CS instructors are well aware of the need to appeal to a
larger audience to increase enrollments, especially of minorities and women
so the historical patterns are already changing. This paper presents projects
that should appeal to a much wider range of students and also addresses the
needs of overworked instructors.

The projects presented here will also ameliorate the problem of do-
main knowledge and the resulting feeling of inadequacy. Most of the proj-
ects supply sufficient domain information for both student and instruc-
tor and only two projects (“Molecular Modeling and DNA” and “Around
the World”) require deep domain knowledge on the part of the instructor.

Some of the projects (e.g. “Red Cross Disaster Relief ” and “Radioactive
Mice”) illustrate how traditional introductory assignments can, with a little
creativity, be repurposed into a CSG-Ed assignment.

■ “Radioactive Mice” is a reworked version of a Greenfoot-based game
called Catch Me If You Can.

■ “Red Cross Disaster Relief ” is a reworked example of a shortest-path
algorithm assignment, often presented at the introductory level as
the Travel Agent Problem.

The projects also address the problem of extraneous load on students.
Many of the projects (such as the “Radioactive Mice” and the “Mini Pack-
age Manager”) place minimum extra overhead on the students. Others
(such as “Nuclear Power” or “Molecular Modeling and DNA”) place a
much higher burden on the students, yet even these assignments are con-
structed in such a manner that the instructor can minimize the time spent
pursuing outside domain knowledge.

All of the assignments integrate many CS concepts and in most of
them the external domain assessment can, if necessary, be reduced. For
example, the technical report in both the “Nuclear Power” and “Water Pol-
lution” projects can be omitted. As a result, the overhead problem can, in
most cases, be minimized.

The only serious barrier, then, is the availability of introductory CS text-
books that address social good issues. This is, of course, the horse and cart
problem; textbooks with problems that deal with social good issues would
raise instructor awareness, but will not be written until there is sufficient
demand from instructors. The projects in this paper, which can be used with
any textbook, are a first step in raising both awareness and demand.

#6.
conclusIon

In this report we have made a case for the merits of Computer Science Educa-
tion for Social Good (CSG-Ed) projects from an early stage in the curriculum.
We considered the background of computing for the social good, motivated
the work and proposed a categorisation and an illustrative set of exemplar case
study projects intended for CS educators to adopt in their own institutions.

We believe a CSG-Ed approach will better motivate students by pro-
viding them with a more comprehensive view of the discipline and its
scope for meaningful societal contribution from the very beginning of their
CS education. This larger viewpoint often does not appear until the senior
capstone project in a traditional CS curriculum by which time their per-
spective on computer science has already been formulated.

While this report includes a number of CSG-Ed projects, no attempt
has been made to formally evaluate their impact. Though such evaluation
must be accomplished in the future, we believe that CS educators have a
professional obligation to introduce CS as a discipline in a widely framed
and significant manner regardless of its potential impact on enrollments.
The pervasiveness of computing and its impact on all aspects of our lives
suggests that it be seen as the transformational discipline that it truly is,
rather than as a frustrating struggle with obscure syntax and problems or as
the handmaiden to some other scientific or business discipline. In addition
to providing current majors with a more accurate understanding of their
profession, this insight will also make the field more appealing to students
seeking a major through which they can make a real impact on the world.
The projects presented in this paper give instructors a concrete starting
point to incorporate a CSG-Ed approach in their teaching.

#7.
future work

The projects included in the appendix are just a first collection of CSG-Ed
ideas. They do not cover all computer science topics nor do they include all

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 65

students’ knowledge levels. However, the heterogeneity of the projects make
them a viable proof-of-concept to show the effectiveness of the approach.

Much work also remains to be done field testing the projects. Some of
them have been effectively tested in courses while others are new projects
designed for this paper. Our intent is that these projects form just the first
set of a larger collection that will grow with the contributions from inter-
ested lecturers who seek to share their projects and experiences.

In addition to testing the projects, an assessment of the approach itself
remains to be done, especially in light of the very preliminary assessment
work by Rader et.al.[72]. How does the inclusion of social good concepts
affect student perceptions of computer science? Are students more moti-
vated by these problems than traditional CS problems? Are non-tradition-
al CS students attract to CS through these problems? Does this approach
enhance the learning of CS concepts? The answers to these questions, and
more, will determine the effectiveness of the approach.

References
 [1] College board AP program summary report. http://professionals.collegeboard.com/data-

reports-research/ap/data, 2011.
 [2] ACM/IEEE-CS Joint Interim Review Task Force. Computer science curriculum 2008: An interim

revision of CS 2001, report from the interim review task force, 2008.
 [3] J. B. Adams and E. Runkles. “May we have class outside? “: implementing service learning in

a CS1 curriculum. J. Comput. Sci. Coll., 19(5):25–34, May 2004.
 [4] R. J. Anderson, R. E. Anderson, G. Borriello, and J. Pal. An approach to integrating ICTD proj-

ects into an undergraduate curriculum. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education, SIGCSE ’10, pages 529–533, New York, NY, USA, 2010.
ACM.

 [5] O. Astrachan, T. Barnes, D. D. Garcia, J. Paul, B. Simon, and L. Snyder. CS principles: piloting
a new course at national scale. In Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’11, pages 397–398, New York, NY, USA, 2011. ACM.

 [6] L. J. Barker, C. McDowell, and K. Kalahar. Exploring factors that influence computer science
introductory course students to persist in the major. In Proceedings of the 40th ACM Techni-
cal Symposium on Computer Science Education, SIGCSE ’09, pages 153–157, New York, NY,
USA, 2009. ACM.

 [7] D. Barnes and M. KÃ¶lling. Objects First with Java: A Practical Introduction Using BlueJ.
Pearson: Prentice Hall, 4 edition, 2009.

 [8] K. Becker. Grading programming assignments using rubrics. In Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education, ITiCSE ’03, pages
253–253, New York, NY, USA, 2003. ACM.

 [9] T. Bell. Computer science unplugged. http://csunplugged.org/.
 [10] J. Benyo and J. White. Dot diva. http://dotdiva.org/educators/problem.html.
 [11] K. Brundiers, A. Wiek, and L. Redman, Charles. Real-world learning opportunities in sustain-

ability: from classroom into the real world. International Journal of Sustainability in Higher
Education, 11(4):308–324, 2010.

 [12] M. Buckley. Viewpoint: Computing as social science. Commun. ACM, 52(4):29–30, Apr. 2009.
 [13] M. Buckley, H. Kershner, K. Schindler, C. Alphonce, and J. Braswell. Benefits of using socially-

relevant projects in computer science and engineering education. In Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’04, pages 482–486,
New York, NY, USA, 2004. ACM.

 [14] M. Buckley, J. Nordlinger, and D. Subramanian. Socially relevant computing. In Proceedings of
the 39th SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’08, pages
347–351, New York, NY, USA, 2008. ACM.

 [15] Y. Cai. Integrating sustainability into undergraduate computing education. In Proceedings
of the 41st ACM Technical Symposium on Computer Science Education, SIGCSE ’10, pages
524–528, New York, NY, USA, 2010. ACM.

 [16] J. Carter, D. Bouvier, R. Cardell-Oliver, M. Hamilton, S. Kurkovsky, S. Markham, O. W. McClung,
R. McDermott, C. Riedesel, J. Shi, and S. White. Motivating all our students? In Working
Group Report from the 16th Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE-WGR ’11, pages 1–18, New York, NY, USA, 2011. ACM.

 [17] L. Carter. Why students with an apparent aptitude for computer science don’t choose to
major in computer science. SIGCSE Bull., 38(1):27–31, Mar. 2006.

 [18] L. N. Cassel, G. Davies, W. Fone, A. Hacquebard, J. Impagliazzo, R. LeBlanc, J. C. Little, A.
McGettrick, and M. Pedrona. The computing ontology: application in education. SIGCSE Bull.,
39(4):171–183, Dec. 2007.

 [19] K. Christensen, D. Rundus, G. Perera, and S. Zulli. CSE volunteers: a service learning program
to provide IT support to the Hillsborough County school district. SIGCSE Bull., 38(1):229–
233, Mar. 2006.

 [20] M. Clancy and M. Linn. Designing Pascal Solutions: A Case Study Approach. Principles of
Computer Science Series. Computer Science Press, 1992.

 [21] T. Clear. Diagnosing your teaching style: how interactive are you? ACM Inroads, 1(2):34–41,
June 2010.

 [22] R. W. Connolly. Beyond good and evil impacts: rethinking the social issues components in
our computing curricula. In Proceedings of the 16th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, pages 228–232, New York, NY, USA,
2011. ACM.

 [23] A. Craig and J. Fisher. Digital divas club. http://digitaldivasclub.org/vic/.
 [24] P. Curzon, P. McOwan, and J. Black. Computer science for fun. http://www.cs4fn.org/.

 [25] Q. Cutts, M. Calder, and P. Dickman. Computer science inside... bring computer science alive.
http://csi.dcs.gla.ac.uk/.

 [26] V. Dagiene. Bebras contest. http://www.bebras.org/en/welcome.
 [27] T. de Jong. Cognitive load theory, educational research, and instructional design: some food

for thought. Instructional Science, 38:105–134, 2010. 10.1007/s11251-009-9110-0.
 [28] B. DiSalvo and A. Bruckman. From interests to values. Commun. ACM, 54(8), 2011.
 [29] Z. Dodds and R. Libeskind-Hadas. Bio1 as CS1: Evaluating a crossdisciplinary CS context.

In Proceedings of the 17th Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’12, 2012.

 [30] M. A. L. Egan and M. Johnson. Service learning in introductory computer science. In Proceed-
ings of the 15th Annual Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’10, pages 8–12, New York, NY, USA, 2010. ACM.

 [31] M. A. L. Egan and T. Lederman. The impact of IMPACT: assessing students’ perceptions after
a day of computer exploration. In Proceedings of the 16th Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’11, 2011.

 [32] H. J. C. Ellis, R. A. Morelli, T. R. de Lanerolle, J. Damon, and J. Raye. Can humanitarian open-
source software development draw new students to CS? In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’07, pages 551–555, New
York, NY, USA, 2007. ACM.

 [33] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers. Sustainability themed problem solving in
data structures and algorithms. In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages 9–14, New York, NY, USA, 2012. ACM.

 [34] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers. Sustainability themed problem solving in
data structures and algorithms. In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages 9–14, New York, NY, USA, 2012. ACM.

 [35] S. Fincher, M. Petre, and M. Clark, editors. Computer science project work: principles and
pragmatics. Springer-Verlag, London, UK, 2001.

 [36] A. Fisher and J. Margolis. Unlocking the clubhouse: the Carnegie Mellon experience. SIGCSE
Bull., 34(2):79–83, June 2002.

 [37] M. Goldweber. A day one computing for the social good activity. ACM Inroads, 3(3), 2012.
 [38] M. Goldweber, R. Davoli, J. C. Little, C. Riedesel, H. Walker, G. Cross, and B. R. Von Konsky.

Enhancing the social issues components in our computing curriculum: computing for the
social good. ACM Inroads, 2:64–82, February 2011.

 [39] D. Gotterbarn. Integration of computer ethics into the CS curriculum: attachment or synthe-
sis. In Working group Report from the 4th Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE-WGR ’99, pages 13–14, New York, NY, USA, 1999.
ACM.

 [40] M. Guzdial. Teaching computing to everyone. Commun. ACM, 52(5), 2009.
 [41] N. Hatton and D. Smith. Reflection in teacher education: towards definition and implementa-

tion. Teaching and Teacher Education, 11:33–49, 1995.
 [42] R. Heeks. ICT4D 2.0: The next phase of applying ICT for international development.

Computer, 41(6):26–33, June 2008.
 [43] D. Holton. Cognitive load theory: Failure? , 2009. http://edtechdev.wordpress.

com/2009/11/16/cognitive-load-theory-failure/.
 [44] J. P. Hourcade. Give peace a chance: a call to design technologies for peace. In Proceedings

of the 27th International Conference Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’09, pages 2499–2508, New York, NY, USA, 2009. ACM.

 [45] J. H. Janet and J. Mertz. Gender, culture and mathematics performance. Proceedings of the
National Academy of Sciences, 106(22), June 2009.

 [46] L. C. Kaczmarczyk. Computers and Society: Computing for Good. Chapman and Hall, 2011.
 [47] D. Kamen and K. K. Kristiansen. First lego league. http://www.firstlegoleague.org/.
 [48] J. S. Kay. Contextualized approaches to introductory computer science: the key to making

computer science relevant or simply bait and switch? In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, SIGCSE ’11, 2011.

 [49] J. Kirkpatrick, J. Swafford, and B. Findell. Adding it up: Helping children learn mathematics.
National Academy Press, 2001.

 [50] C. Lang, A. Craig, J. Prey, M. A. L. Egan, and R. Ayfer. Outreach programs to promote com-
puter science and ICT to high school and middle school students. In Proceedings of the 16th
Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE
’11, 2011.

 [51] L. Layman, L. Williams, and K. Slaten. Note to self: make assignments meaningful. In
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’07, pages 459–463, New York, NY, USA, 2007. ACM.

 [52] R. LeBlanc, M. Ben-Menachem, T. B. Hilburn, S. Mengel, T. C. Lethbridge, B. Thompson, A.
Sobel, and J. L. Díaz-Herrera. IEEE-CS/ACM computing curriculum software engineering
volume project. In Proceedings of the 16th Annual Conference on Software Engineering
Education and Training, CSEET ’03, Washington, DC, USA, 2003. IEEE Computer Society.

 [53] P. M. Leidig, R. Ferguson, and J. Leidig. The use of community-based non-profit organizations
in information systems capstone projects. In Proceedings of the 11th Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’06, pages 148–152, New
York, NY, USA, 2006. ACM.

 [54] T. C. Lethbridge, R. J. LeBlanc Jr, A. E. K. Sobel, T. B. Hilburn, and J. L. Diaz-Herrera. SE2004:
Recommendations for undergraduate software engineering curricula. IEEE Softw., 23(6):19–
25, Nov. 2006.

 [55] R. Lister, A. Berglund, T. Clear, J. Bergin, K. Garvin-Doxas, B. Hanks, L. Hitchner, A. Luxton-
Reilly, K. Sanders, C. Schulte, and J. L. Whalley. Research perspectives on the objects-early
debate. In Working Group Report from the 11th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE-WGR ’06, pages 146–165, New York, NY,
USA, 2006. ACM.

 [56] S. Lohr. The age of big data. New York Times, February 2012.
 [57] S. Mann, L. Muller, J. Davis, C. Roda, and A. Young. Computing and sustainability: evaluating

resources for educators. SIGCSE Bull., 41(4):144–155, Jan. 2010.

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

66 acm Inroads 2013 March • Vol. 4 • No. 1

 [58] S. Mann, L. Smith, and L. Muller. Computing education for sustainability. SIGCSE Bull.,
40(4):183–193, Nov. 2008.

 [59] M. McLuhan and Q. Fiore. The Medium Is the Message: An Inventory of Effects - Centennial
Facsimile Edition. Gingko Press, 2011.

 [60] L. P. Nathan, E. Blevis, B. Friedman, J. Hasbrouck, and P. Sengers. Beyond the hype: sustain-
ability & HCI. In CHI ’08 extended abstracts on Human factors in computing systems, CHI EA
’08, pages 2273–2276, New York, NY, USA, 2008. ACM.

 [61] L. P. Nathan, P. V. Klasnja, and B. Friedman. Value scenarios: a technique for envisioning
systemic effects of new technologies. In CHI ’07 extended abstracts on Human factors in
computing systems, CHI EA ’07, pages 2585–2590, New York, NY, USA, 2007. ACM.

 [62] R. B. Osborne, A. J. Thomas, and J. R. Forbes. Teaching with robots: a service-learning
approach to mentor training. In Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages 172–176, New York, NY, USA, 2010. ACM.

 [63] J. O’Shea and C. Baillie. Engineering education towards social and environmental justice. In
Proceedings of the 22nd Annual Conference for the Australasian Association for Engineering
Education, 2011.

 [64] J. Owens and J. Matthews. Cybercivics: a novel approach to reaching K-12 students with
the social relevance of computer science. In Proceedings of the 39th SIGCSE Technical Sym-
posium on Computer Science Education, SIGCSE ’08, pages 372–376, New York, NY, USA,
2008. ACM.

 [65] L. Patricia. Service learning: an HCI experiment. In Proceedings of the 16th Western Canadian
Conference on Computing Education, WCCCE ’11, pages 12–16, New York, NY, USA, 2011.
ACM.

 [66] D. A. Patterson. Rescuing our families, our neighbors, and ourselves. Commun. ACM,
48(11):29–31, Nov. 2005.

 [67] V. P. Pauca and R. T. Guy. Mobile apps for the greater good: a socially relevant approach to
software engineering. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE ’12, pages 535–540, New York, NY, USA, 2012. ACM.

 [68] S. R. Portnoff. Teaching HS computer science as if the rest of the world existed: rationale
for a HS Pre-APCS curriculum of interdisciplinary central-problem-based units that model
real-world applications. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE ’12, pages 243–244, New York, NY, USA, 2012. ACM.

 [69] N. Postman and C. Weingartner. Teaching as a Subversive Activity. Delacorte Press, 1969.
 [70] S. Pulimood, D. Shaw, and E. Lounsberry. Gumshoe: A model for undergraduate computation-

al journalism education. In Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, 2011.

 [71] T. S. Purewal, Jr., C. Bennett, and F. Maier. Embracing the social relevance: computing, ethics
and the community. In Proceedings of the 38th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’07, pages 556–560, New York, NY, USA, 2007. ACM.

 [72] C. Rader, D. Hakkarinen, B. M. Moskal, and K. Hellman. Exploring the appeal of socially
relevant computing: are students interested in socially relevant problems? In Proceedings
of the 42nd ACM Technical Symposium on Computer Science Education, SIGCSE ’11, pages
423–428, New York, NY, USA, 2011. ACM.

 [73] T. Reeves. Effective dimensions of interactive learning systems. In Information Technology
for Training and Education, Brisbane, Australia, 1992. Australia Information Technology for
Training and Education.

 [74] S. Reiser and R. Bruce. Service learning meets mobile computing. In Proceedings of the 46th
Annual Southeast Regional Conference, ACM-SE 46, pages 108–113, New York, NY, USA,
2008. ACM.

 [75] B. J. Rosmaita. Making service learning accessible to computer scientists. In Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’07, pages
541–545, New York, NY, USA, 2007. ACM.

 [76] D. Russell. Landmark Essays on Writing Across the Curriculum, chapter American Origins of
the Writing-across-the-Curriculum Movement. 1994.

 [77] M. Schuhmacher and S. Markham. Applying rubrics assessment in undergraduate computer
science education. In Proceedings of the 15th Annual NACCQ, 2002.

 [78] R. A. Scorce. Perspectives concerning the utilization of service learning projects for a com-
puter science course. J. Comput. Sci. Coll., 25(3):75–81, Jan. 2010.

 [79] B. Shneiderman. Computer science education and social relevance. SIGCSE Bull., 3(1):21–24,
Mar. 1971.

 [80] L. Smith and S. Mann. Sustainable software engineering. In S. Mann and M. Verhaart, editors,
1st Annual Conference of Computing and Information Technology, Education and Research in
New Zealand (incorporating 23rd Annual NACCQ), pages 366–367. CITRENZ/NACCQ, 2010.

 [81] L. Snyder. Steganography. University Lecture, 2011.
 [82] S. Sterling. Higher Education, Sustainability, and the Role of Systemic Learning, pages 50–70.

Kluwer Academic, NY, 2004.
 [83] B. Tomlinson. Greening through IT: Information Technology for Environmental Sustainability.

The MIT Press, 2010.
 [84] A. Tucker, R. Morelli, and T. d. Lanerolle. The humanitarian FOSS project: Goals, activities, and

outcomes. In Proceedings of the 2011 IEEE Global Humanitarian Technology Conference,
GHTC ’11, pages 98–101, Washington, DC, USA, 2011. IEEE Computer Society.

 [85] S. Yardi and A. Bruckman. What is computing? : Bridging the gap between teenagers’
perceptions and graduate students’ experiences. In Proceedings of the 3rd International
Workshop on Computing Education Research, 2007.

 [86] S. Zweben and B. Bizot. CRA-Taulbee survey. http://cra.org/resources/taulbee/.

For more complete project descriptions either contact the project’s author directly or visit the “CSG-
Ed community” which resides as part of the Computing Portal (www.computingportal.org).

appendIx

#a. radIoactIve MIce
michael goldweber

The dispersal of radioactive contamination can be caused by many
factors; weather, water, human intervention as well as animal vectors.
One famous case lampooned by a popular folk song was the radioac-
tive frogs found in the early “1990’s” around the Oak Ridge National
Laboratory (USA). The frogs had been living in the mud of a half-
acre holding basin for waste water from the lab’s nuclear research in
the “1940’s” and “1950’s.” In 2010 radioactive mice and rabbits were
found in the area around the plutonium production facility in Han-
ford, Washington, USA.

More recently rats contaminated with cesium have been found as far
away as 30 kilometers from the Fukushima nuclear power plant. Contain-
ment of radioactive contaminated animal vectors is a particularly vexing
problem. Contaminated animals can get eaten by predators, which typi-
cally have a larger habitat range (e.g. consider a mouse or rat that is eaten
by a fox). Feces of contaminated animals can pollute water sources. Even if
the contaminated animal dies “naturally,” there is still the question of how
much contamination is left in the soil.

Autonomous robotic devices have been developed for a variety of pur-
poses; vacuuming a room or mowing a lawn. Not surprisingly, autonomous
robotic devices to catch (and kill?) rodents for both interior and exterior
applications are being experimented with. Consider a robotic “cat” whose
job it is to keep a nuclear energy facility rodent free.

a.1 Categorization
Student Directed: Some, based on an open ended assessment rubric.
Scaffolding: None.
External Domain Knowledge: None.
Social Good: Some.
Coolness: Some.
Reflection: Medium.

a.2 CS Concepts
Encapsulation: 2d locations as objects; ArrayLists; The Examine-All

(i.e. Find Closest) array processing algorithm.

a.3 Implementation Strategies

a.3.1 the way it works
For this project, students are to use Greenfoot to create a variation of the
robotic rodent catching cat (r 2c 2). Consider an n×n grid world where there
is one instance of the r 2c 2, whose starting location is selected randomly,
and m stationary radioactive mice (possibly already dead from radiation
overdose), whose starting positions are also random. Furthermore, there are
obstacles in the world through which neither the r 2c 2 nor any of the mice
can pass. Students need to endow the r 2c 2 with an algorithm to successfully
“catch” each radioactive mouse.

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 67

r2c2 must employ something more sophisticated than brute force search.
Using the Greenfoot API, the r2c2 can learn the location of one mouse (or
all of the mice) and move purposefully towards the closest mouse, one at
a time. The r2c2 can only move one square at a time (i.e. per invocation
of “act”). Diagonal moves are permitted. Initially, students should con-
sider the world a “closed” world; hence the exterior grid boundaries are
hard. When r2c2 occupies the same cell as a mouse, the mouse is considered
“caught” and is removed from the world. When all the mice have been
caught, the r2c2 should recognize this case and shut down the program,
though a celebratory dance may first be in order.

a.3.2 It works better if
No suggestions.

a.3.3 assessment strategies
This project lends itself to being open-ended. In keeping with the proposal
that project assignments should also convey the evaluation rubric[8, 77],
one such rubric, implementing both the design paradigm of iterative im-
provement and open-ended creativity might be:
1. C: Students must have a correctly working program for m stationary

mice in a world bounded with hard boundaries.
2. B: The requirements for a C in addition to excellent documentation.

Furthermore, the mice are not dead and can move. Like the r 2c 2, the
mice can only move to one adjacent square at a time (including diago-
nals). The mice should move at a rate slower than the r 2c 2, selecting the
next cell to occupy randomly. The r 2c 2 should always take one purpose-
fully selected step towards the mouse closest to it.

3. A: The requirements for a B in addition to some other open-ended
improvements. Here is the opportunity for students to think creatively.
Some examples of such improvements are:
■ Consider the world a torus (i.e. allow full wrap-around). This

complicates r 2c 2’s nearest mouse algorithm.
■ Allow the mice to reproduce. Individual mice can sense other

mice, up to some distance limit (e.g. two squares away) and move
purposefully toward each other. When two mice occupy the same
square for an iteration, they spawn a pinkie (i.e. baby mouse).

■ Allow some obstacles to be such that a mouse can hide in them.
So while a mouse can co-occupy a square with an obstacle, the r 2c 2
cannot. Mice can only stay hidden in an obstacle for a fixed number
of iterations.

a.3.4 It doesn’t work unless
This project requires an event-driven grid world environment such as
Greenfoot.

a.4 Extensions
In addition to the above, students could experiment with multiple r 2c 2 cats.

a.5 Deliverables
The code for the r 2c 2, and possibly for the mice as well. A short reflection
paper on the possible other uses of such technologies is recommended.

#B. red cross dIsaster response
michael goldweber

In most countries there is a branch of the International Red Cross (icrc.
org); Red Crescent Societies, Mogen David Adom, and national Red
Cross societies. In each case, the organization is tasked with responding to
emergencies; both natural and man-made. For a given disaster, it is the re-
sponsibility of the closest Red Cross office with the appropriate resources/
supplies to respond. The question is, given a disaster location along with
the locations of all Red Cross offices, which one should respond?

This problem is an example of what is called a “shortest path schedul-
ing algorithm.” For this problem one needs a graph. Each node in the
graph represents a city. The edges (or links) represent highways connect-
ing the cities. Each edge has a distance or mileage value associated with
it. Furthermore, some, but not all, of the cities house a Red Cross office.
Finally, one city is designated as the disaster site. Given the above pro-
gram inputs, the program output is the name (or identifier) of the city
housing a Red Cross office that is closest (shortest total mileage) to the
disaster city.

B.1 Categorization
Student Directed: Some, based on an open ended assessment rubric.
Scaffolding: None to some.
External Domain Knowledge: None.
Social Good: Medium.
Coolness: Small to medium.
Reflection: Medium.

B.2 CS Concepts
Graph representations, graph algorithms; Shortest path algorithms.

B.3 Implementation Strategies

B.3.1 the way it works
This is a traditional text-driven program. There are many ways to represent
the inputs. One such straightforward method involves a simple text file
input methodology:

■ line 1: integer n representing the number of cities. Each city is
represented by an integer in [0..n−1]

■ line 2: integer m representing the number of edges in the graph.
■ lines 3-(m+2): three-tuples (i, j,k) representing an edge, one edge per

input file line. i and j (i≠j) are integers in [0..n−1] representing the
edge’s two endpoints. k is a positive integer representing the distance
or mileage between the two adjacent cities.

■ line m+3: an integer r representing the number of cities with a Red
Cross office.

■ The following r lines each contain a single integer i in [0..n−1],
indicating that city i houses a Red Cross office.

After processing the input graph and Red Cross office data, the pro-
gram should interactively prompt the user for the location of the disaster;
an integer in [0..n−1]. The output of the program should be the city identi-
fier of the closest Red Cross office and the mileage between the disaster
city and the closest Red Cross office.

B.3.2 It works better if
Students have a very firm understanding of a shortest path algorithm, say
through interaction with an algorithm visualization tool or an in-class kin-
esthetic learning activity.

B.3.3 assessment strategies
This project lends itself to being open-ended. In keeping with the proposal
that project assignments should also convey the evaluation rubric[8, 77],
one such rubric, implementing both the design paradigm of iterative im-
provement and open-ended creativity might be:

In order to earn a:
1. C: Students must have a correctly working program.
2. B: The requirements for a C in addition to excellent documentation.

Furthermore, so as not to overwhelm any single Red Cross office, the
program should output the two closest Red Cross offices to the disaster
site and their respective distances to the disaster city.

3. A: The requirements for a B in addition to some other open-ended
improvements. Here is the opportunity for students to think creatively.
Some examples of such improvements are:

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

68 acm Inroads 2013 March • Vol. 4 • No. 1

■ Instead of simply outputting the two closest Red Cross offices, the
program should output the c closest Red Cross offices, where c is a
positive integer interactively input by the user.

■ Encode (using letters) various Red Cross resources. e.g. “B” for beds,
“T” for trailers, “W” for water, “F” for food, etc. For each Red Cross
office, encode in the input file which resources that office stocks.
Finally, for a given disaster, the user not only inputs the disaster
location, but which resources are needed for that disaster. For each
resource, the program outputs the closest Red Cross office (or two)
which stocks that resource.

B.4 Extensions
See above.

B.5 Deliverables
The program code plus a reflection paper on the following “location” prob-
lem: Given an input graph of cities and edges and a constraint of having
only x Red Cross offices, where should they be located so that no city is too
far from any Red Cross office; i.e. how to distributed limited resources so
as to maximize coverage.

#C. nuclear power
john barr

This project considers the issues with the use of nuclear power. Students
are required to analyze nuclear power plants in New York State and to
write a technical report with their findings. To perform this analysis stu-
dents must determine several factors that could be used to evaluate nuclear
power, quantify these factors, write a program to produce a map that il-
lustrates the factors, and then write a technical report with their findings.

C.1 Categorization
Student Directed: This project is completely specified. Students do

have the freedom, however, to choose which factors to use in their analysis
of nuclear power and how to quantify the factors. They can also determine
how to design the map. For example, they could use a single map layer that
shows a single risk factor number or they could create multiple layers, each
a different color and each showing a different risk factor.

Scaffolding: A java class, geoMap.java, is supplied to allow students
to create .shp files. A .shp file is a standard file type used in geographic
information systems (GIS). It can be read by most major commercial and

open source GIS programs. A shapefile for New York state is provided, but
the geoMap class will read any shapefile so the instructor can easily use her
own state/region in the project. The geoTools framework is used by the
geoMap.java class to produce the .shp file. Instructors will have to prepare
a project in either the Eclipse or Netbeans IDE with the geoTools frame-
work. There are instructions for doing this at http://www.geotools.org/
Students can follow the instructions to set up their IDE to use geoTools,
but the project will flow more smoothly if the instructor sets up a project to
work correctly and provides the project to the students.

External Domain Knowledge: Two areas of domain knowledge are
covered in this project, geographic information systems (GIS) and nuclear
power. The GIS knowledge required is minimal; if you like students can
complete the project using only the supplied geoMap.java class with no
knowledge of GIS. Some minimal knowledge of nuclear power risks is
necessary. Students are required to obtain this knowledge independently
and the required knowledge is minimal. All necessary information can be
obtained, for example, from Wikipedia. In particular, students must obtain
the location of all nuclear power plants in New York (available on Wikipe-
dia), identify at least one risk factor (seismic activity for each nuclear power
plant in New York is available on Wikipedia), and quantify this factor.

Social Good: The safety of Nuclear power, especially in the wake of the
2011 tsunami in Japan, is a critical national issue.

Coolness: Because of the publicity of the Fukushima nuclear accident
in the wake of 2011, students both understand and are concerned with
nuclear power plant safety.

Reflection: Students are required to submit a technical report justify-
ing their choice of risk factors and analyzing the results. The report also
requires students to reflect on the applicability of both the program and the
map for the analysis of nuclear power.

C.2 CS Concepts
Single dimension arrays (including parallel arrays), reading values from a
file, selection (if-then-else).

C.3 Implementation Strategies

C.3.1 the way it works
The solution strategy will employ the following steps:
1. Student locates power plant locations in New York and records their

latitude and longitude in a text file. These locations are available on
Wikipedia.

2. Student researches issues with nuclear power and chooses several. These
might include such factors as distance to major population centers,
amount of radiation that might be released in an accident, and the pos-
sibility of seismic activity at the plant.

3. Student quantifies each issue for each nuclear power plant. For example,
Wikipedia articles on a particular New York power plants give the prob-
ability of an earthquake at that plant. A single number representing each
site must be stored in the text file.

4. Once the student has the latitude/longitude and risk number (from the
previous step) recorded in a text file, they can write a program to display
the information. Their program will read the text file and store the lati-
tude, longitude, and risk numbers in parallel 1D arrays, create a geoMap
object, call the makeMap() method, and then call the addBuffer-
Layer method (passing in the arrays).

5. Finally the student must write a technical report that 1. analyzes the use
of nuclear power in New York and 2. discusses whether the program and
map are effective analysis tools.

C.3.2 It works better if
This project uses the geoTools framework to access, create, and display GIS
shapefiles. This is a very large framework that can be accessed dynamically
using the Maven build tool. Though Maven is not hard to integrate with
popular IDEs such as Eclipse or Netbeans, it can be confusing for students.

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 69

The best approach to the project, then, is for the instructor to create a solu-
tion for the project, extract the main method, and then provide students
with the Eclipse or Netbeans project. The complete project description
provides details on using the Maven build tool within Eclipse or Netbeans
or you can visit http://www.geotools.org/ for instructions. Students can
follow the instructions to set up their IDE to use geoTools, but this project
will work better if the instructor sets up the initial project.

C.3.3 assessment strategies
There are three deliverables for this project. The instructor can choose to
weigh each of these differently depending on what they would like to em-
phasize. For example, the program can be heavily weighed to emphasize
the computer science used or the technical report can be heavily weighed
to develop critical thinking skills.

C.3.4 It doesn’t work unless
Requires the geoTools frameworks together with either the Eclipse or
Netbeans IDE.

C.4 Extensions
This project can easily be extended to include multiple layers of map infor-
mation. A student could, for example, plot major population areas, areas of
farm use, etc. The project is easily adapted to other domains. The project as
written requires a technical report. The program, however, can be written
independently, so the technical report can be omitted by the instructor.

C.5 Deliverables
Students must turn in a documented program, a screen dump of the map
they create and a two-page technical report that analyzes the risk posed by
the power plants in New York.

#D. water pollutIon
john barr

This project analyzes water pollution in three large New York rivers. Stu-
dents must identify sources of pollution and amounts of pollution and also
identify areas (such as towns, forests or habitats) that might be sensitive to
pollution.

Students first locate three large rivers in New York and plot an approxi-
mation of their location on a map (as line segments). They then research
the different types of pollution that commonly occur in New York, their
sources and their effects.

After students have determined relevant factors, they quantify the fac-
tors and plot them on a map by creating “buffers” for each river (line). The
greater the pollution on a particular segment of the river, the larger the buf-
fer. For example, if there is a factory at one point that dumps pollutants in
a river and downriver from that source there is another source of pollution,
the buffer after the second source must be larger (or perhaps in a different
color) to indicate that there are more pollutants. Students also use buffers
to indicate sensitive areas that could be affected by pollution.

d.1 Categorization
Student Directed: This project is completely specified. Students do

have the freedom, however, to choose which factors to use in their analysis
of water pollution and how to quantify the factors. They can also determine
how to design the map. For example, they could use a single map layer that
shows a single risk factor number or they could create multiple layers, each
a different color and each showing a different risk factor.

Scaffolding: A java class, geoMap, is supplied to allow students to cre-
ate .shp files. A .shp file is a standard file type used in geographic informa-
tion systems (GIS). It can be read by most major commercial and open

source GIS projects. A shapefile for New York state is provided, but the
geoMap class will read any shapefile so the instructor can easily use her
own state/region in the project.

The geoTools framework is used by the geoMap class to produce the
.shp file. Instructors will have to prepare a project in either the Eclipse or
Netbeans IDE with the geoTools framework.

External Domain Knowledge: Two areas of domain knowledge are
covered in this project, geographic information systems (GIS) and river
pollution. The GIS knowledge required is minimal; if you like students can
complete the project using only the supplied geoMap class. Some minimal
knowledge of water pollution is necessary. Students are required to obtain
this knowledge independently, however. In particular, students must iden-
tify at least one type of water pollution, and quantify the amount of this
factor present in each of the chosen rivers.

Social Good: Pollution has long been a critical social issue in all parts
of the world and its importance has increased over the past few decades
with the industrialization of the world.

Coolness: Pollution is part of sustainability, an area of great interest
to students.

Reflection: Students are required to submit a technical report justify-
ing their choice of risk factors and analyzing the results. The report also
requires students to reflect on the applicability of the program and map to
the analysis of water pollution.

d.2 CS Concepts
Two dimension arrays, reading values from a file, selection (if-then-else),
iteration (for or while).

d.3 Implementation Strategies

d.3.1 the way it works
The solution strategy will employ the following steps:
1. Students identify the locations of three large rivers in New York State

and record their latitude and longitude in a text file. Each river consists
of multiple straight-line line segments. The coordinate of the beginning
point (latitude, longitude) of each of these segments must be recorded
(the geoMap method assumes that the end point of each segment is the
beginning point of the next segment). These locations can be found, for
example, on google maps.

2. Students research sources of water pollution along the chosen rivers.
These might include such factors as factory outflow, agricultural run off,
and medical dumping.

3. Students quantify each issue for each river segment. A single number
representing the amount of pollution for the segment must be stored in
the text file.

4. Once the latitude/longitude and pollution number (from the previous
step) have been recorded in a text file, students write a program to
display the information. Their program will read the text file and
store the latitude, longitude, and pollution numbers in a 2D array,
create a geoMap object, call the makeMap() method, and then call the
addBufferLineLayer method (passing in the array).

5. Finally the student must write a technical report that 1. analyzes the sig-
nificance of pollution on the rivers and 2. discusses whether the program
and map are effective analysis tools.

d.3.2 It works better if
This project uses the geoTools framework to access, create, and display GIS
shapefiles. This is a very large framework that can be accessed dynamically
using the Maven build tool. Though Maven is not hard to integrate with
popular IDEs such as Eclipse or Netbeans, it can be confusing for students.
The best approach to the project, then, is for the instructor to create a solu-
tion for the project, extract the main method, and then provide students
with the Eclipse or Netbeans project. The complete project description
provides details on using the Maven build tool within Eclipse or Netbeans

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

70 acm Inroads 2013 March • Vol. 4 • No. 1

or you can visit http://www.geotools.org/ for instructions. Students can
follow the instructions to set up their IDE to use geoTools, but this project
will work better if the instructor sets up the initial project.

d.3.3 assessment strategies
There are three deliverables for this project. The instructor can choose to
weigh each of these differently depending on what they would like to em-
phasize. For example, the program can be heavily weighed to emphasize
the computer science used or the technical report can be heavily weighed
to develop critical thinking skills.

d.3.4 It doesn’t work unless
Requires the geoTools frameworks together with either the Eclipse or
Netbeans IDE.

d.4 Extensions
This project can easily be extended to include multiple layers of map
information. A student could, for example, plot major population areas,
areas of farm use, etc. The project is easily adapted to other domains.
The project as written requires a technical report. The program, how-
ever, can be written independently, so the technical report can be omit-
ted by the instructor.

d.5 Deliverables
Students must turn in a documented program, a screen dump of the map
they create and a two-page technical report that analyzes the risk posed to
the New York rivers by pollution.

#E. ad hoc eMergency
wI-fI netwoprkIng
renzo davoli

In case of catastrophic events (e.g. earthquakes, floods, volcanic eruptions)
communication lines can be destroyed. The ability to communicate can
save human lives.

Communication in emergency situations is both a need for the rescue
teams and for the population. The cellphone services need a working infra-
structure made of base radio stations to be operational. If the infrastructure
collapses cell phones are useless. Earthquakes or floods can put base radio
stations out of service: they are mounted on the top of high structures
or buildings and they need an operational electricity grid. Even when the
base radio stations remain operational the abnormal traffic can lead to an
overload and block service.

The Internet can help to solve this situation. Whilst the cellphone
service needs an infrastructure, modern smart phones have wi-fi inter-
faces onboard It is possible to use these interfaces to communicate by
providing a very light infrastructure or even no infrastructure at all, in a
peer-to-peer way.

The idea of this exercise comes from a project to create light inexpen-
sive wi-fi radio stations. A number of these radio stations could be kept in
storage, ready to be installed in disaster areas in case of need. These units
should also be able to operate using solar panels and, most important, they
should not need any configuration to be operative.

The users of this emergency network will not receive a full connection
to the Internet, that could be misused, but just some low bandwidth ser-
vices, e.g. text mail messages.

These services are powerful enough to provide the population with up-
dated news from the emergency teams, and provide the population living
in the damaged area with a means of communication to inform relatives
and friends about the real situation. Obviously a lack of direct information
would induce relatives and friends to reach the emergency area to check the
situation. This extra traffic of vehicles on the roads can interfere with and
delay emergency teams.

e.1 Categorization
Student Directed: None to some. The exercise is guided but open to

extensions.
Scaffolding: None.
External Domain Knowledge: Some. The students should have an in-

tuitive knowledge of the structure of some radio networks: e.g. wi-fi, cell
phone and ham radio networks.

Social Good: Medium. These services can be really useful.
Coolness: Small to medium.
Reflection: High? Cellphones are perceived as a commodity. Stu-

dents can have a more comprehensive view on radio services and their
integration.

e.2 CS Concepts
Graph representations, graph algorithms; Shortest path algorithms.

e.3 Implementation Strategies

e.3.1 the way it works
This exercise can be implemented in many ways. The simplest one is to
start an instance of a shortest path algorithm (e.g. Dijkstra’s) for each pair
of nodes and once each shortest path has been computed (or each set of
shortest paths have been computed) it is possible to compute the maximum
number of hops for that pair of nodes. It is also possible to rewrite the
algorithm in order to compute for each node the set of first_hops of the
minimum paths towards all the other nodes and the maximum number of
hops in a single pass.

e.3.3 assessment strategies
A working implementation should be granted a sufficient evaluation.
Higher grades should take into account the coding style or efficiency
concerns. Some extensions to the basic problem should be granted top
grades.

e.3.4 It doesn’t work unless
Requires the geoTools frameworks together with either the Eclipse or
Netbeans IDE.

e.4 Extensions
It is possible to add to the computation of one or more spanning trees
for the delivery of broadcast packets. Obviously this exercise can be com-
pleted within a Networking course for a better understanding of bridging
and routing, more specifically Ethernet packet switching and the link state
routing algorithms.

e.5 Deliverables
Each student should provide two programs. The first program takes as in-
put the network topology graph file. This file is an ASCII text file where
each line represents a link and has three fields: the names of the connected
nodes at the ends of the link and the weight of the link. e.g.

N1 N2 2
N2 N3 1
N1 N4 2
N4 N3 1

Note that the graph is undirected, so the first line of the file is a bidirec-
tional link connecting N1 and N2 whose weight is 2. Furthermore, the file
does not specify the set of nodes in a separate way, the set of nodes is the set
of all the nodes whose names appear as an endpoint of a link.

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 71

The first program gives as output for each pair of nodes (A,B):
■ The list of the next hops along the paths from A to B
■ The maximum number of hops in the minimum paths.

e.g.

N1 to N2 nexthops N2 maxhops 1
N1 to N3 nexthops N2,N4 maxhops 2
N1 to N4 nexthops N4 maxhops 1
N2 to N1 nexthops N1 maxhops 1
N2 to N3 nexthops N3 machops 1
N2 to N4 nexthops N3 maxhops 2
...

The second program takes the output of the first program as its input.
This program should provide an interactive interface where a user can en-
ter source and destination nodes. The program should show the whole path
a packet would follow. e.g.

input: N1 to N3
N1 sends the packet to N2 (maxhops 2)
N2 sends the packet to N3 (maxhops 1)
N3 was reached.

#F. a MInI package Manager
for software dIstrIbutIon
renzo davoli

A software distribution is a collection of integrated, harmonic, continu-
ously updated software tools.

Often this concept is not clear to students (at least at my longitude/
latitude). Many students use libre software distributions but they do not
realize the difference between operating systems and distributions.

Windows and MacOS are operating systems. Debian, Ubuntu Open-
WRT, Mint, Fedora (and many others, see distrowatch.org) are distribu-
tions. These distributions are based on Operating Systems like GNU/
Linux, GNU/Hurd, FreeBSD, NetBSD or others.

Many distributions have been built in a social way, and “for social
good.” Debian is a good example. Debian is the base on which Ubuntu and
Mint have been constructed.

Libre, or free software can be freely used for any purpose, be studied,
modified, or redistributed. Using libre software independent institutions
and organizations together can create a collection of software tools, and
can work to keep the whole collection updated, secure and consistent. In
an analogy with literature, a distribution is an anthology.

f.1 Categorization
Student Directed: None to some. The exercise is guided but open to

extensions.
Scaffolding: None.
External Domain Knowledge: None. The knowledge about software

distribution and licenses should be part of the CS domain.
Social Good: Medium. This exercise teaches students how to be part

of the development community.
Coolness: High? A distribution is a social way to provide cool code.

Students can be empowered to be actors and not just spectators of the
Software development world.

Reflection: Medium. From this example students can understand the
real meaning of a distribution and decide to join the community of a soft-
ware distribution: A social way to be a computer scientist.

f.2 CS Concepts
Graph representations, graph traversal algorithms and topological sorting.

f.3 Implementation Strategies

f.3.1 the way it works
Apart from the standard graph visiting/traversal algorithm (for package install/
deinstall) and topological sorting (for distribution update) students need to add
a reference count to each packet to delete dependent packages when they are
no longer needed. During a distribution update, students must pay attention
to update these values correctly as the list of dependencies may have changed.

f.3.2 It works better if
Graph algorithms are sensitive to graph representations. Hence, properly
designed data structures are vital to student success, particularly when stu-
dents elect a recursive implementation.

f.3.3 assessment strategies
Students submissions should be considered sufficient if the problem has
been solved, good if the solution is well structured and the data structures
have been properly designed, and excellent when the students add some
extra features.

f.4 Extensions
It is possible to show students that the real problems related to package
management are very complex. There are NP-complete problems con-
cerned with package management. There is a wonderful blog entry3 which
shows how it is possible to create a set of package dependencies that are
the problem equivalent of solving a Sudoku puzzle. (Problem reduction!)
Students may study more complete implementations of package managers
and add further features to their exercise.

f.5 Deliverables
The goal of this project is to write a mini-package manager. The package
database, for the scope of this exercise, is an ASCII file. Each line cor-
responds to a package, the first two fields are the name of the package and
its version. The following fields are pairwise the name of each dependent
packages and the minimum version required. e.g.

P1 10
P2 3 P1 9
...

The version 10 of package P1 is available, as well as the version 3 of P2.
P2 requires P1 to be installed, and the minimum version of P1 required by
P2 to work properly is 9. So in this case P2 could be installed as P1 version
10 (>9) is available.

The database of installed packages has the same structure of the avail-
able package database.

phase1: packages install. Input: a distribution database, a database of in-
stalled packages, and a set of packages names. Output: the updated database
of installed packages, and a log containing the list of newly installed pack-
ages as well as the list of the packages that could not be installed as some of
their dependencies were missing. It is possible to re-install already installed
packages: if a newer version is available the package gets updated otherwise
the package manager must add a warning message on the log file.

phase2: packages deinstall. Input: a distribution database, a database
of installed packages, and a set of packages names. Output: the updated
database of installed packages, and a log containing the packages deleted.
Note that the deletion of a package can cause the deletion of its dependent
packages if they are not needed by other packages. The log should report
errors such as requests to delete an uninstalled package.

phase3: distribution update. Input: the new distribution database, a
database of installed packages. Output: the updated database of installed

3 http://algebraicthunk.net/~dburrows/blog/entry/package-management-sudoku/

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

72 acm Inroads 2013 March • Vol. 4 • No. 1

packages, the list of the packages that can be updated. A package cannot be
updated if it depends upon another package which does not exist or whose
version number is older than the minimum version.

#G. votIng sIMulatIon
elizabeth patitsas

In this assignment, we simulate Canadian elections under different voting
systems. The assignment gives students practice with lists and dictionaries
in Python, and in the process, exposure to different voting systems and how
they would impact a democracy.

Canada uses a plurality-based voting scheme; there have been recent
efforts for voting reform. A motive of this assignment is to inform our
students as citizens in our referenda on voting reform. Another motive is
for students to realize that algorithms play a role in democracy.

We provide the students with randomly-generated ballots based on re-
cent polling data. Students complete the ballot-tallying methods for six
methods, and for a helper method (finding the argmax of a list).

G.1 Categorization
Student Directed: None.
Scaffolding: High.
External Domain Knowledge: Some. We provide the ballots to the

students, and handle the output and test cases for the students. Some of
the methods at the beginning contain scaffolding, such as the setup of the
loop over the list, so that students need only fill in the body of the loop.
We provide the method for plurality as a worked example for the students.

Social Good: Medium. For Canadians, there is very little external
domain knowledge necessary. We provide information on how each of
the different voting systems works. We also provide a brief description of
Canadian politics for the international students. The details one needs to
know are the names of the four major federal parties (Conservative, Lib-
eral, New Democratic, and Green), that constituencies are known as “rid-
ings” in Canadian English, and there are 308 ridings, each of which elects
a single Member of Parliament (MP). The party with the most MPs forms
the government.

Coolness: Medium.
Reflection: Medium.

G.2 CS concepts covered
Lists, dictionaries (hashing), iteration, selection, and seeding random num-
ber generation.

G.3 Implementation strategies

G.3.1 the way it works
We give students code that runs the elections; they fill in the code that gets
the ballots counted. Students implement one voting method at a time. We
provide test cases for each, so students can test their work as they go. We
have organized the voting methods in order of complexity.

G.3.2 It works better if
Students have access to matplotlib. We provide a visualization of the re-
sults using matplotlib; without it there is only line output for how many
MPs each party has elected. Implementing the proportional representation
methods is much easier with a decent debugger. Going over an example of
voting systems in a tutorial would also be helpful for students.

G.3.3 assessment strategies
In the assignment we provide test cases; we plan to run student code with
an auto-marker and then have TAs look at code style. The assignment also
contains a short essay question for TAs to mark; we plan to mark liberally
on completion, reasoning and clarity. The essay is to have students reflect
on the assignment, not to be a definitive written work.

G.3.4 It doesn’t work unless
Students need to be comfortable with lists (or dictionaries) and iteration.
Currently this project is implemented in Python.

G.4 Extensions
The assignment can be easily extended to have students implement other
voting systems. At present, it includes plurality, approval voting, range vot-
ing, the Borda Count, Instant Run-Off Voting, the D’Hondt Method for
proportional representation, and the Single Transferable Vote.

Other voting systems that would be suitable include the Sainte-Laguë
method for proportional representation, Mixed-Member Representation,
Condorcet-Schulze, majority judgment, and Dodgson’s method (created
by Charles Dodgson, aka CS Lewis.)

With more effort, this could be redone for elections in other countries.
It would be easiest for other parliamentary systems like the UK or Australia.

G.5 Deliverables
Students hand in a single file of code containing their methods. We plan to
set this up to allow for auto-marking.

G.6 Acknowledgements
Michelle Craig trialed out the assignment and provided detailed feedback.
A number of anonymous Redditors on r/CanadaPolitics assisted in
designing the ballot generation code which is provided to the students.

#H. stI ModelIng
elizabeth patitsas

In this assignment students model STI through sexual network graphs.
The assignment covers graph traversal and modification, and guided re-
finement of disease modeling. It also provides an example of how computer
modeling is useful in public health, and hopefully motivates students to use
safer practices when having sex.

First, students model chlamydia – a disease where people are either
Figure 1: Simulated election results under different voting results; this shows
the students how the choice of algorithm can affect the outcome!

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 73

susceptible to the disease, or infected. We then add complexity by model-
ing the common HPV strains, for which there are vaccines. Next, we add
complexity by adding death: modeling HIV/AIDS.

Along the way we examine matters such as how many people in a popu-
lation need to be vaccinated to contain a disease, reducing rates of trans-
mission, and the epidemiological effects of delaying death to HIV/AIDS.

h.1 Categorization
Student Directed: None.
Scaffolding: Some. Students are directed what to complete, and given

one example of expected output. Students are not provided with starter code.
External Domain Knowledge: None to some. All needed external

domain knowledge for the students is provided in the handout. Instruc-
tors may want to spend some time reading about SIS and SIR models on
Wikipedia (or elsewhere).

Social Good: Some.
Coolness: High.
Reflection: Some.

h.2 CS concepts covered
Graph theory, object-oriented programming, file I/O.

h.3 Implementation strategies

h.3.1 the way it works
Three files are provided to the students, containing adjacency matrices of
three different sexual networks. The files vary in size – a small population
of size four, a medium one of size 40, and a larger one of size 400.

In the instructions, the expected output for the small population is pro-
vided and visualized. Students are expected to test their code on the other
two populations.

h.3.2 It works better if
Students have a good way of visualizing graphs. Printing out adjacency
matrices works, but tend to require you drawing out the visual graph.

The assignments requires the students to write or use a graph class. Having
them do this beforehand in lab will reduce the overhead on the assignment.

h.3.3 assessment strategies
Students should be marked on their ability to generate graphs, traverse
them, and modify them. They should also be marked on their report: its

clarity, whether the open-ended portion demonstrates technical knowledge
of graph theory or OO design, whether the open-ended portion has scien-
tific merit, and whether the students have reflected on the use of modeling.

h.3.4 It doesn’t work unless
This assignment is doable in any OO language, although it was designed
for either Python or C++. Students will struggle with the open-ended na-
ture of the project, so providing examples, scaffolding, and reassurance at
the beginning can go a long way.

h.4 Extensions
A possible extension would be to have multiple diseases propagating
through a network, while various treatments are also underway. This could
be used to bridge into a discussion of the merits of the SIR model of disease
transmission (which uses differential equations to describe population-lev-
el changes, rather than simulating the whole population at a given time.)

Adding transmission through needle sharing – for the purposes of
modeling HIV/AIDS – would also be possible – as would having the stu-
dents simulate the effect of having infected people die in the network. For
HIV/AIDS (and Herpes), simulating viral load would also be interesting.

Incorporating inheritance and polymorphism can also be done by hav-
ing multiple classes of people in the network, particularly for simulating
high risk populations (eg. class FemaleProstitute inherits from Woman
inherits from Person).

h.5 Deliverables
Students hand in a report of their modeling, and their code.

h.6 Acknowledgements
Cathy Meyer verified the epidemiology in this assignment. The assign-
ment is based on Mark Maclean’s first-year calculus project on SIR/SIS
modelling with differential equations.

#I. banana republIc
tony clear

This staged set of programming exercises is geared for an objects early CS1
course in Java, supported by the Barnes & Kölling text “Objects First with Java:
A Practical Introduction Using BlueJ”[7]. The three exercises move from the
introductory stage (week 2) addressing variables, assignment, operators, simple
methods and sequence, to the more advanced exercises (week 9) where students
create classes, simulate population movements, crop growth, harvesting and fi-
esta cycles, immigration and boat movements between islands. It requires the use
of further techniques such as iteration, selection, arrays, string handling, object
creation and removal, parameter handling, printing. It is intended as a motivating
set of activities in a context in which students can experience success in program-
ming in a staged manner, while observing the movements of their citizens, the
cycles of the seasons and the dynamics of their own Banana Republic evolve.

I.1 Categorization
Student Directed: Some. Students are required to actively engage in

completion of the programming exercises. Exercise A and B have optional
challenge exercises, and exercise C allows students the freedom to add a
method and variables to the BananaRepublic class “that allows the republic
to do something interesting of your own invention.”

Scaffolding: Medium. The exercises are carefully staged, and supported
by the textbook, lecture sessions and closed labs in which exercises of a similar
style and complexity are completed on a formative basis. Pre-written clean
code with some predefined classes is provided for each exercise set, or students
may continue with their own code developed from the earlier exercises.

Figure 2: An example of a sexual network – a high school’s sexual network
of the course of 18 months, per Bearman

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

74 acm Inroads 2013 March • Vol. 4 • No. 1

External Domain Knowledge: Some. Domain knowledge, while spe-
cific to the setting is not overwhelming or especially complex, and has been
tailored to a culturally diverse student body with variable English language
proficiency. For instance Classes and concepts involved include - Banana
Republic, El Presidente, revolution, currency, farmers, bananas, harvest,
crops, crop reserve, GDP, currency, satisfactionRating, islands, boats, cargo,
and fiesta.

Social Good: Some or Medium. The assignment sets computing in a
context where relatively straightforward computational activities and ob-
ject oriented development with a small set of classes, enable the creation
of a simulated island state wherein a set of normal and chaotic events take
place. While being intended as a slightly tongue-in-cheek set of exercises
to maintain student engagement, it also has the potential to raise wider
questions about the environmental, political and social challenges facing
small island states such as those found in the Pacific or the Caribbean.

Coolness: Medium. The chosen scenario appeared to be engaging.
Students seemed to find the assignments interesting, and enjoyed creating
the required conditions on their respective islands.

Reflection: Some. The assignments as framed require no specific re-
flection on the part of students, although students have been expected to
maintain a reflective journal and programmer’s log of their activities during
the CS1 and CS2 courses. These in some iterations have been required to
be handed in with their assignment submissions, and help give instructors
some indication of where students are spending their efforts, having dif-
ficulties, and can be used as evidence of own contributions when a plagia-
rism issue might arise.

I.2 CS Concepts
A range of basic concepts such as variables, assignment, operators, simple
methods and sequence, to more advanced CS1 concepts such as classes,
random simulations, and movement and cyclical scenarios requiring fur-
ther techniques such as iteration, selection, arrays, string handling, object
creation and removal, parameter handling, printing.

I.3 Implementation Strategies

I.3.1 how it works
The sets of BananaRepublic exercises have been designed around the avail-
ability of a good supporting text book, and an “objects early” pedagogy
[55]. The staged exercises address the concepts progressively exposed in
the text and covered in the accompanying lecture program. The challenge
is to identify an engaging context and develop a set of exercises which
progressively develop the core CS concepts while building a more mean-
ingful world within the simulation, which demonstrates the power of pro-
gramming as a way to innovate and create new conceptual and meaningful
worlds. Thereby even an introductory programming course can demon-
strate the potential of programming to relate to significant challenges in
the students’ world.

I.3.2 It works better if
The current closed lab formative exercises have tended to have a collab-
orative element, which sometimes leaks across into the individual assign-
ments. Emphasising which activities are collaborative in nature and which
are individual needs some care. If there is a strong desire to emphasise the
social good element of the assignment, then a useful addition would be a
more extended reflective assessment in which students were required to
investigate a social challenge facing the context or how an extension com-
ponent might be implemented to represent the chosen challenge scenario.

I.3.3 assessment strategies
These three assignments comprised 50 per cent of the summative assess-
ment for the course (10% for the first assignment, 20% each for the latter
two). Complementing these are a set of formative closed laboratory exer-
cises. The remainder of the summative assessment comprises 10% allocat-

ed to fortnightly in class quizzes and 40% to a final exam. The assessments
are framed as individual but could equally be expanded to accommodate
pair programming or small group project work.

I.3.4 It doesn’t work unless
The concept needs to have been well thought through and the progression
of the exercises concurrent with student skill building needs some care.
For instance the first exercise has the support of pre-built classes, which
students can use, amend and extend in well defined steps. As a progressive
assignment, the provision of a clean starting point (a fresh set of pre-built
classes) for each set of exercises enables those students, who have been
struggling with parts of each exercise set, to avoid stalling. At the same
time those who have done well can continue to build on their own code
bases at each stage, which builds confidence and retains ownership.

I.4 Extensions
These assignments inherently have some extension features, but they could
be expanded in many ways. For instance students could be asked to add
extension classes to expand the range of potential scenarios for the Banana
Republic (e.g. natural disaster strikes - hurricane or tsunami; more gradual
impacts on quality of life - global warming and sealevel rise; the impact
of urbanisation as populations move in from the countryside; famine, fire,
epidemics, health challenges - diabetes, obesity or civil unrest etc.). Al-
ternatively from a more technical perspective students could be asked to
develop unit tests for their code.

I.5 Deliverables
The output of these assignments are zip files of working Java code proj-

ects, including some incorporated javadoc comments, code printouts and
accompanying MS Word documents to evidence output screen shots.

I.6 Acknowledgements
We gratefully acknowledge the contributions of colleagues Dr Jacqueline
Whalley and Dr Yun Sing Koh of Auckland University of Technology in
their conception and design of the above exercises, and for their agreement
to make them available for the working group.

#J. kIwIs
tony clear

This staged set of programming exercises is geared for an objects early
CS1 course in Java, supported by the Barnes & Kölling text “Objects First
with Java: A Practical Introduction Using BlueJ”[7]. The five exercises
move from the introductory stage (week 2) addressing object creation and
method calling, to the more advanced exercises (week 10) by which time
students may create classes and methods, simulate egg laying, food con-
sumption and exercise activities, burrowing, population expansion and feed
distribution strategies. It requires the use of further techniques such as it-
eration, selection, arrays and arraylists, string handling, object creation and
removal, parameter handling, printing. It is intended as a motivating set of
activities in a context in which students can experience success in program-
ming in a staged manner, while observing the activities of their kiwis while
tending to their food, shelter, procreation and safety needs and observing
the dynamics of their own kiwi population evolve.

J.1 Categorization
Student Directed: Some. Students are required to actively engage in

completion of the programming exercises. Exercise C and D have optional
challenge exercises, and exercise D allows students the freedom to modify their
simulation “so that kiwis are fed using a central feeding box in the kiwi house.”

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 75

Scaffolding: Medium. The exercises are carefully staged, and sup-
ported by the textbook, lecture sessions and closed labs in which exercises
of a similar style and complexity are completed on a formative basis. Pre
written clean code with some predefined classes is provided for each exer-
cise set, or students may continue with their own code developed from the
earlier exercises.

External Domain Knowledge: Some. Domain knowledge, while spe-
cific to the setting is not overwhelming or especially complex, and while
geared to a New Zealand context has also been tailored to a culturally di-
verse student body with variable English language proficiency. For instance
Classes and concepts involved include - Kiwis, Kiwi House, burrow, age,
weight, eggs, hatching, food, insects, exercise, escape routes, and feeding box.

Social Good: Some or Medium. The assignment sets computing in a
context where relatively straightforward computational activities and ob-
ject oriented development with a small set of classes, enable the creation
of a simulated kiwi colony wherein a set of typical kiwi life events take
place. While being intended as a fun set of exercises to maintain student
engagement, it also has the potential to raise wider questions about the
environmental challenges facing endangered species, and issues related to
diet, habitat and predation.

Coolness: Medium. The chosen scenario appeared to be engaging.
Students related to the conservation theme and the iconic nature of the
kiwi as both New Zealand national bird and endangered species. They
seemed to find the assignments interesting, and enjoyed simulating the
activities and natural cycles of kiwi life in their own kiwi house.

Reflection: Some. The assignments as framed require no specific re-
flection on the part of students, although students have been expected to
maintain a reflective journal and programmer’s log of their activities during
the CS1 and CS2 courses. These in some iterations have been required to
be handed in with their assignment submissions, and help give instructors
some indication of where students are spending their efforts, having dif-
ficulties, and can be used as evidence of own contributions when a plagia-
rism issue might arise.

J.2 CS Concepts
A range of basic concepts such as object creation and method calling, vari-
ables, sequence, operators, to more advanced CS1 concepts such as classes,
random simulations, and movement and cyclical scenarios requiring fur-
ther techniques such as iteration, selection, arrays and arraylists, string han-
dling, object creation and removal, parameter handling, printing.

J.3 Implementation Strategies

J.3.1 how it works
The sets of Kiwi exercises have been designed around the availability of
a good supporting text book, and an “objects early” pedagogy [55]. The
staged exercises address the concepts progressively exposed in the text and
covered in the accompanying lecture program. The challenge is to identify
an engaging context and develop a set of exercises which progressively de-
velop the core CS concepts while building a more meaningful world within
the simulation, which demonstrates the power of programming as a way
to innovate and create new conceptual and meaningful worlds. Thereby
even an introductory programming course can demonstrate the potential
of programming to relate to significant challenges in the students’ world.

J.3.2 It works better if
The current closed lab formative exercises have tended to have a collab-
orative element, which sometimes leaks across into the individual assign-
ments. Emphasising which activities are collaborative in nature and which
are individual needs some care. If there is a strong desire to emphasise the
social good element of the assignment, then a useful addition would be a
more extended reflective assessment in which students were required to
investigate a social challenge facing the context or how an extension com-
ponent might be implemented to represent the chosen challenge scenario.

J.3.3 assessment strategies
These five assignments comprised 50 per cent of the summative assess-
ment for the course (10% for each assignment). Complementing these are
a set of formative closed laboratory exercises. The remainder of the sum-
mative assessment comprises 10% allocated to fortnightly in class quizzes
and 40% to a final exam. The assessments are framed as individual but
could equally be expanded to accommodate pair programming or small
group project work.

J.3.4 It doesn’t work unless
The concept needs to have been well thought through and the progression
of the exercises concurrent with student skill building needs some care.
For instance the first exercise has the support of pre-built classes, which
students can use, amend and extend in well defined steps. As a progressive
assignment, the provision of a clean starting point is required for each set
of exercises. In this version of the assignment set, students are expected to
have their prior code exercises signed off by a Teaching Assistant before
they can continue to build on these code bases at each stage, which is in-
tended to build confidence and retain ownership.

J.4 Extensions
These assignments inherently have some extension features, but they could
be expanded in many ways. For instance students could be asked to add
extension classes to expand the range of potential scenarios for the Kiwis.
For example, students might model predator attacks by dogs, rodents or
mustelids; forest fire; the impact of habitat loss as urban populations en-
croach; pesticide impacts on insect populations and food supply, epidem-
ics, etc. While the assignments focus on the “Kiwi” as the New Zealand
native bird, it would be simple to replace the kiwis by other endangered
species, golden eagles, polar bears, orang-utans, etc. Alternatively from a
more technical perspective students could be asked to develop unit tests
for their code.

J.5 Deliverables
The output of these assignments are zip files of working Java code projects,
including some incorporated javadoc comments, code printouts and ac-
companying MS Word documents to evidence output screen shots.

J.6 Acknowledgements
We gratefully acknowledge the contributions of colleague Dr Jacqueline
Whalley of Auckland University of Technology in her conception and de-
sign of the above exercises, and for her agreement to make them available
for the working group.

#K. Molecular ModelIng
and dna
scott portnoff

Students build a 2-D molecular modeling program to examine the hy-
drogen bonding between purine and pyrimidine bases that holds the two
anti-parallel strands of the DNA double helix together.

K.1 Categorization
Student Directed: Medium. Guided Discovery. Instructor leads whole

class activity in the building of the program. Students write/complete
methods needed to solve particular sub-problems regarding CS concepts
or program logic.

Scaffolding: High. Guided Discovery.
External Domain Knowledge: High. Software Engineering pedagogy.

Students use: regular polygon geometry to calculate coordinates of hexagon
vertices; sin/cos to calculate relative polar coordinates to position pentagon

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

76 acm Inroads 2013 March • Vol. 4 • No. 1

and functional group atoms; the additive sin/cos formulas for computer
graphics rotation; the chemistry of polar covalent bonds and hydrogen bonds.

Social Good: High. Students use CS to study the most important fea-
ture of the structure of DNA and view the film Double Helix to consider the
complex interpersonal dynamics of the four biophysicists who contributed to
the solution. The discovery of the double helix revolutionized the field of ge-
netics, made possible the Human Genome Project and a new CS discipline
Bioinformatics, and led to advancements in medicine and public health.

Coolness: High. The unit encourages student engagement at several
programming “obstacle” points.

Reflection: Medium. Students are assessed on their understanding of
programming concepts, and a reflection of the interpersonal dynamics be-
tween the film’s characters.

K.2 CS Concepts
Software Engineering, 2-D Graphics Transformations (Translation, Rota-
tion, Mirroring), Inheritance, Polymorphism, GUI, Nested Loops.

K.3 Implementation Strategies

K.3.1 the way it works
The unit begins with students familiarizing themselves with the freely
available 3-D molecular modeling program MolSoft ICM-Browser, and
exploring ways to configure the four DNA bases Adenosine, Guanine, Cy-
tosine and Thymine within the program. The molecule files will be down-
loaded from the NYU Library of 3-D Molecular Structures. Students
then proceed to calculate the angles of the pyrimidine (hexagon) and im-
idazole (pentagon) rings and use BYOB 4 to correctly position each base’s
ring and functional group atoms. During this process, students design their
program to reflect the biochemical nomenclature of the molecule’s major
features. They also abstract shared features of the molecules into common
methods for building pyrimidine rings, imidazole rings, and adding func-
tional groups at any of the 6 pyrimidine atoms.

Once they are familiar with the structure of the 4 bases, students go
about building the 2-D molecular modeling program in Processing. They
use the sine and cosine functions to create a method to position atoms us-
ing polar coordinates. They use getter methods to encapsulate the x- and
y-coordinates of each atom. These methods become the central repository
for calculating translated, rotated, and mirrored coordinates for each atom.
Students use a geometry proof to find the additive angle formulas for sine
and cosine. These are used to derive the rotation formulas for x- and y-
coordinates, which are then implemented in the program.

Students then study the chemistry of polar bonds and hydrogen bonds.
They write methods for deciding which hydrogen atoms are electropositive and

which nitrogen and oxygen atoms are electronegative. The optimal distance
for intermolecular hydrogen bonds is indicated using color and line thickness.

Students program the GUI for object selection with mouse, control key and
lassoing. Move, rotate, and mirror-image actions are driven by mouse events.

At unit’s end students use their programs to display normal A-T and
G-C pairings. They also perform predictive tasks, i.e. find configurations
for rare A-C and G-T pairings, which represent point mutation situations.

To anchor this project in a social setting, students study the BBC film
Double Helix, which relates the little known story of the discovery of the
DNA double helix by Watson and Crick, who used the x-ray diffraction data
of the biophysicist Rosalind Franklin for building their model. Although her
data was crucial to their calculations, which won them the Nobel Prize, they
did not acknowledge her contribution until long after her death.

K.3.2 It works better if
The unit has been taught twice, and would work better if small exercises were
written to give students practice in applying the major programming concepts.

K.3.3 assessment strategies
The unit grade is based on (1) the final program code, (2) the film essay, and
(3) a multiple choice exam that covers the major programming concepts.

K.3.4 It doesn’t work unless
This project has a warmup exercise that uses Scratch/BYOB. The main
project is based on the Processing language. Use of version 2.6a or greater
is recommended.

K.4 Extensions
The program can be automated to find all possible purine-pyrimidine pair-
ings with at least 2 H-bonds. Criteria to handle the best of duplicate pair-
ings is an open-ended task. Automation should test pairings with regards
to rotation angles, mirror images, and intermolecular distances.

K.5 Deliverables
Student must (1) turn in a complete working program, and (2) write an
essay on the film in response to a prompt.

#L. around the world
In 24 days
scott portnoff

4 Build Your Own Blocks: http://byob.berkeley.edu/

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 77

Students build a simulation of a rotating Earth in order to model the phe-
nomenon described in Jules Verne’s Around the World in 80 Days of an
east-bound traveler who circumnavigates the world and experiences one
day more than an observer remaining at the starting point.

Three observers are placed on the surface, two of whom circumnavigate
the globe in opposite directions: (a) an East-bound traveler (yellow); (b) a
West-bound traveler (red); and (c) a stationary observer (white). After 24
days, the two travelers return to the starting point to rejoin the stationary
observer. The east-bound traveler will have seen 25 sunrises, and the west-
bound traveler will have seen 23 sunrises. The simulation illustrates the
reason for the establishment of the International Date Line.

l.1 Categorization
Student Directed: Medium. Guided Discovery. Instructor leads whole

class activity in the building of the program. Students write/complete methods
needed to solve particular sub-problems re: CS concepts or program logic.

Scaffolding: High. Guided Discovery.
External Domain Knowledge: Medium. Software Engineering pedago-

gy. Students use sin/cos to calculate polar coordinate positions on the circle
representing the Earth’s surface. History: Students study the political and re-
ligious considerations of the country-by-country adoption of the Gregorian
calendar and the later establishment of the International Date Line.

Social Good: High. Human societies have always used natural events to
mark time, e.g. the new moon to mark months, the sun’s highest position to
measure a solar year. The leap year calculation based on the Gregorian calendar
has been a traditional staple of CS1 courses. Students with family roots in Asia
are well-familiar with having to adjust their watches forwards or backwards an
entire day when traveling across the Pacific. This unit simulates the full-day
discrepancies that arise when travelers circumnavigate the globe, a problem
resolved by the adoption of the International Date Line time standard.

Coolness: High. The unit encourages student engagement at several
programming “obstacle” points.

Reflection: Medium. Students are assessed on their understanding of
programming concepts as utilized to implement the logic for this program.

l.2 CS Concepts
Software Engineering, Classes, Event Handling, Graphics, Mod Function,
Conditional Expressions, Discrete vs. Continuous models.

l.3 Implementation Strategies

l.3.1 the way it works
Students download 96 satellite images of Earth using the View from Earth
website (http://www.fourmilab.ch/cgi-bin/Earth). These represent snap-
shots taken over a 24-hour period spaced at 15-minute intervals. So that
the surface of the Earth is half in shadow, the date chosen is either the
Spring or Autumnal Equinox with Latitude = 90°N as if the satellite is
positioned over the North Pole. Longitude is arbitrary, but we choose 72°E
so that Los Angeles is at the top of the simulation.

Students load the images into an array and implement the animation
using a circular queue, which displays a stationary Earth with a moving ter-
minator (the boundary line separating day and night). Following an investi-
gation of Processing’s 2-D transformation operations, students implement
rotation by translating the coordinate system origin to the center of the
window, perform the rotation, then translate the origin back to the top left
corner. Students investigate the use of bracketing transformations between
pushMatrix and popMatrix to independently rotate several objects simulta-
neously. The final rotation effect is that the Earth rotates and the termina-
tor is stationary. A toggle variable controls whether the animation rotates.

Earth, Sunrise and Traveler classes are implemented. A conditional
expression to enable a stationary traveler to detect a sunrise begins with
normalization of degree measurements to keep traveler and sunrise angles
within the same range. The conditional expression is modified as more

cases are accommodated, culminating with solving the edge condition at
0°/360°. The final expression implements a sector-point intersection model.

Movement for travelers is implemented using a speed instance variable
which is either positive for traveling West, negative for traveling East, or 0 for
no movement. Students discover that sunrise detection breaks down for mov-
ing travelers: at some point during their circumnavigations - depending upon
starting values for sunrise and traveler - the East traveler misses a sunrise and
the West traveler clocks a double sunrise. The analogy is to an escaping prison-
er avoiding detection by a moving flashing searchlight. The problem is solved
by narrowing or expanding the sector by the traveler’s speed, and students con-
sider the issue of representing a continuous system by using a discrete model.

l.3.2 It works better if
The unit has been taught twice, and would work better if small exercises
were written to give students practice in applying the major programming
concepts.

l.3.3 assessment strategies
The unit grade is based on the final program code and a multiple choice
exam on major programming concepts.

l.3.4 It doesn’t work unless
This project is based on the Processing language. Use of version 2.6a or
greater is recommended.

l.4 Extensions
None.

l.5 Deliverables
Student must turn in a complete working program.

#M. socIal good websIte
samual mann

A Web 1 course aims to acquaint students with the range of available
web-based tools for productivity, entertainment, and communication. It
is intended to guide students toward consideration of the social, academic,
economic and cultural issues surrounding web-based interaction. There is
also an introduction to the technologies available for development of web-
based functionality. This course is designed for students with only a single
semester of programming experience.

In groups of three, students take on the task of developing an integrated
web presence for a community organisation or development initiative. This
web presence must address functional requirements, experience design and
aesthetic design requirements. It must be dynamic for the user experience
(but not require server-side processing), and incorporate multiple channels.
The project must address an area of social need. There are several sub-
assignments, primarily the delivery of an website written in static HTML,
a porting to a content management system, integrating social media, and
(for bonus marks) system deployment.

Example social good topics are given such as “A website celebrating the her-
itage of your suburb/hometown” or “A website where you document every bit
of rubbish you pick on up your walk home.” The groups workshop an area that
interests them, consider the driver, problem, and likely impact of the solution.
It is not required that students have an actual person as client for this project.
We do need at least a conceptual “client” i.e. who is the sponsor for this project?

m.1 Categorization
Student Directed: Medium. Given the task of creating a website for

social good using a content management system integrating social media,
the students determine what they learn

repr int

A Framework for Enhancing the Social Good in Computing Education: A Values Approach

78 acm Inroads 2013 March • Vol. 4 • No. 1

#N. socIal good scholarly
work
samual mann

Students complete a formal work in the area of the social implications of
an aspect of communications technology.

n.1 Categorization
Student Directed: High. Both the question and the form of this work

are individually negotiated between the student and instructor.
Scaffolding: Some. Some students require guidance in ensuring the

scholarly aspects of non-traditional formats.
External Domain Knowledge: None to medium.
Social Good: Medium. The scholarly works are all explicitly social

good. Some have “real” benefits. Examples from 2011 include:
■ A report on an experiment into how modern media affects on the

importance of physical beauty in self image.
■ A video documentary on the online personas of body builders.
■ A radio documentary on internet addiction.
■ A radio documentary on community building through wireless networks.
■ A video documentary on the relationship between animal welfare

and computing in the dairy industry.
■ A class seminar on the social implications of online gaming.
■ A class seminar on the negative effects of social networking.
■ A book aimed at engaging 12 year old girls in computing.

Coolness: Medium. Once students get over the shock, the coolness factor
is very high. Students enjoy the freedoms to work on an area of their choosing
and the braver ones relish the challenge of exploring this in song or dance.

Reflection: High. The purpose of the assignment is to encourage stu-
dents to deeply engage in the nature of computing as a profession.

n.2 CS Concepts
Social implications of computing.

n.3 Implementation Strategies

n.3.1 the way it works
Students write a scholarly work. This may take the form of a formal essay,
research article, Wikipedia contribution, radio feature or any form that the
student can justify as being scholarly.

The task meets the requirement for critical thinking and to meet an
explicit requirement for consideration of social implications of computing.
Here’s the brief:

You will write a short proposal that includes 200 words on your
thoughts on each of four peer reviewed papers related to your topic area.
The proposal must finish with an outline of your “essay.” Students can pres-
ent the work in any format that:
1. Supports the development of an argument with justification and evidence

based examples. In the proposal, students have to justify how this form pro-
vides a vehicle for creative and evidence based development of an argument.

2. Supports citation of at least four peer reviewed articles. APA6th refer-
encing must be used (although appropriate to the form should be used,
deviations from APA must be agreed beforehand).

3. Can be submitted via your wiki, webpage or blog (i.e. if you perform a
song, you’ll need to video it).

n.3.2 It works better if
Students can get quite a shock that not only the question but also the form of
the work is undefined. Sample topics are given, chosen deliberately to drive stu-
dents to readings even if to find out what they mean. Sample questions include:

Scaffolding: A development process is provided.
External Domain Knowledge: Some. The students sometimes select

an area of social good about which the instructor knows little. There are
some areas where the instructor does need to ensure student safety - for ex-
ample when they choose to develop a website on depression or sexual abuse.

Social Good: High. The projects are all explicitly social good. Some
projects reach actual deployment. As an example in 2011, students de-
veloped EducatingCambodia.com to support a school and community
building initiative in the poorest region of Cambodia. In 2012 students
developed PortWireless.co.nz to provide free wifi to a port town in New
Zealand. This project included extensive community consultation and de-
velopment of business models. Other projects have included coastal erosion
education, pet adoption, community storytelling, and resource sharing.

Coolness: Some. Students enjoy the ability to work on a project of
their choosing. Some struggle to find an area of tractable social good get-
ting initially stuck on “cure cancer” or “solve world hunger” but the class
workshops potential impacts stemming from their project and students get
quite excited about the potential to make a real change.

Reflection: Medium. Students are required keep a development log, to
present progress weekly and to reflect on their learning – including on the
role of computing in their selected area of social need. This is all done on a
public wiki and students are required to comment on colleague’s work (at
least weekly). Furthermore, they must submit a technical report justifying
their choice of risk factors and an analysis of the results.

m.2 CS Concepts
HTML, social media

m.3 Implementation Strategies

m.3.1 the way it works
Students work in small groups to develop social good websites.

m.3.2 It works better if
Nominally at least one class per week is dedicated to the project with the
other class providing skills required for the project. The learning objectives
and schedule for paper are presented on the wiki with clear indication that
they are flexible and negotiable according to the direction of their project.

The main trick is helping students find a sizable yet tractable project.
Some students, given the option first select a small or joke project. Such
projects are difficult to maintain interest. At the other end of the scale,
projects are avoided that require significant server side processing.

m.3.3 assessment strategies
Assessment is by ongoing peer and self assessment via a wiki. The marking
schedule is negotiated according to the direction taken by the group but
with a minimum of 20% for reflection.

m.4 Extensions
In the last week students are asked “what extra thing could be done that
would really add value to this project? ” This is then used as an extra learn-
ing outcome for each group (i.e. they have to do that extra thing). The
EducatingCambodia group, for example, needed to integrate a payment
system and integration into charity accreditation.

Students can carry this initial project through to their capstone project.
Some groups have double dipped, using their project to contribute credits
in other courses. The PortWireless group, for example, set up a company
for their project, getting credit for this in a business class.

m.5 Deliverables
Students must turn in a working website and evidence portfolio of their
development process.

repr int

2013 March • Vol. 4 • No. 1 acm Inroads 79

■ How might Web2 principles promote democracy?
■ How can computing make the invisible visible?
■ How did the internet affect the “Arab Spring”?
■ What is the impact of participatory media on local government?
■ What are the employment implications of time spent playing online

games?
■ How might radical transparency affect business?
■ How can we harness humanity’s cognitive surplus for social good?

n.3.3 assessment strategies
Assessment is by supported self assessment, with the final grade being
negotiated between the instructor and student. For scholarly works with
performance aspects (e.g. taught class), peer feedback was sought. The
marking schedule varies according to the form of the submission, based
upon the following: development of argument, justified 12 marks; content
and style appropriate for agreed format (includes language, clarity, spell-
ing). 5 marks; Appropriated referenced 3 marks (APA6th unless otherwise
agreed); There is also a bonus 5 marks available for innovation in approach
aiming to give credit for people pushing the boundaries.

n.4 Extensions
None.

n.5 Deliverables
Students must turn in a proposal and their completed scholarly work.

About half write what could be considered a traditional essay. Others take
a variety of approaches.

MICHAEL GoLDWEBER SAMuEL MANN
Xavier University Otago Polytechnic

mikeyg@cs.xu.edu Samuel.Mann@op.ac.nz

JoHN BARR ELIzABETH PATITSAS
Ithaca College University of Toronto

barr@ithaca.edu patitsas@cs.toronto.edu

ToNy CLEAR SCoTT PoRTNoFF
AUT University Downtown Magnets High School

tony.clear@aut.ac.nz srport@alum.mit.edu

RENzo DAVoLI
Universita` di Bologna

renzo@cs.unibo.it

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education]:
Computer Science Education
General Terms: Design, Experimentation
Additional Key Words and Phrases: Introductory Programming Projects, Computing for the
Social Good

DoI: 10.1145/2432596.2432616 © 2013 ACM 2153-2184/13/03 $15.00

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Office
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

