
The Canterbury QuestionBank: Building a Repository of
Multiple-Choice CS1 and CS2 Questions

Kate Sanders
Rhode Island College
Providence, RI USA

ksanders@ric.edu

Marzieh Ahmadzadeh
Shiraz Univ. of Technology

Shiraz, Iran
ahmadzadeh@sutech.ac.ir

Tony Clear
Auckland Univ. of Technology

Auckland, New Zealand
tony.clear@aut.ac.nz

Stephen H. Edwards
Virginia Inst. of Technology

Blacksburg, VA USA
edwards@cs.vt.edu

Mikey Goldweber
Xavier University

Cincinnati, Ohio USA
mikeyg@cs.xu.edu

Chris Johnson
Univ. of Wisconsin, Eau Claire

Eau Claire, WI USA
johnch@uwec.edu

Raymond Lister
Univ. of Technology, Sydney

Sydney, Australia
raymond@it.uts.edu.au

Robert McCartney
University of Connecticut

Storrs, CT USA
robert@engr.uconn.edu

Elizabeth Patitsas
University of Toronto
Toronto ON Canada

patitsas@cs.toronto.edu

Jaime Spacco
Knox College

Galesburg, IL USA
jspacco@knox.edu

ABSTRACT
In this paper, we report on an ITiCSE-13 Working Group
that developed a set of 654 multiple-choice questions on
CS1 and CS2 topics, the Canterbury QuestionBank. We
describe the questions, the metadata we investigated, and
some preliminary investigations of possible research uses of
the QuestionBank. The QuestionBank is publicly available
as a repository for computing education instructors and re-
searchers.

1. INTRODUCTION
Many computing educators find themselves wishing there

existed repositories where they could find questions to copy
or adapt for assessments. A resource comparable to mathe-
matics textbooks, with their numerous end-of-chapter ques-
tions, only more extensive than an individual book, might
be of value to many instructors. Computing education re-
searchers might also find such a resource useful. For exam-
ple, it could provide a testbed for exploring research ques-
tions such as “What kinds of questions do computing educa-
tors ask?” and “How well does my new classification scheme
work?”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITICSE’13 Working Group Reports, June 29–July 3, 2013, Canterbury, UK.
Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

Teaching repositories for computing exist, but they have
not become popular with instructors (see Section 2.3). One
explanation is that most do not have a lot of content. While
copying or adapting materials from a repository has its obvi-
ous attractions, there is little motivation for most academics
to put exam questions into such repositories.

This paper is the report of an ITiCSE 2013 Working Group,
which aimed to produce an easily searchable body of high
quality multiple-choice questions (MCQs) on first-year com-
puter-science topics. Instead of building the repository in-
frastructure first, we are focusing on content.

The key questions we wanted to explore were:

• whether we could collaboratively develop such a body
of questions,

• whether we could reliably assign various types of meta-
data to the questions,

• how well software designed to support student collabo-
ration would support the collaborative development of
a question bank, and

• whether a substantial dataset of MCQs has the poten-
tial to support the exploration of research questions.

In this paper, we describe the Canterbury QuestionBank1

- the body of questions we have produced so far, the index-
ing schemes we have considered, the way in which we plan to
make the QuestionBank available, some preliminary inves-
tigations of how the collection might be used for research,
and our plans for the future of the collection. First, we start
with some background on repositories.

1named after Canterbury, England, where the working
group met.

33

2. BACKGROUND
There have been computing repository initiatives in both

teaching and research. They face overlapping but not iden-
tical issues. Shared issues include, for example, determining
who should have access and how, acquiring content, getting
users, and ensuring that the data in the repository are main-
tained.

In addition, choosing metadata and assigning it to partic-
ular items is a significant challenge. Any information other
than the data itself, such as the author, date, or type of data
– anything that either helps the user to find what he or she
wants or makes the item more useful when it is found – is
known as “metadata.”

In the following subsections, we give background on teach-
ing and research repositories in computing, on metadata,
on why repositories have succeeded and failed, and on the
software we used in the process of building the Canterbury
QuestionBank.

2.1 Teaching repositories
Repository initiatives to share computer science educa-

tional resources are at least as old as the ITiCSE conference
itself. The first such published proposal was at the first
ITiCSE conference in 1996, for a software/courseware repos-
itory [10]. The stored entities were to be software artifacts
(i.e., courseware) used to support computer science educa-
tion. Submissions, in a fashion similar to scholarly research,
were to be subject to peer review prior to inclusion.

By 1997, the SIGCSE community had begun implementa-
tion of a similar resource for storing laboratory assignments,
the SIGCSE Computing Laboratory Repository. The Lab
Repository also stressed the importance of peer review. The
initial phase – in which labs were reviewed by a single gate-
keeper – was felt to be insufficient, and plans were made for a
more formal journal-like peer review system [14, 17]. In ad-
dition, the Lab Repository outlined a categorization scheme
to aid repository users in their searches. This scheme was
limited to a cover sheet with required fields (e.g., Content
area, Level, Topics) allowing submitters to provide free-form
text. Other specialized collections such as the Algorithm Vi-
sualization repository [1] were being developed at the same
time.

By 1998, the Lab Repository had evolved into one of the
forming partners of the Computer Science Teaching Center
(CSTC) [18]. The CSTC was designed to merge various
more-focused initiatives: the SIGCSE Computing Labora-
tory Repository, the Algorithm Visualization collection, and
efforts to build a digital library. CSTC resources were to in-
clude peer reviewed courseware, presentations, small assign-
ments, large assignments, and on-line courses. Addition-
ally, the CSTC was to contain various non-peer reviewed re-
sources, such as syllabi, text lists, and a letters-to-the-editor
section with teaching advice [11].

By 2002, the CSTC had been absorbed by CITIDEL,
which was part of the National Science Digital Library
(NSDL), an ambitious project funded by the US National
Science Foundation [19]. CITIDEL broadened the scope of
its collection to include almost any type of resource, from
course syllabi to resources for K-12 educators to material
supporting a computer science virtual history museum. Re-
sources in CITIDEL were no longer peer-reviewed.

By 2010, CITIDEL was absorbed into the Ensemble Com-
puting Portal. The Ensemble Computing Portal is now

the NSDL access point for various computing education re-
sources [2]. Like CITIDEL, it aims to bring all specialized
collections under its umbrella, along with software (such as
Violet (http://horstmann.com/violet/) and Piazza (https:
//piazza.com)) that can be used to support computing ed-
ucation. In addition, it includes “communities” (discussion
groups on various topics).

2.2 Research repositories
DCER, a data repository for computing education re-

search, was proposed in 2008 [28]. Next, Simon et al. [32]
and Morrison et al. [25], working with a dataset of 76 data
structures exams from 14 different institutions around the
world over a 36-year period, demonstrated that it is possi-
ble for researchers to obtain interesting results from others’
data. The Canterbury QuestionBank could support the in-
vestigation of similar research questions about what topics
educators assess and how.

In addition, DCER and research repositories in other fields
provide insights into the repository building process:

Motivating contributors As noted in Section 2.1, some
teaching repositories have sought to motivate contrib-
utors by making contribution comparable to writing a
journal article. This has proven to be more of an ob-
stacle than an incentive. Research repositories suggest
some alternatives.

First, journals and funding agencies can be influential.
Some biology journals, for example, require data to be
submitted to a repository before articles based on those
data can be published. In the United States, funding
sources such as the National Science Foundation require
data storage plans in grant applications.

Second, if contributors know their work will be cited,
that can be a powerful motivator. Each research dataset
is associated with the name of a relevant publication,
which is then cited in any scholarly work based on that
dataset.

Third, access to the data is itself a motivator. Anyone
who wants access can be required (or encouraged) to
contribute his or her own data.

Attracting users Community matters. The users and con-
tributors of research data typically belong to the same
research community. They may have already met or
corresponded. There are mechanisms in place, such as
conferences, for building and maintaining the commu-
nity.

2.3 Creating a successful repository
Two recent papers have addressed the questions of why

computing teaching repositories have failed [24] and suc-
ceeded [8]. The first paper, by Mitchell and Lutters, focused
on users. Based on a survey of 119 faculty in the United
States and Canada, they concluded that faculty were of-
ten unaware of the online repositories available, and to the
extent that they had tried them, they were generally dissat-
isfied. “None indicated that the use of a repository always
met their needs, 9% indicated their needs were almost al-
ways met, 62% indicated that they were sometimes met,
24% indicated that they were seldom met, and 5% indicated
that they were never met” [24, page 4]. These users’ failure
to use repositories was not because they weren’t searching

34

for new course materials. On the contrary, they frequently
looked for such materials, most often using a simple web
search.

Asked what were the most important features in an on-
line repository, they placed “Easy to locate materials” first,
closely followed by “Materials can be trusted,” “Materials
available at no cost,” “Materials at appropriate level,” and
“Copyright usage explained.” The other eight features, in-
cluding teaching tips and feedback from other users, were
ranked much lower.

Fincher et al. start by proposing an overall framework for
teaching repositories [8]. All repositories, according to this
framework, must address the following issues:

Control Who can contribute data, who can use it, and how
is this enforced?

Contributors How are people motivated to contribute?
How are they rewarded?

Catalogue How will users find what they are looking for
in the repository?

Community Is there a community of contributors? Of
users? How are these communities built and sustained,
and what roles do they play?

Curation How is the data maintained?

Content Are the items in the collection focused on a spe-
cific topic or more general purpose? Is the content based
on a pre-existing collection or created specifically for the
repository (or both)?

While the article focuses on teaching repositories, these is-
sues apply equally to research repositories.

The teaching repositories discussed in Section 2.1 face
these issues, some implicitly and some explicitly. The ques-
tion of how to get contributors is discussed repeatedly, and
various incentives have been used. Peer review was seen as
a way of giving recognition for the work involved in making
a contribution, but may have just posed an additional hur-
dle for contributors. One theory is that university faculty
are not motivated to help repositories succeed (i.e., submit
a resource), because creating and submitting teaching ma-
terials generally does not count toward tenure; publications
count. For pre-tertiary instructors, on the other hand, suc-
cess in teaching is paramount. This leads to them being
stakeholders in the success of repositories focused on them.

This theory explains why some faculty fail to contribute
resources, but not all. It disregards the fact that, at least in
the United States, many faculty work at institutions where
teaching is valued more highly than research, or two-year
community colleges, where research doesn’t count at all.
Moreover, there are some faculty at research institutions
who already have tenure, and even some who do not, who
conscientiously invest substantial amounts of time in teach-
ing. Why don’t these faculty contribute their resources to
the teaching repositories? One possible explanation has to
do with the lack of interest shown by users, as found by
Mitchell and Lutters. It is hard to be motivated to con-
tribute to a repository that no one will use.

Fincher et al. then describe two successful teaching repos-
itories, the Nifty Assignments collection and the Greenroom.
Both have a significant number of users, and the Nifty As-
signments collection has been in use since 1999. Both are
relatively focused – the Nifty Assignments collection on pro-

gramming assignments and the Greenroom on course mate-
rials for use with Greenfoot. But they address the six issues
listed above in different ways. For example, Nifty Assign-
ments keeps very tight control over who can submit – sub-
missions are accepted and peer reviewed once a year only –
but allows anyone to view the submissions. In the Green-
room, on the other hand, contributors and users are part of
the same community. They must be interviewed and demon-
strate that they are computing educators before they can
use the materials. But anyone who is a user can contribute,
and more than that, anyone can edit any of the materials
in the repository. Both provide guarantees of quality, but
in different ways. Nifty Assignments uses a traditional peer
review mechanism; the Greenroom allows users to modify
and improve any of the resources, and gives credit for doing
so.

2.4 Catalogue: defining and using metadata
One of our questions was whether we could reliably assign

metadata to the items in the QuestionBank. We hypothe-
sized that this might be easier for items of small granularity
such as MCQs.

One possible method is to extract the metadata automat-
ically. Thompson et al. [33] experimented with automati-
cally extracting metadata from educational resources on the
web. Classification was fairly accurate; information extrac-
tion was more challenging. Tungare et al. [34] proposed to
build on this work, using a large collection of computing
course syllabi, gathered for inclusion in CITIDEL. While an
interesting challenge for machine learning, and somewhat
feasible for assignments or syllabi, this is not likely a promis-
ing approach for short MCQs.

Another possibility is to have the contributors assign meta-
data from a predefined list, possibly allowing optional extra
tags. Edwards et al. [7] take this approach in their pro-
posed design for a repository of programming assignments.
Their metadata were carefully designed to balance the value
of information to the user against the burden on the con-
tributor. Required metadata included only the title (of the
assignment), abstract, programming language (in which the
program was to be written), author, date (when submit-
ted), language (the natural language of the abstract, etc.),
copyright, and license (the name of the license that governs
the use of the assignment, e.g., Creative Commons). Rec-
ommended metadata included (among other things) topics,
prerequisite knowledge, and other prerequisite assignments
that are also in the repository. Optional metadata included
(among other things) difficulty, estimated time the students
would need, and any citations to relevant materials.

Like Edwards et al., we chose to have the contributors as-
sign metadata to the items in the Canterbury QuestionBank.
In addition, since we had content for the QuestionBank, we
were able to examine the reliability of this tagging. Edwards
et al. were unable to investigate reliability, as that project
was still in the design phase. Their required metadata –
items such as author, title, date, and the original program-
ming language of the assignment – would likely have high
reliability, but the recommended and optional data include
items such as topic and difficulty level that are less objective.

2.5 Software support for contributors
Unwittingly, by deciding to initially create content instead

of repository infrastructure, we set for ourselves a recursive

35

problem: what environment would we use to collect and
store our content so that we could ourselves search and ana-
lyze its contents? The solution we settled on was to use Peer-
Wise to store our questions. PeerWise [6] is a web-based tool
that has been very successful in enabling students in a class
to create, review, and answer each other’s MCQs concerning
the course material. It is designed to support “Contribut-
ing Student Pedagogy,” defined in [12] as: “A pedagogy that
encourages students to contribute to the learning of others
and to value the contributions of others.”

PeerWise promised significant benefits – it is designed to
support precisely what we were doing, collaborative devel-
opment of MCQs. Moreover, Paul Denny, one of the authors
of the software, helped us to set up the site and even coded
modifications to support our work.

Still, it was clear that we would be pushing the limits of
the software. PeerWise was designed for short lists of tags,
and for students entering a small number of questions at a
time; our working group would be using it with the goal
of writing 100 questions each and tagging each one with 15
different tags, one of which had 72 possible values.

3. METHODOLOGY
The working group members generated a set of questions

and assigned a large variety of different tags to them: some
fairly standard tags and others, more novel, whose applica-
tion might be considered as research questions. The process
of generating and tagging the questions is described in this
section.

3.1 Generating and entering the data
The data for this working group consist of the following:

1. Multiple-choice questions appropriate for a CS1 or CS2
course.

2. For each question:

(a) The correct answer;

(b) An explanation of why the answer is correct, some-
times including explanations why alternatives are
not correct;

(c) Quality and difficulty ratings from question review-
ers;

(d) A set of category values (“tags”) that describe this
question;

(e) Optional comments and responses to comments from
author and reviewers.

These were collected from the working-group participants
using PeerWise [6] in the weeks before the group convened.
The tasks performed by the participants were as follows.

Entering the questions Each author entered questions
into PeerWise via a web form. Each question has 2-5
alternative answers, plus an explanation. The web form
provided support for text (typed in or cut-and-paste),
formatting using an HTML subset and interactive La-
TeX editor, and importing images from files. Notably,
there was no support for uploading files with multiple
questions, nor support for pasting in images.

Tagging the questions The contributors tagged their own
questions, entering values for 15 different categories (de-
scribed in detail in Section 3.2). Each category except

for Topic was assigned at most one value; the Topic
category allowed multiple values.

Answering/rating the questions Each of the working
group participants answered a subset of the questions
submitted. For each of these, they answered the ques-
tions, and verified that they agreed (or disagreed) with
the question’s author. They then rated the question
in terms of difficulty (easy, medium, hard), and quality
(poor, satisfactory, excellent).

Comments on questions Whenever someone answered a
question they had the option of adding a comment.
Question authors were informed by PeerWise when any
of their questions were commented upon. Authors and
question answerers could also comment on the com-
ments.

Once the questions, tags, and comments were added to Peer-
Wise, the participants used PeerWise during the meetings in
Canterbury to access questions or groups of questions based
on category values.

3.2 Categories and Tags
As noted above, the members of the working group tagged

their questions. This was done relative to 15 categories, each
of which had a number of possible tag values. We were par-
ticularly interested in languages and categories for talking
about exam questions, so we included categories and tags
from a wide variety of schemes proposed in the literature.
In the remainder of this section, we describe each of the
categories and its tags.

3.2.1 Contributor
This category, like the next two, provides straightforward

information about the question, in this case, the name of
the author.

3.2.2 CS course
This category gives the course for which the question would

be appropriate; possible values are CS1, CS2 and CS-Other.

3.2.3 Language
The language category describes what computer language

is used in the question. Its possible values are Alice, C,
C++, C#, Java, Perl, Python, Scheme, VB, and none.

3.2.4 Multiple Answers
PeerWise requires that the contributor designate a single

correct answer for each question. This requirement can be
a problem for peer instruction questions, which sometimes
have more than one correct answer. Within PeerWise, it
is necessary to select one of the correct answers, and then
designate in the explanation (provided with each question)
which other answers are also acceptable.

To provide additional support for peer instruction ques-
tions, we added this category. Its tags are true and false,
true if two or more of the alternative answers to a question
are correct. The intent was to enable us to identify and ex-
amine these questions and allow future users to search for
them.

3.2.5 Nested Block Depth
This category is the maximum nested block depth of the

conditionals and loops in any code contained in the question.

36

Possible values for the maximum nested depth are 0, 1, 2,
3, and 4 or more.

This value is a measure of the complexity of the question
(or at least the code contained in it): for nested conditionals,
the number of possible paths increases with depth, and for
loops, the total number of operations is proportional to the
product of the number of times through each loop. This is
similar to the use of Average Block Depth as a code metric
in Kasto and Whalley [15].

3.2.6 Abstraction Transition Taxonomy (ATT)
The Abstraction Transition Taxonomy [5] was developed

by analyzing a number of multiple choice questions used in a
CS0 class, then applied to questions from a number of differ-
ent sources. It has two categories: transition level, which is
based on the abstraction levels in the question, and purpose,
which relates to what the student is asked to provide.

Transition level describes the relation between the lan-
guage abstraction levels of the question and the answer. The
language abstraction levels considered are English, a natural
language description, CS-Speak, a description using techni-
cal language with meaning specific to computer science, and
Code, a description expressed in a programming language.
The category values reflect these transitions: English to CS-
Speak, English to Code, CS-Speak to English, CS-Speak to
Code, Code to English, and English to Code. For questions
that are asked and answered at the same abstraction level,
they defined ApplyCode (e.g. tracing code to get a variable
value), Apply CS-Speak (e.g. what CS constructs are used
in a given algorithm), and Define CS-Speak (e.g. reflect on
what some CS construct provides). Purpose refers to the
question, and has two possible values, How and Why.

Our use of this taxonomy has two purposes: first, to in-
vestigate whether the tags would be useful as metadata, and
second, to explore how the QuestionBank might be used as
a research repository. Testing a novel classification scheme
such as ATT is one way in which the QuestionBank could
be used for research.

3.2.7 Block model
We also used tags based on Schulte’s Block Model [29].

The Block Model is a model of program comprehension,
originally developed to help student teachers design lesson
plans about computing. It has recently been used to clas-
sify short-answer program-comprehension questions from a
CS1 exam [36]. The authors conclude, “The main advan-
tage of the Block model is that it provides us with a way of
describing these novice programming tasks that gives us a
level of granularity which allows us to distinguish between
similar tasks in a way that SOLO or Bloom’s taxonomy can-
not.” [36, page 73]

As with the ATT Taxonomy, our use of the Block Model
has two purposes: to investigate whether the tags would be
useful as metadata, and also to illustrate how the Question-
Bank could be used as a research repository, by providing
data with which to test the Block Model. While the Block
Model is not so new as ATT, the QuestionBank still enables
us to apply the Block Model to both a new question format
(MCQ) and a wider variety of topics.

The Block Model includes four “scopes” at which a pro-
gram can be examined and three ways in which each scope
can be considered. These are summarized in Table 1. The
rows indicate scope, from atoms (or statements), to blocks,

Text surface Program Functions (as
execution means or as
(data purpose),
flow and goals of the
control program
flow)

Macro Understanding Understanding Understanding
struc- the overall the algorithm the purpose

ture structure of of the program of the program
the
program text

Rela- References Sequence of Understanding
tions between method calls how subgoals

blocks, are
e.g. method related to goals
calls, object
creation,
accessing
data, etc.

Blocks Understanding Understanding Understanding
the text of a the operation the purpose of a
block of a block block

Atoms Language Understanding Understanding
elements the operation the purpose of a

of a statement statement

Table 1: Schulte’s Block Model

to relationships between blocks, to the entire program. Each
column is a way of comprehending a piece of code: on the
left, as static text; in the middle, in terms of dynamic be-
havior; and on the right, in terms of its purpose.

Thus, each column is a hierarchy. So for example, consider
the left-hand column. At the most basic level (the bottom
cell) the student understands the text of an atom or state-
ment; above that, the text of a block; then text that involves
relations between blocks; and finally the overall structure of
a program. Similarly, the middle column is a hierarchy from
understanding the behavior of a statement to understanding
the behavior of blocks, relationships between blocks, and en-
tire programs, and the right-hand column captures the pur-
pose of code, from the purpose of an individual statement
up to the purpose of the entire program.

3.2.8 Bloom taxonomy
The contributors also tagged questions using Bloom’s hi-

erarchy. This taxonomy, drawn from education research, has
been widely discussed in computing education research for
some years [3, 21, 9]. Although there is disagreement about
how well it fits computing topics [9], it is well known and
has been used in the past to tag questions.

The possible values are Knowledge, Comprehension, Anal-
ysis, Application, Synthesis, and Evaluation. Briefly, Knowl-
edge refers to the ability to recall basic information; Com-
prehension is the ability to explain individual pieces of infor-
mation; Application is the ability to use abstract knowledge
in specific situations; Analysis is the ability to break some-
thing down into parts and understand the relationships of
the parts; Synthesis is the ability to put the parts together;
and Evaluation is the ability to discuss whether something
is fit for a particular purpose. Before tagging, contributors

37

completed an online tutorial on the Bloom hierarchy (avail-
able at www.progoss.com).

The remaining categories are all drawn from a paper by
Simon et al. [31] and the expanded version in a Working
Paper, also by Simon et al. [30]. Some of these, like Topic,
are natural metadata; others are more exploratory. They
are discussed in alphabetical order.

3.2.9 Code Length
Code Length is a set of three categories (low, medium,

high) based on the number of lines of code in a question.
In the original, the definition was somewhat imprecise:

• low: up to about half a dozen lines of code

• medium: between half a dozen and two dozen lines of
code

• high: more than two dozen lines of code

We translated that definition into the following tags. The
overlap between low and medium is a deliberate attempt to
reproduce the imprecision of the original:

• 0-6 lines (low)

• 6-24 lines (medium)

• 25 lines and over (high).

Besides these three, we added one more category, so the
scheme would also work for questions that do not involve
explicit code:

• Not applicable (i.e. no code),

3.2.10 Conceptual Complexity
Conceptual complexity, the second of the Simon et al.

categories [31], is a category used to measure the types and
amount of interaction between concepts that are required to
answer the question, evaluated as low, medium, or high.

3.2.11 Difficulty
This is an estimate of how difficult the average student

would find this question at the end of the course. The values
are Low, Medium, and High. This was Degree of Difficulty
in Simon et al. [31].

3.2.12 External Domain References
This category expresses the degree to which a question

refers to things outside of the domain of the course that
could be problematic for some students, such as cultural ref-
erences. Its possible values are Low, Medium, and High, and
it is a generalization of the two-valued Cultural References
category from Simon et al. [31].

3.2.13 Linguistic Complexity
Linguistic Complexity [31] describes the sophistication,

complexity, and length of the question (in terms of reading
and understanding, not the concepts the question engen-
ders). Unlike Code Length, there is no objective measure.
Possible values are Low, Medium, and High.

3.2.14 Skill
Skill identifies the primary skill required to be able to an-

swer a question. The possible values are: Analyze Code, De-
bug Code, Design Program Without Coding, Explain Code,
Modify Code, Pure Knowledge Recall, Test Program, Trace

Code (includes expressions), Write Code (means choose op-
tion here). These are essentially the same as in [31] with the
following changes:

• We added Analyze Code;

• We added “includes expressions” to Trace Code so that
it could handle the evaluation of complex expressions
as well as longer pieces of code;

• We added “without coding” to Design Program;

• We added the comment “means choose option” to De-
sign Program to reflect the fact that all of our questions
are multiple choice.

3.2.15 Topic
Unlike most categories, this one allows up to three topics

to be specified. The list of topics in Simon et al. [31] in-
cluded: Algorithm Complexity-Big-Oh, Arithmetic Opera-
tors, Arrays, Assignment, ClassLibraries, Collections Except
Array, Constants, Data Types And Variables, Events, Ex-
ception Handling, FileIO, GUI Design or Implementation,
IO, Lifetime, Logical Operators, Loops (subsumes Oper-
ators), Methods Functions Procedures, Notional Machine,
OO concepts, Operator Overloading, Parameters (subsumes
Methods), Program Design, Programming Standards, Re-
cursion, Relational Operators, Scope-Visibility, Selection(subsumes
Operators), Strings, and Testing.

We added significantly to the list in Simon et al. [31].
First, we added Class Libraries and Exception Handling
from the fuller description of this scheme in [30]. Second,
since Simon et al.’s lists were focused only on CS1 (Intro-
ductory Programming), we added numerous topics related
to CS2 (Data Structures). Finally, we added some topics as
needed during the tagging process. The full list of topics is
given in Appendix A.

4. RESULTS
We collected 654 questions. Most of the questions were

tagged by their contributors using the scheme outlined in
Section 3. Due to time limitations, some questions were
tagged using only some of the categories, and some were not
tagged. If we had been planning to use the tags immediately
as indices for users to search on, the incomplete tagging
would have been problematic. Since our initial goal was
to investigate the various tagging schemes, the substantial
number of tagged questions that we did have were sufficient.

In the following subsections, we describe the distribution
of the tags as assigned by their contributors, followed by
analyses of inter-rater reliability for key tags, followed by
some observations about our question development process.

4.1 Distribution of tag values
One way to characterize the questions is by examining the

distribution of the tags. The data below are based on the
tags assigned by the person contributing the question.

4.1.1 Abstraction Transition Taxonomy
There are two ATT classifications, transitions and types.

Types include only How and Why. Transitions include Code
to CS-Speak, CS-Speak to Code, Code to English, English
to Code, CS-Speak to English, and English to CS-Speak, as
well as the related (but non-transitional) categories Apply
CS-Speak, Apply Code, and Define Code. English to English

38

Transition tags (n = 475)

tag number percent
Apply CS-Speak 164 35%
Apply Code 142 30%
Code to CS-Speak 72 15%
CS-Speak to Code 30 6%
Code to English 25 5%
CS-Speak to English 14 3%
English to Code 12 3%
Define CS-Speak 8 2%
English to CS-Speak 7 1%
English to English 1 0%

Question Type tags (n = 457)

tag number percent
How 426 93%
Why 31 7%

Table 2: Number and percentage of ATT Classifica-
tions in the QuestionBank. For each tag type, n is
the number of questions with a single value chosen.

Block Model tags (n = 444)

Text Control Goal
Macro 9 (2%) 48 (11%) 18 (4%)
Relation 11 (2%) 21 (5%) 6 (1%)
Block 72 (16%) 158 (36%) 8 (2%)
Atom 64 (14%) 26 (6%) 3 (1%)

Table 3: Number and percentages of Block Model
classifications in the QuestionBank

was added here for completeness. It was not used in [5], and
it was only used once in this dataset.

Our results are shown in Table 2. The transition tags are
dominated by two of the non-transitional categories, Apply
CS-Speak and Apply Code, which account for nearly two-
thirds of the questions. Looking at it from another perspec-
tive, 62% of the questions go to or from CS-Speak, 59% go
to or from code, and 12% go to or from English.

The type tags are almost all How questions (93%). This is
consistent with the results reported in [5]: they investigated
several datasets of CS assessments and the percentage of
Why questions did not exceed 15% in any of them. They
provide a possible explanation:

How questions are a norm in computing educa-
tion. The why questions are a natural outgrowth
of making explicit the need to rationalize, cul-
turally, decisions of activity and tool use in pro-
gramming problems [5, p. 67].

4.1.2 Block Model
444 of the questions were tagged with exactly one Block

Model row and exactly one column. The distribution of
these tags among the cells of the Block Model is shown in
Table 3.

As can be seen in Table 3, the MCQs have been rated
predominantly at the Block level, with Block Control as the
most commonly rated pattern, followed by Block Text. The
former fits with the intuitive notion that for CS1 and CS2
course related MCQs the primary focus would be on blocks

of code, either in terms of their static code or of their dy-
namic behavior. The next largest category of questions is at
the more atomic level of Atom and Text, which aligns with
MCQs aimed at demonstrating knowledge of basic, discrete
elements or concepts.

This table demonstrates the relative absence of questions
with a focus on the macro or relations levels or on goals.
This is consistent with the focus on “how” questions rather
than “why” questions in the ATT questions discussed pre-
viously. This may result from an inherent limitation in the
range of possibilities that can be expressed via MCQs. Alter-
natively, as noted in [4], it may reflect a lack of focus in our
teaching on fully linking the hermeneutic dimensions of the
Block Model in our teaching and learning activities. Per-
haps more positively for CS2 questions in this repository,
there seems to be some emphasis on the questions at the
macro (whole program) level, with 11% of questions tagged
in the macro/control block. These questions typically in-
volved evaluating the student’s ability to select or apply an
appropriate algorithm to meet a defined goal.

4.1.3 Bloom
The results from the 505 questions that were tagged with

exactly one Bloom category are given in Table 4.

Bloom levels (n = 505)

level number percent
Knowledge 116 23%
Comprehension 185 36%
Application 18 4%
Analysis 165 32%
Synthesis 21 4%
Evaluation 5 1%

Table 4: Number and percentage of Bloom levels in
the QuestionBank for those questions with a single
value chosen.

Among these questions, the most popular categories (in
decreasing order) were Comprehension, Analysis, and Knowl-
edge. These three accounted for over 90% of the questions.
There were relatively few examples of Application, Synthe-
sis, or Evaluation.

4.1.4 Appropriate course
The contributors also indicated whether the question was

appropriate for CS1, CS2, or some other CS course. Con-
tributors selected these tags independently. Generally, CS2
included Big-Oh analysis and data structures (lists, stacks,
trees, queues, etc.); CS1 included everything else.

Our results are given in Table 5 for the 512 questions that
were placed in exactly one of these categories.

Appropriate course (n = 512)

course number percent
CS 1 270 53%
CS 2 222 43%
Other 20 4%

Table 5: Number and percentage of appropriate
course values in the QuestionBank for those ques-
tions with a single value chosen.

39

In addition, 7 questions (not included in the table) were
tagged as belonging to both CS1 and CS2.

4.1.5 Code length
Table 6 presents the results for the 509 questions were

tagged with exactly one of the possible code length tags.

Code length (n = 509)

range number percent
Low (0-6 lines) 155 30%
Medium (6-24 lines 162 32%
High (> 24 lines) 9 9%
Not Applicable 183 36%

Table 6: Number and percentage of code-length val-
ues in the QuestionBank for those questions with a
single value chosen.

Interestingly, the tagging was able to work despite the
ambiguities. Some questions with no code may have been
tagged “0-6,” but perhaps not, as the “Not Applicable” tag
was the most popular overall. In addition, there were no
questions tagged both Low and Medium, as would have been
appropriate for a code length of 6.

4.1.6 Conceptual complexity
Only 333 questions were tagged with exactly one of the

possible conceptual complexity tags; the results are in Ta-
ble 7.

Conceptual complexity (n = 333)

level number percent
Low 154 46%
Medium 174 52%
High 5 2%

Table 7: Number and percentage of conceptual com-
plexity values in the QuestionBank for those ques-
tions with a single value chosen.

4.1.7 Difficulty
Question authors also tagged their questions for difficulty,

identifying one of three difficulty levels: low, medium, or
high. This tag represented the author/instructor’s view of
how difficult the question would be for a student to answer
correctly at the point of taking the final exam for the corre-
sponding CS course. The results are shown in Table 8.

Difficulty (n = 520)

level number percent
Low 313 60%
Medium 187 36%
High 20 4%

Table 8: Number and percentage of difficulty val-
ues in the QuestionBank for those questions with a
single value chosen.

4.1.8 External Domain References

424 questions were categorized according to the level of ex-
ternal domain references involved. The results are given in
Table 9. Interestingly, the contributors did not tag any ques-

External domain references (n = 520)

level number percent
Low 391 92%
Medium 33 8%
High 0 0%

Table 9: Number and percentage of external domain
references values in the QuestionBank for those
questions with a single value chosen.

tions as having“High”external domain references. This may
be characteristic of the particular questions in the Question-
Bank, or MCQs in general, or something that other raters
might disagree with.

4.1.9 Languages
522 questions were tagged by the contributors as relat-

ing to exactly one programming language (or none). These
results are presented in Table 10.

Languages (n = 522)

Language number percent
Alice 0 0%
C 82 16%
C++ 1 0%
C# 0 0%
Java 232 44%
Perl 9 2%
Python 36 7%
Visual Basic 9 2%
none 153 29%

Table 10: Number and percentage of language val-
ues in the QuestionBank for those questions with a
single value chosen.

Two questions were tagged with two languages each. One
was about the memory model of C and C++, and the other
was about the exception mechanism in Java and C#. Tag-
ging two (or more) languages was quite rare, given that quite
a few questions were ambiguous (e.g. any C question that
did not explicitly identify the language could also have been
C++); this is likely because the contributor knew which
language his or her class was using.

4.1.10 Linguistic complexity
428 questions were tagged for their level of linguistic com-

plexity, as shown in Table 11. The great majority of these
were tagged as low linguistic complexity.

4.1.11 Multiple answers
Only 8 questions were tagged as having multiple answers.

This may be accurate – not all the contributors were inter-
ested in peer instruction questions, and not all peer instruc-
tion questions have more than one right answer. They just
need to have more than one plausible answer. Because of
the way the category was written, however, we could not
distinguish between questions that were untagged and ques-

40

Linguistic complexity (n = 428)

level number percent
Low 391 91%
Medium 34 8%
High 3 1%

Table 11: Number and percentage of linguistic com-
plexity values in the QuestionBank for those ques-
tions with a single value chosen.

tions where the contributor considered Multiple Answers to
be false.

4.1.12 Nested Block Depth
424 questions were tagged with exactly one tag in this

group. The results are given in Table 12.

Nested block depth (n = 424)

tag number percent
No conditionals or loops 268 63%
One nested 51 12%
Two nested 95 22%
Three nested 9 2%
Four-or-more nested 1 0%

Table 12: Number and percentage of Nested block
depth values in the QuestionBank for those ques-
tions with a single value chosen.

Most questions did not contain any conditionals or loops.
Of those that did, it is somewhat interesting that a block
depth of 2 is more common than a block depth of 1, perhaps
reflecting a preference for doubly-nested loops or conditional
in a loop code questions.

4.1.13 Skills
452 questions were tagged by their contributors with ex-

actly one skill each. The results are given in Table 13.

Skills (n = 452)

tag number percent
Trace (includes Expressions) 161 36%
Pure Knowledge Recall 116 26%
Write Code (means Choose Op-
tion)

56 12%

Analyze Code 41 9%
Debug Code 24 5%
Design Program Without Cod-
ing

21 5%

Explain Code 21 5%
Test Program 11 2%
Modify Code 1 0%

Table 13: Number and percentage of Skill values in
the QuestionBank for those questions with a single
value chosen.

The top popularity of Trace can be partially explained by
the fact that this tag was given to questions that evaluate
an expression as well as those that require more extensive
tracing to solve.

4.1.14 Topics
468 questions were tagged by the contributors for topics

with one, two, or three tags total. In this group, of the 72
possible topics, 54 were used at least once. The results for
all of the topics that were used for at least 5 questions (i.e.
over 1%) are given in Table 14.

Topics (n = 468)

tag number percent
Loops - Subsumes Operators 76 16%
Arrays 67 14%
Data Types And Variables 62 13%
Algorithm Complex Big-Oh 56 12%
Methods Funcs Procs 55 12%
Collections Except Array 49 10%
Strings 40 9%
Selection - Subsumes Operators 32 7%
Arithmetic Operators 25 5%
OO concepts 25 5%
Params - Subsumes Methods 24 5%
Assignment 22 5%
Logical Operators 21 4%
Hashing-HashTables 20 4%
Program Design 18 4%
Trees-Other 17 4%
Sorting-Quadratic 16 3%
Linked Lists 16 3%
Recursion 16 3%
Testing 15 3%
Choosing Appropriate DS 14 3%
Sorting-NlogN 12 3%
Heaps 12 3%
Scope-Visibility 11 2%
ADT-List-DefInterfaceUse 10 2%
I/O 10 2%
Relational Operators 9 2%
Graphs 9 2%
Pointers (But Not References) 8 2%
Sorting-Other 8 2%
File I/O 8 2%
ADT-Stack-DefInterfaceUse 7 1%
Searching-Binary 6 1%
ADT-Stack-Implementations 6 1%
Runtime-Storage Management 5 1%
Trees-Search-Not Balanced 5 1%
GUI-Design-Implementation 5 1%

Table 14: Number and percentage (of questions)
with given topic values in the QuestionBank for
those questions with 1, 2, or 3 topics chosen. Only
topics that show up in at least 5 questions are in-
cluded in table.

4.2 Inter-Rater Reliability
We performed a number of inter-rater reliability (IRR)

tests for key categories: ATT, Block Model, Bloom level,
Difficulty, and Skills. These were all done on subsets of the
data using a stratified sampling approach based on the con-
tributor’s tags, with the goal that each tag was represented
an equal number of times in the sample. The measures used

41

for each were dependent in part on the measurement scale
of the tagging data. We then looked at Topic and Language
with a stratified sample based on the contributor.

4.2.1 Abstraction Transition Taxonomy
To estimate the IRR for the ATT-transition tags, one

researcher selected 28 questions which were subsequently
tagged by eight researchers. These tags were used to cal-
culate Fleiss’ Kappa, with resultant Kappa = 0.3 (z = 20;
p < 0.05); a fair level of agreement [20].

Examining how the group used the ATT tags, most of the
disagreement came from what “English” means and where
the boundary lies between English and CS-Speak. There was
also disagreement about the meanings of Apply CS-Speak
and Define CS-Speak. Other unreliability came largely from
a disagreement about what should be done about numeric
responses. Consider a question showing code, and asking,
what will the value of x be after the end of this code, with
A = 3, B = 4, etc. Our eventual consensus was that this
would be Apply Code, but initially there were people in the
group who tagged this as Code to CS-Speak, because they
saw numbers as being CS-Speak rather than Code.

4.2.2 Block model
Two researchers chose 36 questions, three for each cell in

the model. These were then tagged using the Block model by
the other 7 raters. We first analyzed the inter-rater reliabil-
ity for the twelve cells in the table assuming that they were
twelve distinct nominal categories. Using Fleiss’ Kappa, the
result is 0.191, which is at the high end of slight agreement,
but not quite to the threshold for fair agreement.

We then looked at the rows and columns. Grouping the
tags in each row together and using Fleiss’s Kappa, we get
an inter-rater reliability of 0.357 for the rows in the ta-
ble (atom, block, relational, macro). Grouping the tags in
each column together, we get a Fleiss’s Kappa of 0.175 for
the columns (text, control, function). The agreement on
columns is slight; the agreement on rows is fair.

However, the measurement scale of these data is not nom-
inal, so Fleiss’ Kappa is not appropriate. The rows corre-
spond to increasing size, while the columns progress from
syntax to semantics to purpose, so Block Model data can be
seen as ordinal in two dimensions. As far as we know, there
is no formula for inter-rater reliability of 2D ordinal tags,
so we looked for an appropriate two-dimensional distance
metric.

We considered using Manhattan distance summed over all
pairs of raters as a distance metric for each observation, but
it is not clear how this set of distances should be combined,
and what to compare it with. We observed a large range of
distances, from 0 (all raters agree) to 54, which is close to
the theoretical maximum of 60.

4.2.3 Bloom levels
In similar fashion, one researcher chose 42 questions that

were approximately evenly split among the six Bloom cate-
gories, based on how the author tagged the question.2 These
were tagged for Bloom level by eight raters. Using Fleiss’s
Kappa for 8 raters with 42 subjects, the result was Kappa
= 0.189 (z = 11.7, p = 0.912), which is a slight level of
agreement.

2An even split was impossible, since some categories (such
as Evaluation) were used for fewer than 7 questions.

While Bloom’s taxonomy is categorical, the measurement
level is more appropriately treated as ordinal, ranging from 1
(Knowledge) to 6 (Evaluation), as the categories are ordered.
It follows, for example, that Knowledge (1) is “closer” to
Comprehension (2) than to Synthesis (5), so a rater who
tags a question as Knowledge shows more agreement with
another rater who tags the same question as Comprehension
than with a rater who considers the question Evaluation.
Fleiss’s Kappa is inappropriate for ordinal data.

We used intraclass correlation (ICC) for both agreement
(i.e. do some raters show a bias towards one end of the
spectrum when compared to other raters?) and consistency
(i.e. do raters tend to put the same question on the same
part of the spectrum?).

First, to investigate whether there were measurable dif-
ferences in rating bias among raters – that is, whether some
raters tended to assign questions to lower or higher Bloom
levels compared to other raters – we calculated the ICC for
agreement (ICCa) to be ICCa = 0.231, suggesting that there
is a tendency for some raters to give lower ratings on aver-
age, while others give higher ratings on average. As with
any correlation coefficient, a maximal value of 1.0 would in-
dicate that the average ratings given by each individual rater
were exactly the same, while a minimum value of 0.0 would
indicate they were completely unrelated.

Second, to investigate how consistently raters rated the
same questions, we also calculated the ICC for consistency
(ICCc) to be ICCc = 0.267, p < 0.001. Again, this indicates
a generally poor level of agreement, where a maximum value
of 1.0 would indicate raters always agreed on any given ques-
tion, and a minimum value of 0.0 would indicate their ratings
on any given question were completely unrelated.

Thus, even with a training tutorial, our raters obtained
only poor levels of agreement in applying Bloom’s taxon-
omy to a set of 42 questions. This is consistent with the
difficulties identified in earlier research on the use of the
Bloom hierarchy in computing education [9].

4.2.4 Difficulty
To investigate interrater reliability for this tag, one work-

ing group member randomly selected seven questions tagged
with each difficulty level, for a total of 21 questions. The
eight other members of the working group then indepen-
dently rated these 21 questions for difficulty. As with Bloom
level, the data here are on an ordinal measurement scale, so
we again used intraclass correlation to measure both agree-
ment and consistency.

Examining the question of differences in rating bias among
raters – that is, whether some raters tended to rate questions
easier or harder compared to other raters – we calculated the
ICC for agreement to be ICCa = 0.427, p < 0.0001. This
value indicates less than moderate agreement among raters,
a tendency for some raters to give lower ratings on average,
while others give higher ratings on average.

Examining how consistently raters rated the same ques-
tions, we also calculated the ICC for consistency to be ICCc

= 0.471, p < 0.0001. Again, this indicates less than moder-
ate agreement.

Taken together, these ICC values indicate that, while there
was some level of agreement and consistency, there was no
evidence for strong agreement or high consistency when rat-
ing question difficulty. As a result, while instructor-perceived
difficulty may be a worthwhile piece of metadata to use de-

42

scriptively on questions, it may have much less utility as a
search/filtering criterion when others wish to locate ques-
tions within the collection.

4.2.5 Skills
To explore the inter-rater reliability of these tags, one

researcher selected 22 questions. Six other working group
members then placed those questions in categories indicat-
ing which skills were involved. We computed Fleiss’s Kappa
of 0.426 for 6 raters and 21 subjects, which indicates mod-
erate agreement.

4.2.6 Topics
Measuring the agreement on Topics is also complex: a

rater can provide 1-3 tags per observation, and there are 72
different topic tags. In an attempt to measure the reliabil-
ity, two raters tagged a random set of questions stratified
by contributor that included 5% of each contributor’s ques-
tions, for a total of 33 questions. The total number of topic
assignments was calculated as the sum of the number of top-
ics mentioned for each question: if the two raters assigned
the same topic to a given question, that was counted as one
topic assignment. If only one rater assigned a particular
topic to a given question, that was also counted as one topic
assignment. Using this definition, there were 86 topic as-
signments, 2.6 topics per question (on average). Of these,
the raters agreed on 52 assignments, or 60%.

4.2.7 Language
While testing for topics, the two raters also looked at Lan-

guage, tagging the same questions sampled with Topics for
Language. The tagging and discussion raised two related
issues, especially if a question is restricted to one language
tag value:

• Some code snippets are syntactically legal in more than
one language (for example, C, C++, and Java).

• Code snippets have to be identified by someone who
knows the language in question – if a rater is unfamiliar
with a language it would seem that “Don’t know” would
be the appropriate tag.

To properly consider reliability it would be necessary to de-
fine what constitutes a match in both of these cases.

4.3 Software Support
PeerWise gave us a platform designed specifically for the

collaborative development of MCQs. All collaborators could
see each other’s questions as soon as they were entered.

There were some features that we would recommend if
PeerWise is to be used extensively for this purpose.

• Support for uploading files with multiple questions. This
is probably not important for student users of PeerWise,
who are not likely to enter 100 questions at a sitting,
and probably don’t have files of MCQs that they have
already written. For our purposes, however, it would
have been a big plus.

• The ability to input any subset of possible tag values
and retrieve a page of links to questions with those tags,
for example, asking questions such as “Give me all the
MCQs we have so far that are at the Evaluation level in
the Bloom hierarchy,” or “Give me any questions that

are at the Evaluation level in Bloom and the Macro level
in Block.”

• The ability to download all the questions in a format
that could easily be uploaded into a Course Manage-
ment System such as Moodle or Sakai.

• Support for adding UML and tree diagrams. Including
images and diagrams was possible, but difficult.

With those additions, the software would not only work
well during the development phase of the repository, but
would have the potential to work in the production phase
when the data is made more broadly available.

5. PATTERNS
The number of potential MCQ questions for introductory

computing is clearly infinite. Nevertheless, in our analysis of
the question database, a number of similarities in question
type/style emerged. We called these MCQ patterns.

Each pattern discerned asks students to demonstrate a
specific skill (e.g. trace code, big-Oh calculation). We orig-
inally called our patterns “parameterized questions.” For
example, a question that presents the code for selection sort
in Java and asks students to identify the name of the algo-
rithm could be simply modified to present insertion sort in
Python.

Upon further examination we discovered that our cate-
gorizations were more abstract than parameterized ques-
tions, since questions from the same pattern might differ
not only in terms of “parameters,” but also in terms of syn-
tax/semantics focus, expression, and quality factor:

• Syntax or Semantics: Perhaps because the Question-
Bank is limited to introductory computing, both syntax
and semantic/purpose related questions emerged.

• Expression: This relates to the style of how a question
is posed. For example, a question can be posed in the
negative.

• Quality Factor: Questions had different foci with regard
to the concept being questioned about. Some questions
focused on performance, while for others, the quality
factor was superior (object oriented) design.

While two questions drawn from the same pattern might
appear very different, they nonetheless probe, in a similar
manner, a student’s understanding. For example, the ques-
tion given above – given the code for selection sort in Java,
identify the name of the algorithm – fits our Purpose MCQ
Pattern. The Purpose MCQ Pattern might be used to query
a student’s ability to recognize the selection sort algorithm
(in one’s language of choice), or the insertion sort algorithm,
or merge sort, or find largest, or depth-first search, etc.
Specifically,

• a question might present students with code and ask
which algorithm it is; or

• a question might present the algorithm’s name and present
the student with different code snippets; or

• a question might present the algorithm’s name and re-
quire the student to identify from a set of code snippets
which does not represent a correct implementation of
the algorithm; or

43

• a question might present an algorithm and ask a student
for which, of a variety of scenarios, the algorithm is
appropriate (or not appropriate).

In a related work, Hazzan et al. [13] usefully outline 12
different types of questions one may pose. They do not
claim that these are an exhaustive set, but they do provide
useful patterns for consideration. Their description of type
differs significantly from our recognition of MCQ patterns.
For example one type of question described in [13] is to have
students provide a solution (code, pseudocode, or descrip-
tive algorithm) to a given problem. This problem type is
considered an open question and not suitable for an MCQ,
which is a closed question.

Of the 12 question types, Hazzan et.al. assert only 5 are
suitable for MCQs. They are:

• Code tracing;

• Analysis of code execution;

• Finding the purpose of a given solution;

• Examination of the correctness of a given solution;

• Efficiency estimation.

Furthermore, they indicate three more question types that
cannot naturally be presented as an MCQ:

• Completion of a given solution;

• Instruction manipulation;

• Programming style questions.

For purposes of completion the four question types which it
is claimed cannot be presented as an MCQ are:

• Development of a solution;

• Development of a solution that uses a given module;

• Question design;

• Transformation of a solution.

5.1 The 12 MCQ Patterns
Four working group members independently examined dis-

tinct subsets of the question bank, identifying a pattern for
each question. We then compared the resulting patterns,
and quickly merged our individual patterns into 12 distinct
MCQ patterns. We make no claims of completeness for our
enumeration; furthermore, another set of researchers, upon
examining the same questions, may discern a different set of
patterns (e.g. 11 or 13).

We were struck by the ease with which we were able to
combine the patterns independently extracted by four dif-
ferent researchers into our library of 12 final patterns. We
believe that our patterns identify underlying structure that
helps partition MCQs in a useful manner. However, we must
note that it could be the case that the MCQs from which
we extracted our patterns were particularly narrow in scope,
and analysis of another bank of questions might lead to a
larger, or different, set of patterns. We also did not attempt
to categorize a subset of our MCQs using our pattern library,
so we cannot comment on the difficulty of applying the pat-
terns consistently. Nonetheless, we are confident that our set
of 12 patterns, if not exhaustive, is sufficient to categorize
the vast majority of MCQs.

For each pattern, we present a name, a short description,
a sample question(s) and which of the Hazzan types it most
closely matches.

The 12 MCQ patterns, in no particular order, as follows:

5.1.1 Compare and Contrast
A compare and contrast question will involve comparing

and contrasting two particular pieces of code, algorithms,
data structures, or the like.

Sample question:

What is the difference between selection sort

and insertion sort with respect to worst case

algorithm efficiency?

Compare and contrast questions can examine a variety of
quality factors such as memory usage, speed, style, usability,
etc.

Questions can be generic, as in the sample, or more spe-
cific, as in:

If you are using quicksort on <list>, which

partitioning method is preferred?

This pattern supports a large variety of expression differ-
entiation. Consider:

Which of the following pairs of code state-

ments are not equivalent?

which illustrates how negation can change the problem. Fur-
thermore, a compare and contrast question can be flipped,
as in

Which of the following statements properly

compares and contrasts algorithm A with al-
gorithm B?

One can also compare and contrast syntactic or semantic
elements of code. A question asking to compare a++ and
a = a+1 in Java would be asking to compare a syntactic
element. In contrast, comparing two pieces of code in terms
of purpose or performance would be considered semantic.

Hazzan type: Comparing and contrast style questions are
not captured in the Hazzan question type enumeration. Hence,
a compare and contrast question might be, depending on the
particulars, either a code trace, analysis of code execution,
examination of the correctness of a given solution, or effi-
ciency estimation

5.1.2 Fixed-Code Debugging
A fixed-code debugging question typically presents a fixed

piece of code that contains a syntactic or a semantic error.
The student is then asked to identify the line containing the
error, or choose from a list of reasons why the code is wrong.

This MCQ pattern allows for either an examination of
semantic or syntactic elements. For semantic errors, the
purpose of the code is usually supplied. Semantic errors
can include logic errors (e.g. using != instead of ==), or
possibly misunderstood class/language elements (e.g. call
by value vs call by reference)

Sample question (syntactic):

A compiler error exists in this code. Why

is that happening?

44

public class Foo {

int fooCount;

public static int getCount(){

return fooCount;

}

public Foo(){

fooCount ++;

}

}

Hazzan type: Code tracing, and Analysis of code execu-
tion.

5.1.3 Tracing of Fixed Code
Fixed code is a question pattern that“requires the student

to hand execute (trace through) some code and select, from
a set of provided answers, the correct outcome or result.” [23]

Questions of this type are the canonical hand execution of
code; “what is generated by a print statement somewhere
in a code snippet.”

Hazzan type: Code tracing.

5.1.4 Algorithm and Data Structure Tracing
This pattern differs from the above tracing of fixed code,

in that these questions operate at a higher conceptual level;
that of algorithms and data structures, instead of individual
lines of code. This pattern includes questions that require
students to trace the execution of a particular algorithm on
a given instance of a data structure. Often, questions of this
type contain an illustration that pictorially represents the
state of a data structure.

Sample question:

Given the above binary tree rooted at Node

A, what is the order of nodes visited by an

in-order traversal?

While not exactly requiring students to “trace” an execu-
tion sequence, recognizing whether a given data structure
instance is in a legal state falls under this pattern.

Sample question:

Which of the following is not a legal priority

queue?

Questions such as this not only test student understanding
of a given data structure’s invariant, but may also require
students to construct a legal code sequence that would gen-
erate the provided data structure instance.

Sample question:

Suppose you have a binary search tree with

no left children. Duplicate keys are not

allowed. Which of the following explains how

this tree may have ended up this way?

Hazzan type: Code tracing.

5.1.5 Basic Conceptual
A basic conceptual question requires students to recall

or apply definitional knowledge. A straight-forward appli-
cation of this pattern would provide the student with a
term/concept and require one to choose from among a set
of possible definitions.

Sample question:

Which of the following is true of a Java

interface?

Basic conceptual questions allow for expression differen-
tiation. In addition to questions posed in the negative, one
might also simply reverse the question format; provide a
concept’s definition and have students chose from among a
set of disciplinary terms.

It is even possible to construct application style questions
which require students to use their understanding of a con-
cept in a new context. The concept may or may not even
be explicitly mentioned.

Sample question:

In Java, the actual type of a parameter or

variable’s value can be any concrete class

that is:

Hazzan type: none.

5.1.6 Basic Procedural
Like its counterpart, the basic conceptual pattern, this

pattern requires students to recall or apply basic knowledge,
though in this case the knowledge is procedural or algorith-
mic.

Sample question:

Which of the following sorting algorithms are

stable?

Sample question:

Which of the following data structures would

best model the line of waiting customers at

a ticket counter?

The conceptual unit for investigation is not limited to al-
gorithms or data structures. Alternatively, one might deal
with programming patterns.

Sample question:

The Examine-all programming pattern is best

described as...

Hazzan type: Development of a solution.

5.1.7 Procedural Flexibility
Procedural flexibility, also known simply as flexibility [16],

refers to knowledge of different ways of solving problems and
when to use them. Examples include generating multiple
methods to solve a problem, recognizing multiple methods to
solve a problem, using multiple methods to solve a problem,
and evaluating new methods [26].

Sample question:

In the hash table illustrated above, given

the list of values and hash function, which

collision resolution was used?

This MCQ question pattern differs from the Basic Concep-
tual pattern in that students are required to apply multiple
procedures and evaluate which would produce a particular
result.

Sample question:

Given these values, which hash function will

produce no collisions?

Hazzan type: The two closest would be Examination of
the correctness of a given solution and Instruction manip-
ulation, neither of which really fully capture the multiple
evaluation aspect of this MCQ pattern.

45

5.1.8 Synthesis
The synthesis pattern involves analyzing a problem and

then synthesizing something from the analysis. This was
the least common pattern in our question bank given the
difficulty in writing a synthesis MCQ.

Sample question:

What is the size of the largest BST that is

also a min-heap?

For this question a student must analyze both BST and
min-heap properties, synthesize a tree that has both prop-
erties – and grow it to its maximum size.

Hazzan type: none.

5.1.9 Design
Almost all of the design-related questions in our question

bank focused on Object-Oriented (OO) design, although we
can imagine design questions that focus on procedural de-
composition, refactoring, or changes in representation (i.e.
changing from UML to code, or from a textual description
of a design to UML, etc). Design questions can also focus
on the quality, readability, or maintainability of the code,
although such questions must be carefully written to fit the
MCQ format. Syntactic variants of these questions are likely
to require an understanding of language-level features, while
semantic questions focus on higher-level design questions
that do not rely on specific features of the language.

Sample question:

Suppose you are defining a Java ProductItem

class to store information about the inventory

in a store, and you want to give the class

an instance variable for the price of that

item. Which of the following is the best datatype

for the instance variable that models the price?

Sample question:

The simplified UML diagram above shows the

relationships among Java classes Bird, Crow,

and Duck. Suppose Bird has a fly(Location

place) method, but we want Crows to makeNoise()

just before they take off and then behave like

other Birds. Assuming Crows have a makeNoise()

method, the fly method in Crow should consist

of...

Hazzan type: Completion of a given solution, Develop-
ment of a solution, and possibly even Programming style
questions.

5.1.10 Skeleton Code
Skeleton code is a category of question that “requires the

selection of the correct code, from a set of provided answers,
which completes the provided skeleton code.” [23]

Hazzan type: Completion of a given solution

5.1.11 Big-Oh
Computational complexity is a subject that is well-suited

to the MCQ format. Crossing numerous algorithms with
the handful of complexity classes produces a large set of
potential questions. These questions are often expressed in
two forms:

1. given an algorithm, select its complexity class and

2. given a task, select an algorithm or data structure that
completes the task with the desired performance.

In the former case, students examine the code to inspect
the algorithm and determine its complexity. In the latter
case, students reason about the problem and the efficiency
of its implementation.

Many questions involve Big-Oh analysis, but that is cer-
tainly not a requirement. Complexity may be expressed
as the number of iterations, comparisons, memory transac-
tions, subroutine calls, and other measures of performance.

Sample question:

Suppose you have a Java array of ints. Which

of the following operations can be performed

in constant (O(1)) time? (Circle all correct

answers.)

Sample question:

Two algorithms accomplish the same task on

a collection of N items. Algorithm A performs

N2 operations. Algorithm B performs 10N operations.

Under what conditions does algorithm A offer

better performance?

Hazzan type: Efficiency estimation.

5.1.12 Purpose
Code purpose (explain in plain English) is a category of

question identified in [35], which requires a student “given a
code segment, to explain the purpose of that piece of code.”
Variants on this might include: name a method, identify
pre- and post-conditions for a segment of code, name the
algorithm, or write comments or javadocs for a piece of code.

Hazzan type: Finding the purpose of a given solution.

5.2 Using patterns
The goal of our pattern discovery exercise is that we be-

lieve that it can aid in the creation of new MCQs. Given
the above examples and those found in the question bank
itself, it is hopefully a straightforward exercise for an MCQ
author to decide on an MCQ pattern - what kind of con-
cept should the question test (e.g. basic concept, Big-Oh,
algorithm tracing). Once the pattern is picked, the author
would meld the concept to be tested with the pattern; e.g.
algorithm tracing and searching. Finally, questions can be
modified or fine tuned based on one of the three orthogonal
dimensions; change the question from syntactic to semantic,
or maybe pose the question in the negative.

46

6. MAKING THE QUESTIONS AVAILABLE
While developing this collection of questions has been a

learning process, the ultimate goal of this effort is to pro-
duce a resource that can be used by others – educators and
researchers – in the community. As a result, the working
group also devoted time to planning an appropriate way to
provide access to the collection, and also to allow contribu-
tions to the collection so that it can grow and develop over
time.

A side-effect of the goal that the questions be available
to others was that we were unable to use questions from
copyrighted material such as textbooks and the sample CS
AP exam.

6.1 Licensing
One question that faces every group that intends to pro-

vide a resource for others is licensing: what rights will oth-
ers have, and what restrictions will be imposed? Also, while
there are many discussions regarding license choices for soft-
ware projects, the same is not true for other educational
resources, such as this question bank.

In choosing a license, the working group wanted to pre-
serve open access for educators who want to use any ques-
tions from the question bank in the classroom, but also
wanted to protect the question bank from being reused whole-
sale by publishers or commercial entities who might pre-
fer to provide only closed access. As a result, the work-
ing group chose to make the question bank available under
the Creative Commons Attribution/Non-commercial/Share-
alike 3.0 Unported License (BY-NC-SA 3.0). This license is
also the license used by Khan Academy’s Exercise Frame-
work for all of its exercises published on github.

To clarify the “share alike” and “attribution” requirements
for educators who want to reuse or adapt some of the ques-
tions on homework/quizzes/tests/etc., this license includes
the following responsibilities:

Attribution If you use any of the questions from the bank
in a publicly available resource, you must attribute the
work. If you are an individual educator using questions
from the bank as part of a homework assignment, test,
quiz, or classroom activity that is only available to your
students (not publicly available), then attribution is not
required.

Noncommercial You may not use this work for commer-
cial purposes.

Share Alike If you alter, transform, or build upon this
work, you may distribute the resulting work only un-
der the same or similar license to this one. If you adapt,
modify, or enhance any questions for use on a homework
assignment, test, quiz, or classroom activity for your
course, you can satisfy the “Share Alike” requirement of
this license by sending your derived work to question-
bank@vt.edu for us to add to the question bank.

6.2 Short term
The most important question in the near term is how to

provide access to the questions themselves, to whom, and
in what format. While the simple answer seems to be “post
them on the web!”, the problem is more difficult to address in
practice. First, should the question bank be publicly avail-
able, along with its answer key? Second, the question of

what format to post the questions in is also an issue if the
question bank is to be most useful to the intended audience.

6.2.1 Restricting Access to a Qualified Audience?
When the working group began its task, the goal was to

provide open access to the resulting question bank so that
other educators could use it as freely as possible. However,
some educators may feel that posting the question bank com-
plete with answers openly on the web may actually compro-
mise the value of the questions for use on exams, quizzes, or
other assessment instruments, even if the questions might
still be a good resource for practice or self-study. At the
same time, however, requiring educators to obtain a pass-
word or otherwise negotiate access to the answer key may
pose an obstacle making them less inclined to use the ques-
tion bank. After discussing this issue, the working group de-
cided that open posting of the complete question bank along
with an answer key was preferable. Even if students have
access to questions and the answers before an exam, they do
not necessarily remember them [22]. In addition, because of
the size of the question bank, it would not be practical for
students to attempt to memorize answers in advance of a
test. Furthermore, if they did actually intensively study the
whole set of questions with the hope of preparing for some
situation, they might actually learn something!

The QuestionBank is available on-line at: http://web-cat.
org/questionbank

6.2.2 A Distribution Format (or Six)
While it seems as if the answer to distributing the question

bank is just to “post a big file containing all the questions,”
the real question is what format to use for this information.
The questions could be posted in a large text file – but what
about questions that include images as part of the question,
or even as part of the answer choices? Also, plain text would
lose all of the formatting encoded in the questions themselves
(fixed-width formatted code blocks, italics and bold, etc.).
While questions could instead perhaps be posted in an RTF
document or some other form, making this choice involves
understanding the primary uses that educators would have
for questions from this question bank.

By considering possible uses for these questions, we saw
three primary modes that educators would operate in:

1. Searching/browsing: Educators who want to know what
questions are available, or want to find questions on a
specific topic, or want to find questions they can use as
inspiration for their own will all want to read (some of)
the questions in the bank.

2. Reusing questions for written instruments: Educators
who want to use questions from the bank in writing
their own quizzes, tests, or self-study guides that they
intend to print will likely want convenient copy-and-
paste support into the word processor or text editor
they are using.

3. Reusing questions for on-line instruments: Educators
who want to use questions from the bank in writing
their own quizzes, tests, or self-study guides that they
intend to make available on-line will likely want conve-
nient copy-and-paste (or, better yet, electronic import)
support into the on-line presentation format or course
management system (CMS) they are using.

47

To address the needs of these groups, and also to best uti-
lize the limited facilities the group has available for trans-
lation and presentation of the question bank, we decided
to make the question bank available in at least three forms
in the short term: as a single PDF, for those who wish to
browse or print it that way; as a single HTML document, for
those who wish to browse or search it on-line, or who wish to
cut-and-paste fully formatted text into a word processor or
into an on-line tool; and using a standardized XML-based
question format that can be imported into most existing
CMS tools or learning management systems (LMS).

While both PDF and HTML formats are understandable
alternatives, some working group members considered sup-
porting import to current LMS tools to be an absolute ne-
cessity for our group, if we want others to be able to use the
question bank. Most LMSes support on-line quizzing with
import/export capabilities, and if our MCQs couldn’t be
used without re-entering the questions by hand, that would
seriously limit the value of our group’s work to the rest of the
community. Unfortunately, most LMS tools appear to have
their own individualized export formats, in order to support
the full set of features of their own individual online quizzing
modules. Not all systems support the same feature set – or
even exactly the same styles of questions or question an-
swering mechanisms. That is one reason why there are so
many different tool-specific formats for exporting quiz-style
questions.

Fortunately, the questions collected by the working group
fall within the “least common denominator” of MCQ use
among quizzing systems. All are multiple choice questions
with 2-5 choices, and all have one designated right answer.
(We anticipated that some of the peer instruction questions
would have more than one correct answer, but in fact there
were very few. Even there, PeerWise requires the author
to designate a single correct answer and indicate the other
possibilities in a comment.)

For our work to be useful to the widest segment of our
target community, the format chosen should work on as
many systems as possible. To this end, we chose to pro-
vide the question bank in QTI v1.2 format, the IMS Ques-
tion & Test Interoperability Specification. QTI is a standard
XML-based format for question interchange. There are mul-
tiple versions of the standard that have been developed over
the past 10 years, but the newest versions are not widely
supported – in part, because the newest standard covers a
superset of all features, and few tools actually provide for
everything that is covered. Fortunately, the slightly older
v1.2 of the QTI standard appears to be the most commonly
supported format among LMS tools, with Blackboard, We-
bCT, Moodle (via an add-on plug-in), Sakai (aka, Scholar),
Desire2Learn, Canvas, eCollege, and Angel Learning Man-
agement Suite.

Further, QTI v1.2 is well-supported by Respondus, one
of the more widely used commercial tools for preparing and
publishing on-line MCQ and quiz/test questions. By provid-
ing the question bank in this format, educators will be able
to import to most LMS tools, and at the same time they
will also be able to use commercial tools like Respondus as
the “front end” for viewing/editing/adapting questions and
uploading them to quizzing systems. While QTI may not
be generally accepted as the standard format for MCQ in-
terchange, it does appear to be the de facto choice that is
most widespread today.

After pursuing this course and using Respondus to gen-
erate a QTI version of the question bank, it was easy to
use Respondus’ export capabilities to generate a number of
other formats. As a result, the question bank is being pro-
vided in 6 formats: Word .doc, PDF, HTML, plain text,
QTI, and CSV format.

6.3 Long Term
Over time, the working group will seek out community

contributions of questions to increase the coverage of the
question bank. Educators who have questions they wish to
contribute can e-mail them to questionbank@vt.edu. Ques-
tions in any readily accessible format are welcome, although
contributors must be willing for their work to be publicly
available for others to use under the QuestionBank’s BY-
NC-SA 3.0 license.

In addition to soliciting contributions, additional future
work to provide more innovative services is also possible.
For example, it is possible to provide more tool-oriented
(rather than human-oriented) question bank access, for ex-
ample through a RESTful web service that provides struc-
tured access to questions in JSON or XML format, including
built-in search/filter capabilities.

If you are interested in working on enhancing the collec-
tion, contributing questions, or providing different modes of
access, please contact the working group.

7. DISCUSSION AND CONCLUSIONS
We have achieved the primary goal of the project: devel-

oping a substantial body of MCQs on CS1 and CS2 topics.
The questions were written and reviewed by knowledgeable,
experienced instructors. While there is undoubtedly room
to polish them further (see, for example, the guidelines for
writing MCQs given by Piatek in [27]), we are confident that
they are good enough to provide a useful resource. Further,
the QuestionBank was made available to alpha testers at the
end of the summer and (if all goes according to plan) will
be released more broadly as a beta version by the end of the
year.

Our second question was whether we could reliably add
metadata to the questions, and there our answer is mixed.
We experimented with a wide variety of metadata for these
questions, and in general, could not reliably assign metadata
values to the questions. Even after studying the taxonomies
closely and (in the case of Bloom) completing training, for
almost all the tags we examined, inter-rater reliability was
“fair” or worse. For the schemes to work as search indices,
contributors would have to tag the questions consistently
and users – likely less familiar with the metadata – would
have to use them effectively as well.

For now, the QuestionBank is being made availabe in a
searchable format, without indices. This may prove to be
the best solution – after all, it is the way most of us find
things on the Web. But there are some reasons for opti-
mism with regard to the metadata. First, some of the cat-
egories were more reliable than others, including the two
that (in informal conversations) users indicated they would
be most interested in: Skill and Topic. The reliability for
Skill was moderate, and the level of agreement for Topic
(although difficult to measure) also seemed promising. A
shorter, more focused list of topics might improve the level
of reliability even further. Second, it is possible that future
researchers who focused on a single one of these taxonomies,

48

might achieve better results. Writing 100 questions and as-
signing each one a value in 15 different categories may have
led to “tagging fatigue.”

PeerWise, the software we used to support our collabora-
tion, made it possible for a group located on four different
continents to enter and review each other’s MCQs. Not sur-
prisingly, the large number of questions entered by each per-
son and the extremely large number of metadata categories
and possible tag values pushed the system to its limit. There
were a number of features we would like to see added, in-
cluding the ability to upload multiple questions from a file,
support for diagrams, the ability to designate multiple cor-
rect answers, and the ability to select and view subsets of
the data. Nevertheless, it was a remarkable feat.

The existence of this substantial body of MCQs also opens
up the possibility of a variety of research projects. For ex-
ample, we can use the QuestionBank as a testbed for exam
classification schemes. We outlined above preliminary inves-
tigations of questions such as whether the ATT Taxonomy
can be applied to CS1 and CS2 as well as CS0, and the ex-
tent to which the Block Model can be used for MCQs, as
well as for understanding code.

We can also ask questions about the questions. Our first
attempt at this is described in Section 5, where we present a
variety of MCQ patterns that we found in the QuestionBank.
Other possible questions include:

• Which tags (if any) are unsuitable for MCQs?

• Which tags (perhaps like How questions) retrieve few
questions, but the ones that are there are particularly
interesting? And is there some way to generate more of
that type of question?

• Which tags correlate with each other, and what can we
say about the questions that fall into the intersection of
those two tags?

These are all intriguing directions for future work.
Finally, the most important question is whether the repos-

itory will be of value to computing instructors and researchers.
We will investigate that, and continue to seek ways to make
it more useful, in the future.

Acknowledgments
Thanks to Paul Denny for his considerable help with Peer-
Wise, including writing software to assist the working group.
We also thank the people outside the working group who
contributed questions: Donna Teague, Andrew Luxton Reilly,
Phil Robbins, and colleagues at Auckland University of Tech-
nology. Support for this research was provided by the Office
for Learning and Teaching of the Australian Government
Department of Industry, Innovation, Science, Research and
Tertiary Education.

8. REFERENCES
[1] AlgoViz.org; the Algorithm Visualization Portal.

http://http://algoviz.org.

[2] The Ensemble Computing Portal.
http://www.computingportal.org/. Retrieved
August 7, 2013.

[3] D. Buck and D. J. Stucki. Design early considered
harmful: graduated exposure to complexity and
structure based on levels of cognitive development. In

Proceedings of the Thirty-First SIGCSE Technical
Symposium on Computer Science Education,
SIGCSE-00, pages 75–79, 2000.

[4] T. Clear. The hermeneutics of program
comprehension: a ’holey quilt’ theory. ACM Inroads,
3(2):6–7, 2012.

[5] Q. Cutts, S. Esper, M. Fecho, S. R. Foster, and
B. Simon. The Abstraction Transition Taxonomy:
developing desired learning outcomes through the lens
of situated cognition. In Proceedings of the Eighth
Annual International Conference on International
Computing Education Research, ICER ’12, pages
63–70, 2012.

[6] P. Denny, J. Hamer, A. Luxton-Reilly, and
H. Purchase. Peerwise: students sharing their multiple
choice questions. In Proceedings of the Fourth
International Workshop on Computing Education
Research, ICER ’08, pages 51–58, 2008.

[7] S. H. Edwards, J. Börstler, L. N. Cassel, M. S. Hall,
and J. Hollingsworth. Developing a common format
for sharing programming assignments. SIGCSE Bull.,
40(4):167–182, 2008.

[8] S. Fincher, M. Kölling, I. Utting, N. Brown, and
P. Stevens. Repositories of teaching material and
communities of use: Nifty Assignments and the
Greenroom. In Proceedings of the Sixth International
Workshop on Computing Education Research, pages
107–114, 2010.

[9] R. Gluga, J. Kay, R. Lister, S. Kleitman, and
T. Lever. Over-confidence and confusion in using
Bloom for programming fundamentals assessment. In
Proceedings of the Forty-Third ACM Technical
Symposium on Computer Science Education, SIGCSE
’12, pages 147–152, 2012.

[10] M. Goldweber. Proposal for an on-line computer
science courseware review. In Proceedings of the First
Conference on Integrating Technology into Computer
Science Education, ITiCSE-96, page 230, 1996.

[11] S. Grissom, D. Knox, E. Copperman, W. Dann,
M. Goldweber, J. Hartman, M. Kuittinen,
D. Mutchler, and N. Parlante. Developing a digital
library of computer science teaching resources. In
Working Group Reports of the Third Annual
SIGCSE/SIGCUE ITiCSE Conference on Integrating
Technology Into Computer Science Education,
ITiCSE-WGR ’98, pages 1–13, 1998.

[12] J. Hamer, Q. Cutts, J. Jackova, A. Luxton-Reilly,
R. McCartney, H. Purchase, C. Riedesel, M. Saeli,
K. Sanders, and J. Sheard. Contributing student
pedagogy. SIGCSE Bull., 40(4):194–212, 2008.

[13] O. Hazzan, T. Lapidot, and N. Ragonis. Guide to
Teaching Computer Science. Springer, 2011.

[14] D. Joyce, D. Knox, J. Gerhardt-Powals, E. Koffman,
W. Kreuzer, C. Laxer, K. Loose, E. Sutinen, and
R. A. Whitehurst. Developing laboratories for the
SIGCSE Computing Laboratory Repository:
guidelines, recommendations, and sample labs. In The
Supplemental Proceedings of the Conference on
Integrating Technology Into Computer Science
Education: Working Group Reports and Supplemental
Proceedings, ITiCSE-WGR ’97, pages 1–12, 1997.

49

[15] N. Kasto and J. Whalley. Measuring the difficulty of
code comprehension tasks using software metrics. In
Proceedings of the Fifteenth Australasian Computing
Education Conference, ACE2013, 2013.

[16] J. Kilpatrick and J. Swafford. Helping Children Learn.
National Academies Press, 2002.

[17] D. L. Knox. On-line publication of CS laboratories. In
Proceedings of the Twenty-Eighth SIGCSE Technical
Symposium on Computer Science Education
(SIGCSE’97), 1997.

[18] D. L. Knox. The Computer Science Teaching Center.
SIGCSE Bull., 31(2):22–23, 1999.

[19] D. L. Knox. CITIDEL: making resources available. In
Proceedings of the Seventh Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’02, pages 225–225, 2002.

[20] J. R. Landis and G. G. Koch. The Measurement of
Observer Agreement for Categorical Data. Biometrics,
33(1), March 1977.

[21] R. Lister. Objectives and objective assessment in CS1.
In Proceedings of the Thirty-Second SIGCSE Technical
Symposium on Computer Science Education,
SIGCSE-01, pages 292–296, 2001.

[22] R. Lister. The Neglected Middle Novice Programmer:
reading and writing without abstracting. In
Proceedings of the Twentieth Annual Conference of the
National Advisory Committee on Computing
Qualifications, NACCQ-07, pages 133–140, 2007.

[23] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bull.,
36(4):119–150, 2004.

[24] S. M. Mitchell and W. G. Lutters. Assessing the value
of computer science course material repositories. In
Proceedings of the Nineteenth Conference on Software
Engineering Education and Training Workshops,
CSEETW ’06, pages 2–5, Washington, DC, USA,
2006.

[25] B. B. Morrison, M. Clancy, R. McCartney,
B. Richards, and K. Sanders. Applying data structures
in exams. In Proceedings of the Forty-Second ACM
Technical Symposium on Computer Science
Education, pages 353–358, 2011.

[26] E. Patitsas, M. Craig, and S. Easterbrook. Comparing
and contrasting different algorithms leads to increased
student learning. In Proceedings of the Ninth Annual
Conference on International Computing Education
Research, ICER ’13, 2013.

[27] M. E. Piontek. Best Practices for Designing and
Grading Exams. http:
//www.crlt.umich.edu/publinks/CRLT_no24.pdf.

[28] K. Sanders, B. Richards, J. E. Moström, V. Almstrum,
S. Edwards, S. Fincher, K. Gunion, M. Hall,
B. Hanks, S. Lonergan, R. McCartney, B. Morrison,
J. Spacco, and L. Thomas. DCER: sharing empirical
computer science education data. In Proceedings of the
Fourth International Workshop on Computing
Education Research, ICER ’08, pages 137–148, 2008.

[29] C. Schulte. Block model: an educational model of
program comprehension as a tool for a scholarly

approach to teaching. In Proceedings of the Fourth
International Workshop on Computing Education
Research, ICER ’08, pages 149–160, 2008.

[30] Simon, J. Sheard, A. Carbone, D. Chinn, and M.-J.
Laakso. A guide to classifying programming
examination questions (Working Paper No.2), 2013.
http://hdl.handle.net/1959.13/1036148. Retrieved
August 6, 2013.

[31] Simon, J. Sheard, A. Carbone, D. Chinn, M. Laalso,
T. Clear, M. de Raadt, D. D’Souza, R. Lister,
A. Philpott, J. Skene, and G. Warburton.
Introductory programming: examining the exams. In
Fourteenth Australasian Computing Education
Conference, ACE2012, pages 61–70, 2012. http:
//www.crpit.com/confpapers/CRPITV123Simon.pdf.

[32] B. Simon, M. Clancy, R. McCartney, B. Morrison,
B. Richards, and K. Sanders. Making sense of data
structures exams. In Proceedings of the Sixth
International Workshop on Computing Education
Research, ICER-10, pages 97–106, 2010.

[33] C. A. Thompson, J. Smarr, H. Nguyen, and
C. Manning. Finding educational resources on the
web: exploiting automatic extraction of metadata. In
Proceedings of the ECML Workshop on Adaptive Text
Extraction and Mining, 2003.

[34] M. Tungare, X. Yu, W. Cameron, G. Teng, M. A.
Perez-Quinones, L. Cassel, W. Fan, and E. A. Fox.
Towards a syllabus repository for computer science
courses. SIGCSE Bull., 39(1), 2007.

[35] J. Whalley, T. Clear, P. Robbins, and E. Thompson.
Salient elements in novice solutions to code writing
problems. In Proceedings of the Thirteenth
Australasian Computing Education Conference, ACE
’11, pages 37–46, 2011.

[36] J. Whalley and N. Kasto. Revisiting models of human
conceptualisation in the context of a programming
examination. In ACE 2013, pages 67–76, 2013.

50

APPENDIX
Possible values used for Topics

ADT-Dict-DefInterfaceUse
ADT-Dict-Implementations
ADT-List-DefInterfaceUse
ADT-List-Implementations
ADT-Map-DefInterfaceUse
ADT-Map-Implementations
ADT-PriorityQ-DefInterUse
ADT-PriorityQ-Implementations
ADT-Queue-DefInterfaceUse
ADT-Queue-Implementations
ADT-Set-DefInterfaceUse
ADT-Set-Implementations
ADT-Stack-DefInterfaceUse
ADT-Stack-Implementations
Algorithm Complexity-Big-Oh
Arithmetic Operators
Arrays
Assignment
Character-ASCII
Character-Representations
Character-Unicode
Choosing Appropriate DS
Class Libraries
Collections Except Array
Constants
Data Types And Variables
Events
Exception Handling
File I/O
Graphs
GUI-Design-Implementations
Hashing-HashTables
Heaps
I/O
Java Interface
Lifetime

Linked Lists
Logical Operators
Loops Subsumes Operators
Methods Funcs Procs
Notional Machine
Numeric-Float-Precision
Numeric-Float-Range-Overf
Numeric-Float-Representations
Numeric-Float-Rounding
Numeric-Integ-Range
Numeric-Int-Range
Numeric-Int-Representation
Numeric-Int-Truncation
OO concepts
Operator Overloading
Params-Subsumes Methods
Pointers-But Not References
Program Design
Programming Standards
Recs-Structs-HeteroAggs
Recursion
Relational Operators
Runtime-Storage Management
Scope-Visibility
Searching
Searching-Binary
Searching-Linear
Selection Subsumes Operators
Sorting-NlogN
Sorting-Other
Sorting-Quadratic
Strings
Testing
Trees-Other
Trees-Search-Balanced
Trees-Search-Not Balanced

51

