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Direct Clustering of a Data Matrix

J. A. HARTIGAN*

Clustering algorithms are now in widespread use for sorting heterogeneous
data into homogeneous blocks. If the data consist of a number of variables
taking values over a number of cases, these algorithms may be used either to
construct clusters of variables (using, say, correlation as a measure of distance
between variables) or clusters of cases. This article presents a model, and a
technique, for clustering cases and variables simultaneously. The principal ad-
vantage in this approach is the direct interpretation of the clusters on the data.

1. INTRODUCTION

Consider the voting data, Table 1, consisting of the
percentage Republican vote for President of the United
States, in the southern states, over the years 1900-1968.
It is desired to detect clusters of states, i.e., states which
vote similarly, and also clusters of years, i.e., years for
which the votes are similar.

The definition of similarity is crucial, and it has been
customary to express similarity through a measure of dis-
tance between pairs of objects to be clustered. See, for
example, [1,2,4,5,6,7,8,9,11,12,14,15,16,17,19,22].

It is customary to assume this distance matrix is given,
and to develop algorithms to construct clusters using the
distance matrix. For example, a cluster may be any sub-
set of objects such that for any two objects = and y inside
the cluster, and any z outside the cluster,  and y are
closer to each other than to z. The family of clusters
satisfying the previous property forms a tree, i.e., any two
clusters in the family are disjoint, or one includes the
other. Another common cluster family is a partition, a
set of disjoint subsets whose union is the whole set. Parti-
tions are special cases of trees, and trees will be the prin-
cipal type of clustering considered here.

For case by variable data, there are several serious
difficulties with the distance method which make alterna-
tive approaches desirable. Some of these are discussed in
[9]. A list of the difficulties, in increasing order of impor-
tance follows.

1. Expensive computations. The computing and storing
of n(n—1)/2 distances makes it expensive to cluster even
moderate numbers of objects, say 500. Some algorithms
avoid the n(n—1)/2 calculations by computing only a
subset of the distances during the course of the algorithm.
This seems plausible since principally the small distances
are involved in constructing clusters. So this computa-
tional difficulty is not really an overriding one.

2. Weighting decisions. In choosing the distance func-
tion, decisions must be made about the relative weight

* J. A. Hartigan is associate professor, Department of Statistics, Yale University,
New Haven, Conn. 08520.

to be given to each variable. This is not only a problem
of the distance approach. In clustering insects, various
variables describing mouth parts might be used, and a cer-
tain set of clusters obtained. Or variables describing
genitalia might be used, and a different set of clusters
obtained. A family of different clusterings will be ob-
tained according to the relative weight given genitalia
and mouthparts. See, for example, [3, p. 150].

A taxonomist chooses carefully the variables to be used
in clustering, rejects many as irrelevant or too variable,
and gives more or less importance to others. These deci-
sions are often subjective ones, disagreed on among the
experts, subject to later revision. The weighting decisions
for variables are made interactively with the establishing
of clusters. Thus a variable which does not distinguish
well between established clusters will be reduced in
weight.

In the distance approach, these decisions must be made
in advance of any knowledge of clustering, in advance of
any hints about which variables are good variables and
which are bad for clustering. Real variables have usually
been weighted using the sample covariance matrix, per-
haps requiring all variables to have variance one, perhaps
doing principal component analysis and ignoring all but
the first few principal components corresponding to the
largest eigenvalues, or perhaps even computing the
Mahalanobis distance which gives all principal compo-

1. REPUBLICAN VOTE FOR PRESIDENT®

Year
State

00 o4 08 12 16 20 24 28 32 36 4o 4u 48 52 56 60 64 68

Alsbama (AA) 35 21 24 8 22 31 27 48 14 13 14 18 19 35 39 42 70 14
Arkansas (AS) 35 40 37 20 28 39 29 39 1318 21 30 21 44 46 43 44 31
Delaware (DE) 54 54 52 33 50 56 58 65 51 43 45 45 50 52 55 49 39 45
Florida (FA) 19 21 22 818 31 28 57 25 24 26 30 34 55 57 52 48 41
Georgia (GA) 2918 31 4 7T 29 18 43 8131518 18 30 33 37 54 30
Kentucky (KY) 49 47 4B 25 4T 49 49 59 40 4o 42 45 41 50 54 54 36 4y
Iouisiane (IA) 211012 5 73 20 2% 711 1419 17 47 53 29 57 23
Maryland (MD) 52 49 49 24 45 55 45 57 36 37 41 48 49 55 60 46 35 u2
Mississippl (MI) 10 5 7 2 514 818 4 3 4 6 3 4o 24 25 87 14
Missouri (MO) 46 50 49 30 4T 55 50 56 35 38 48 48 42 51 50 50 36 45
North Car. (NC) 45 40 46 12 k2 43 55 29 29 27 26 33 33 U6 49 48 LL 4o
South Car. (SC) 7 5 61 2 & 2 9 2 1 4 4 U L9 25 49 59 39
Tennessee (TE) 45 43 46 24 43 51 L4 54 32 31 33 39 37 50 43 53 uk 38
Texas (TS) 31 22 22 917 24 20 52 11 12 19 17 25 53 55 49 37 4o
Virginia (VA) 44 37 38 17 32 38 33 54 30 29 32 37 41 56 55 52 46 43

Vest Virginia (WV) 54 55 53 21 49 55 49 58 44 39 43 45 42 4B 47 54 32 ko

® Southern states by 20th century years, in percentages.
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2. MARGINAL TREES USING DISTANCES

State Yeer Distance between Distance between

32 36 40 60 64 68 years states
sc 2 1 4 49 59 39 |32 |sc.
MT ¥ 3 4 25 87 14 3 Juo 12 |1A
IA 7 11 1% 29 57 23 6 5136 18 14 MI
XY 40 42 4o 54 36 4u 25 23 24 |60 23 26 36
MD 36 41 37 46 35 42 18 18 18| 8 |68 28 21 35
MO 35 48 38 50 36 45 50 45 47 30 34 |64 28 25 36 I—]m

nents (including the many junk ones with small eigen-
values) equal weight. But the sample covariance matrix
does not reveal clustering of cases, and it is on this clus-
tering that variables must be evaluated. Admittedly
there is a circularity here in that variables are used to
construct the clusters which are used to evaluate the
variables.

3. Remoteness from data. If distances are used, the re-
sults of the clustering must be interpreted as—such and
such objects are close in this distance. This information is
not useless if the distance is well chosen. An example can
be seen in Table 2 selected from the voting data. Eu-
clidean distances are used between years, giving all states
equal weight, and a tree of clusters is obtained for years.
Similarly a tree is obtained from states. The year clusters
are interpreted by saying 32, 40, 36 are close, 60, 68 are
close and 64 is far from all years. And SC, LA, MI are
close, and KY, MD, MO even closer. But this informa-
tion does not reveal the main happening in the data, i.e.,
the unusual interaction between SC, LA, MI and 60,
68, 64.

This article introduces a clustering technique in which
the model for a single cluster relates a cluster of variables
to a cluster of cases. Variables and cases are thus clustered
simultaneously, and the results of the clustering are
interpreted directly on the data matrix.

Tryon [20] and Tryon and Bailey [21] cluster both
variables and cases, first clustering variables using the
correlation matrix and then using a distance measure
across the clusters of variables to cluster cases. Their
technique differs from the present one in not relating spe-
cific case clusters to specific variable clusters. In a survey
paper, Good [10] sketches a technique for simultaneous
clustering of cases and variables.

2. DIRECT CLUSTERING MODELS

The data are assumed to be in data matrix form with
rows of the matrix designated as cases and columns of the
matrix designated as variables. There is a response for
each variable, for each case. (Some responses may be
missing.) There may be various degrees of comparability
among responses in the matrix. Usually, responses to
various cases within the same variable are comparable.
More specially, if the variables are all on the same scale
(perhaps after some previous standardization), responses
may be comparable between variables as well.

A cluster is a submatrix of the data matrix. The corre-
sponding set of cases will be called a marginal case (or
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row) cluster; the corresponding set of variables is a mar-
ginal variable (or column) cluster. There are thus three
clusters present: the cluster of response values, the mar-
ginal cluster of cases, and the marginal cluster of vari-
ables. A model for a cluster specifies the form of the data
within a cluster. For example, if responses are comparable
across variables, as in the voting data, the model specifies
that all responses within the cluster are equal. If responses
are not comparable across variables, the model specifies
that each variable in the marginal cluster is constant over
the cases in the marginal case cluster. Other models will
be appropriate for different forms of data, e.g., a two-way
analysis of variance model, or the requirement that the
submatrix be of low rank. See Table 3.

If a number of clusters are present, it is desirable for
presentation purposes to restrict the way they relate to
each other. It makes an ugly picture if all clusters cannot
be presented as contiguous blocks after permuting rows
and columns. The three-tree cluster structure requires
that all three families of clusters, on the responses, the
cases, and the variables, are trees. (A family of clusters
is a tree if no two clusters “overlap”; either they are dis-
joint, or one includes the other.) This structure implies
contiguity of clusters after permutation of rows and col-
umns. (The converse is false.) A slight adjustment must
be made in the implications of a model in the presence of

3. DIRECT CLUSTERING MODELS®?

Case Variable
1 2 3 4 5
1 T u 4 4|7
A. Responses 2 Loy 4on2
comparable over 3 .1
variables 4 69 3 2 1
5 5 4 1 4 6
6 7 8 1 6 2
1 4 7 A K| 1
B. Responses not 2 4y 7 A K| 2
comparable between 3 L 7 A K| 3
variables i3 7 1 B L 4
5 8 2 C L 7
6 9 % E F 1
1 4 5 2 81
C. ANOVA model 2 7 8 5 11| 6
3 11 12 9 15 1
4 2 4 9 1
5 1 7 2 7
6 3 01 4 3 4

 Case cluster (1, 2, 3); variable cluster (1, 2, 3, 4).
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a number of clusters. The model implies that the response
values in a cluster C be of a certain form, regarding the
values in other clusters included in C as missing.

Two interesting specializations of the three tree cluster
structure are:

1. The response clusters form a partition. This case is con-
sidered in detail for the equal-response-values model on
the voting data.

2. All three sets of clusters are partitions. The three-tree
structure, and the above specializations, are outlined in
Figure A.

An example of the three-tree cluster structure is given
in Table 4, with the model that variables in a cluster be
constant over cases in the cluster. The data are UN votes
in 1969-1970. It is natural to expect clusters of countries
(similar interests or political systems) and clusters of
propositions (series of propositions about the same under-

A. 3T CLUSTER STRUCTURES
|. Three tree structure

Case clusters II
I

[1

Variable clusters > i | -

2. Partitioned responses

1
I

-

3. Three partitions

i
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4. UN VOTES IN 1969-1970°

EASE HUNG CHINA KOREA SO AF PAPUA
State 1 2 34 5 67 8 9 10 11 12 13 14
USR 0 FREETEY | E I 51 3 (2 2] 1 3
BGA 11 1 aff3 11 31 3 |2 2 1 3
e 13 3 3|31 1 31 2] 3 1 1
SYR 1 31 1 3 J 2l 3 1 1 3
UAR 1 33 3|3 11 302 2 3 1 1 3
KEN 13 3 3(3 11 30205 3 1 1 3
TAN 122 2|3 1 1 3|2 E 3 01 1 3
SEN 1 3 3 3t l 2 11 3 1 1 [z
DAH 1 3 3 3 ;I 1 3 [35] I; 301
USA 13 3 3|1t 3 3 1 3 1 1 3 3 1
UNK 13 3 31 3 301 1 3 3 1
FRA 133 3|31 2 313 1 1 3
SWE 13 3 3|31 2 33 1 1 3 3 1
NOR 13 3 3|8 2[5 23 1 1 3 3 1
AIA 1 3 3 3|1 3[1[3]3 1 1 3 3 1
NZ 13 3 3|t 3|1 13 1 1 3 3 1
MEX tfe 221 3 31 3 1 1 D [2] 1
VEN 12 2 2/l 3 3 1 3 1 [7 I
BRA 1 ]2 2 2/t 3 3 1 3 1 1 3 1

8 1 =Yes, 2 =Abstain, 3 =No, 5 =Absent.
NOTE: 1. Call for eased tensions in Korea.

2. Add Hungarian preamble to South Africa expulsion from UNCTAD.
3. Replace last paragraph of preamble by Hungarian amendment.
4. Hungarian amendment of paragraph 1 and 2 of SA expulsion.
5. Declare the China admission question important.
6. Recognize mainland China and expel Formosa.
7. To make study commission on China admission important.
8. To form study commission on China admission.
9. To adopt USSR proposal to delete item on Korea unification.

10. Reaffirm the UN mission in Korea.

11. Declare SA expulsion from UNCTAD important.

12. Adopt SA expulsion.

13. Right of Papua and New Guinea to independence in principle.

14. Call for powers to turn government over to Papua and New Guinea.

lying issues). The eye-and-hand algorithm attempts to
maximize the number of equal values implied by the
model and, given this maximum, to minimize the number
of blocks. The clustering expresses the voting in summary
form—a few propositions were agreed on by all countries,
but otherwise the Assembly splits into an Eastern and
Western bloc who disagree on most issues. On the China
question, Senegal and Dahomey defect from the Eastern
bloc and France, Sweden and Norway from the Western
bloe. The Soviet bloc defects on the South African expul-
sion issue, as do Mexico and Venezuela, etc. The large
blocs are more stable than the small ones.

3. A DIRECT CLUSTERING ALGORITHM

In the Republican voting data, the entries in the data
matrix are comparable across both states and years. An
appropriate model for a single cluster is that all responses
within the cluster are equal. The cluster structure will
assume that the clusters partition the responses, but that
the marginal row clusters form a tree, as do the marginal
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5. PARTITIONED RESPONSE MODEL

cotmn e
Row 12 3 % 5 6 7 8 9 10 1
1 7 7 17|19 9% ¥ 4|5 5 5 D
2 7.1 109 95 s s|s s s |[]
3 3 3 3 9 9 6 6 6 5 5 5
4 3 3 3|9 96 6 615 5 5 l]
5 2 2 2 4 u 4 4 4 5 5 5
6 2 2 2 4 4 4% 4 4fs5 5 5 n
7 3 3 3 3 3 3 3 3 7 7 T
8 3 3 3 3 3 3 3 311 7 N [I
——— 1L 3 T — Data constant
— within blocks
{ ]
Marginal column clusters

column clusters. The names “rows” and “columns” will
be used rather than cases and variables, since the rows
and columns are treated the same in the equal-response
model. See Table 5 for a data matrix satisfying the above
model and cluster structure.

The deviation of an observed data matrix 4 from the
ideal model on a particular partition By, - - -, By of re-
sponses is measured by the sum of squares

SSQ = X (A — A5,

where A} is the ideal data matrix closest to 4. Of course
Aj; is constant within each cluster of the partition, so it
is defined by

*
2 e, (A —
Equivalently,

SSQ = D Dises, (A — by)?,

where b, is the average value of A;; in the cluster B,.
Every partition By, « + -, Bx can be evaluated by com-
puting its SSQ and for very small data matrices it might
be possible to look at all partitions. Of course, if k is the
size of the matrix, SSQ will be zero, and generally com-
parisons of SSQ should only be made for k fixed.

For real data, some quick method of reaching a reason-
able partition must be devised. The following splitting
algorithm is of a familiar type used in one-way clustering,
with some complications due to the requirement that
marginal clusters form trees (see Figure B). At the kth
step of the algorithm, there will be a partition into %
clusters By, - - -, Bx. The cluster B, has the set of rows
R, and columns C, and will sometimes be denoted
(R,, Cp). The number of rows in R, is r,, and the number
of columns in C, is ¢,. 4 “split” of B, is a division of B,
into two clusters B}, and B} either by rows or columns.
For a row split, B, = (R}, C,) and (B, =R}, C;), where
R}, R} is a partition of R,,.

Beginning with the partition consisting of a single set
(the set of all indices of the matrix), the algorithm pro-
ceeds by splitting selected clusters in the partition. Thus

A.~,~)=0, p=1,2,"',/€.
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at the kth step, the partition changes from By, By, - - -,
Bp, crty, Bk to Bl, Bz, c oty Bp_l, BI,” Bg, .. ,Bk. The
reduction in SSQ due to splitting B,= (R, C,) into
B} = (R}, Cp) and B} = (R}, Cp) is

SSQR = ¢y (A(By) — A(By)? + cory (A(B)) — A(By))%

where A(B) denotes the average of A over the block B.
It is evident that only the row means are ncessary to
determine this reduction, whatever R, and R}/, and that
the maximum reduction over all possible 27 splits will
occur in order of the row means, i.e., all row means in
R} will be less than all row means in R} . It is therefore
sufficient to test (r,— 1) divisions of the ordered means to
find the optimal row split of B,.

If B, is split by rows, it may happen that the marginal
row cluster R, contains some other row clusters By, B due
to a previous splitting of some other cluster B,. In this
case, the only split of B, conforming to the marginal tree
requirement will have R,=R}, R) =R;/. Such a split is
called a fized split; if there are no prior constraints, the
split is called a free split. Since a free split selects among
all possible divisions of the row cluster, a larger sum of
square reduction will be expected just due to chance. It
will be shown in Section 4 that the SSQ reduction due to
free splits should be multiplied by =/2r,, r,>2.

The algorithm thus proceeds by choosing that split
which maximizes SSQ reduction at the kth step, using
adjusted SSQ for free splits. The splitting stops when the
reduction in SSQ due to further splitting is less than that
expected by chance. Once again some complications enter
due to the presence of free and fixed splits. Let SS1 be the
sum of squares reduction due to all free splits, and let N,
be the total number of columns and rows involved in free
splits. Let SS2 be the sum of squares reduction due to
fixed splits and let N, be the total number of such fixed

B. SCHEME OF SPLITTING ALGORITHM
SEQUENCE OF STEPS OF ALGORITHM

Initial stage Ist stage 2nd stage
. L]
Fixed _| o
. splits .
| n oo L)
+ later
) stages . -
3rd stage 4 th stage 5th stage
o e o o .l ® 6 o0 l
.
e o o . : L]
(] o
6 th stage 7 th stage Stop



Direct Clustering

splits. Let SS3 be the sum of squared deviations within
clusters, and let N; be the total number of responses less
the number of clusters. The algorithm stops when
SS1 and SS2 are not large compared with their ex-
pected values based on SS3—more precisely, when
SS3/N3>(8S1/2+882)/(N1/w+ N2). The unusual
weighting of SS1 and SS2 will be justified in Section 4.

4. FIXED AND FREE SPLITS

During the algorithm, the rows of clusters are split in
two ways: (1) by a free split which maximizes the SSQ
reduction over all divisions into two disjoint sets of rows,
or (2) by a fixed split which divides the rows into two
predetermined disjoint sets. Let ((4:, 7=1, - - -, n),
i=1, - - -, m) denote the values in the cluster, and sup-
pose that A;=u-+tot; where £; are unit normal, and
independent. It is desired to know the distribution of
SSQ reduction due to free or fixed splits, so that the value
of splitting can be assessed. If the actual SSQ reduction
is not high compared to the expected reduction under the
null model, then the splitting will not be executed.

The fixed split reduction has a well known distribution.
Suppose the given split is at row k, and let X; denote the
mean of all observations {A,;, <k} and X, denote the
mean of all observations {A,-,-, 1>k } Then SSQ reduction
=(X1—X,)nk(m—k)/m, and this is distributed as ¢*x%.

Because it is chosen to be the maximum reduction over
all divisions into two sets of rows, the distribution of the
free split reduction is complicated. If X 1y, X 2y, - = +, X (m)
denote the ordered row means, then

SSQ reduction
<X<1)+"'X(k) X ey + ---X(,,,)>2
= max _

k m—Fk
-nk(m — k)/m.

Under the null hypothesis, Xy, X, * -+, Xm) are
order statistics from a normal distribution N (g, ¢%/n).
My colleague L. J. Savage has shown that, for m large,
the optimal k is within 0(n/m) of im, and that the SSQ
reductions for all k£ within 0/m) of im differ by 0(1).
For large m, then, the distribution of SSQ reduction may
be determined by splitting at any convenient place near
the median Of X(l), ctty, X(m). USiIlg IC, X(k)S”SX(k-I-l))
as the splitting point, it follows that conditionally on k,

SSQ reduction = (X; + X,)2nk(m — k)/m 4+ 0(1),

k

where X, is the mean of k half normals and, indepen-
dently, X, is the mean of (m—k) half normals. The mean
and variance of the leading term is available conditionally
on k, and k is binomially distributed with expectation
3m and variance im. It then follows that

E (SSQ reduction) = 2¢2m/7 4+ 0(1).
Var (SSQ reduction) = 8¢*m/7 + 0(1).
Asymptotically then

SSQ reduction ~ 26 X5/x + 0(1).

127

Using this distribution theory, the algorithm may be
modified to treat fixed and free splits differently. For free
splits of more than two rows,

MSQ = (SSQ reduction) =/2m,
where m is the number of rows. For other splits

MSQ = SSQ reduction.

The algorithm proceeds at each stage by executing that
split with smallest MSQ.

To stop, consider all free splits of more than two rows
or columns, with total sum of squares reductions

SS1 ~ 20" Xayy/m,

where N, is the total number of rows or columns freely
split. And all other splits, with total sum of squares
reduction

2 2
SS2 ~ 0 XNy

where N, is the number of such splits. Finally consider
the sum of squares within blocks,

883 ~ o Xy

where N; is the total number of data points, less the
number of blocks.

Stop if SS3/N;> (3881+882)/(N1/7w+Ns). Thus the
algorithm stops when further splits, on average, do not
reduce prediction error.

An example of the algorithm appears in Table 6. In
that table the quantity SS3/N; is called mean square
within blocks; (38814S8S2)/(N1/m+N,) is mean square
due to new splits. These are recorded at each step in the
algorithm.

5. DIRECT CLUSTERING VERSUS
DISTANCE CLUSTERING

The average distance algorithm is a joining algorithm
which begins with a set of clusters consisting of single
objects, and forms new clusters by coalescing that pair
of clusters between which the average (over pairs of
objects in the two clusters) distance is smallest. This
algorithm was applied to the voting data for both years
and states. The resulting clusters are compared with the
marginal clusters of the two-way clustering algorithm, in
Figure C.

There are disappointingly few contradictions in the two
trees. In the states, Texas is placed by the average dis-
tance algorithm with (FA, AS) rather than (GA, AA,
LA). Examination of Table 6 shows that Texas was
rather similar to (GA, AA, LA) up to 1948, but has since
become more similar to (FA, AS). This fact is signalled
in the joint clustering by the splitting off of Texas in
later years. In the years, 1904 is placed by the average
distance algorithm with 1908 rather than with 1944,
1948, 1916. In Table 6, there seems no clear cut advantage
in either assignment. Year 1968 is not grouped with
(1908, 1924, 1900, 1920) in the average algorithm, which
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6a. TWO-WAY CLUSTERING OF REPUBLICAN VOTE

Year

State

12 36 32 40 44 48 16 o4 68 08 24 00 20 28 56 60 52 64
sC 11 2 4 % 4 2 539 6 2 T 4|l ylas{u9 49l59
MI 23uu63551&78101u182u25|u087
GA 4113 81518 18 7 18|30 31 18 29 29|45 33 37 30|54
IA 5(11 7 1% 19 17 7 10[23 12 20 21 31|24 53 29 47|57
AA 8|13 14 14 18 19 22 21{14 24 27 35 31|48 39 42 35|70
TS 9{12 11 19 17 25 17 22|40 22 20 31 24|52 55 49 53|37
FA 8l24 25 26/30 34 18 21|41|22 28 19 31|57 57 52 55|48
AS 20{18 13 21|30 21 28 40|31 37 29 35 35|39 46 43 uufuy
VA 1729 30 32|37 41 32 37|43 38 33 44 38|54 55|52 56[46
NC 12{27 29 26[33 33 42 4o 40 46 40 U5 43|55 49[u8 U6l 4k
TE 24)31 32 33[39 37 43 43| 38 46 Ul 45 51|54 49(53 50| 4y |
XY 25|40 40 42|45 41 47 u7juulug 49 49 49|59 54|54 50| 36
MD 24| 37 36 41148 49 45 4ol u2fu9 45 52 55|57 60ju46 55| 35
MO 30| 38 35 4B| 48 42 UT 50[ 45|49 50 46 5556 50|50 51| 3¢
wv 21139 44 43145 U2 49 55 40|53 49 54 55|58 54fu47 48| 32
DE 33|43 51 45[45 50 50 54| 45|52 58 54 56{65 55{49 52|39

from the table is again not decisively right or wrong. The
average algorithm groups 1956 with 1952, 1960 rather
than with 1928. The 1956, 1928 grouping is based on
the large Republican votes in those two years in the
border states. But the grouping (1956, 1952, 1960) is also
unobjectionable.

Another sort of difference between the two trees is that
there are a larger number of clusters in the average dis-
tance method, the number of objects less one. For exam-
ple there are four clusters within the (KY, MO, WV,
MD, DE) cluster, versus one for the two-way clustering.
All of these states are very similar to each other, and the
four clusters are not all all reliable when sampling errors
in the distances are considered. The two-way clustering

6b. MEAN SQUARE ANALYSIS®

All
ey 25, b Yo omiery B e Y
1 AS, 12-64 2645 2045 277 19 12, FA-AS 338 91 46
2 20, SC-AS 1765 940 184 20 AA, 28-52 228 89 45
3 20, VA-DE 1924 507 113 21 56, VA-DE 185 73 43
¥ MI, 12-20 840 363 107 22 o4, GA-TS 165, 66 42
5 52, SC-AS 545 269 92 23 o4, VA-TE 518 12 38
6 MI, 28-52 1240 315 87 24 o4, KY-DE 345 57 36
7 52, VA=DE 1227 279 83 25 o4, FA-AS 229 49 35
8  MI, 64-64 672 219 79 26 TE, 64-64 154 46 34
9 TE, 12-20 394 205 76 27 28, SC-MI 121 3} 34
10 SC, 6u-64 392 179 69 28 €0, MI-MI 113 39 33
11 56, SC-MI 372 173 68 29 FA, 68-20 90 37 33
12 TS, 12-20 288 166 65 30 TS, 64=64 85 37 33
13 TS, 28-52 285 135 61 31 AA, 6u-64 408 43 33
14 FA, 28-52 300 134 61 32 €8, KY-DE 83 36 31
15  MI, 60-52 272 126 €0 33 68, FA-FA 205 34 30
16 12, KY-DE 229 121 59 3% 40, VA-TE 78 30 29
17 12, VA-TE 1120 143 52 35 40, KY-DE 302 34 28
18 12, TA-TS €28 102 48 36 40, FA-AS 149 27 27

8 See Sections 3, 4.

NOTE: The first split runs from years 1912 to 1964, beneath state AS. The second
split runs from states SC to AS, after year 20,
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seems more correct in suppressing tiny, irrelevant details.
Next, looking at large clusters, the average algorithm has
two groups (SC, MISS, GA, AA, LA) and (rest), whereas
the two-way method has four groups, (SC, MISS),
(GA, AA, LA, TS), (FA, AS), and (rest). From the table,
there does seem to be a good case for this set of four
clusters; (SC, MISS) seem distinctively different from
(GA, AA, LA) in particular. The grouping (SC, MISS,
GA, AA, LA) is also very unstable under sampling error
on the distances. The absence of splitting in the small
clusters is due to the stopping rule. The suppression of
clusters at the larger level is more interesting in that it
can only happen when early free splits are later verified
by further fixed splits. Thus 64 is first split off in the
cluster 28-64, SC-AS. Then this split is verified indepen-
dently for the states VA-DE.

The conclusion is that the clusters resulting from the
two methods are not very different, but that the average
algorithm has more clusters than the two-way clusters
and that these extra clusters can be suppressed without
loss because they are not reliable. The average algorithm
is conceptually simpler than the two-way method, though
somewhat more expensive in computation. The real ad-

C. REPUBLICAN VOTING DATA
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vantage of the two-way method does not lie in the mar-
ginal clusters, but in the interpretation directly on the
data matrix expressing the interaction between the two
marginal clusters. It may be worthwhile to work out the
two marginal trees in advance, using one of the distance
algorithms. Then construct the joint clustering by con-
sidering the variance in all blocks formed from pairs of
marginal clusters, retaining only those blocks whose
variance is sufficiently small.

6. ERROR ANALYSIS

A general technique for assessing statistical error using
subsamples is described in [13]. Applied here, a ran-
domly selected subsample (each observation lies in the
subsample with probability 0.5) of the data is used, with
the remaining observations treated as missing. This
process is repeated many times, with the two-way clus-
terings obtained regarded as a random sample from the
“true” two-way clustering for an infinite amount of data.
Two such clusterings are displayed in Table 7.

The principal divisions are maintained in the subsam-
ples (with some fringe adjustments)—for states (MI,
SC), (LA, AA, GA, TS, FA, AS), (NC, VA, TE), (MO,
WYV, KXY, DE) and for years (1964), (1952, 1956, 1960,
1928), (rest). The finer divisions do not appear. (It was
in these finer divisions that contradictions appeared with
the average distance algorithm.)

[Received January 1971. Revised August 1971.]
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