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We analyze convergence of the expectation maximization (EM) and vari-
ational Bayes EM (VBEM) schemes for parameter estimation in noisy lin-
ear models. The analysis shows that both schemes are inefficient in the
low-noise limit. The linear model with additive noise includes as special
cases independent component analysis, probabilistic principal compo-
nent analysis, factor analysis, and Kalman filtering. Hence, the results are
relevant for many practical applications.

1 Introduction

The expectation maximization (EM) algorithm introduced by Dempster,
Laird, and Rubin (1977) is widely used for maximum likelihood estimation
in hidden variable models. More recently, a generalization of the EM al-
gorithm, the so-called variational Bayes EM algorithm (VBEM), has been
introduced (see, e.g., Attias, 1999), which allows more accurate modeling
of parameter uncertainty. EM convergence is known to slow dramatically
when the signal-to-noise ratio is high, and a natural question is then: Will
the more accurate modeling of parameter variance in VBEM assist the con-
vergence? Here we analyze both schemes and show that they are subject to
slow convergence in the low-noise limit.
We consider linear models with additive normal noise,

xt=Ast+nt, t=l,...,N,

wherex; € R™ are N observed data vectors, s; € R? unobserved hidden vari-
ables, and n; ~ A(0, £) white gaussian noise. For notational convenience,
we construct the matrices X and S, which consist of the observed and unob-
served data vectors as columns. The unobserved variables S are assumed
to be distributed according to a prior p(S), which can be gaussian (factor
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analysis) or nongaussian (independent component analysis). The matrix A
isreferred to as the mixing matrix, and it can (but does not have to) be square
(m =d).If m < d, we speak of the overcomplete case, while the opposite sit-
uation, d < m, is denoted overdetermined. In our discussion, the data are
assumed prewhitened, that is, XX = NI, a mild condition that simplifies
the notation.

2 Slow Convergence in EM

For parameter estimation (A, ) in the linear model, the main challenge
is that the marginal likelihood involves an average over all possible con-
figurations of the hidden variables, with a measure that depends on the
unknown parameters themselves. EM algorithms break up this stalemate
in two separate iterated steps. First, we find the posterior distribution of
the hidden variables P(S|X, A, X), for fixed parameters and then improve
the parameters by maximizing thelog likelihood averaged with regard to the
approximate hidden variable posterior (for details, consult Dempster et al.,
1977; McLachlan & Krishnan, 1997). Bermond and Cardoso (1999) made
an important but seemingly little-known discovery about the convergence
properties of the EM algorithm in the low-noise limit. Following their line
of thought, and for simplicity considering the case & = ¢*I, we can expand
the moments of the posterior (S) and (SST) in powers of the noise variance
(see Figure 1) to obtain approximate expressions for the parameter updates.
Using the notation I' = X — AS, we get

A1 =X(8)T(SST) 1 = A, + 02A, + O(c*)

o2, = =Tr(ITT)) = o}, +02z+ O(c?),
where A, denotes the estimated mixing matrix in the nth iteration.
In the square case, the noise update simplifies into o7, ; = 02 + O(c*).
In the overdetermined case, of,, = 1 — rank(A)/m and z = rank(A)/m —
2Tr(U)/N, where U is a data and prior dependent matrix. (This result is
discussed in Petersen & Winther, 2005a, to which readers are referred for
details.)

The result indeed explains the poor convergence properties experienced
using EM in the low-noise limit. The EM algorithm “freezes,” and an exces-
sive number of iterations are needed for convergence of the mixing matrix.
Moreover, for the square case, as also mentioned in Bermond and Cardoso
(1999), the first-order correction A, is proportional to the gradient of the
noiseless model’s likelihood, and thus the fix point is to first order equiva-
lent to the fix point of the noiseless model (Bell & Sejnowski, 1995).

The slow convergence of the EM algorithm has been debated for a while,
and many suggestions for speeding it up have been proposed (McLachlan
& Krishnan, 1997). One straightforward method is to use a gradient-based
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Figure 1: This plot demonstrates that the fundamental Taylor expansion of the
moments (S) and (SST) is reasonably accurate. A set of sources S,., is gener-
ated using a mixture of gaussians (MoG) prior. From this, using a suitable 2 x
2 mixing matrix, the observed data X is constructed for each noise level. Since
the source prior is a MoG, the exact posterior moments (S)exc, (SST)exc can
be computed. The error is the mean squared difference of the true mean and
the approximation, Err = ﬁ > ({Sit)exe — (Sit)est)?, and correspondingly for
the second moment. Note that the approximation is fairly accurate when the
noise variance is small. As expected, the first-order approximation (triangles)
is more accurate than the zeroth-order approximation (circles) in the low-noise
regime. Only for noise variance larger than 10~ is it beneficial to use the genera-
tive sources (dots) as estimators for the posterior means. This is possible only for
artificial data sets but is included for perspective. The mean field (MF) approx-
imations to the posterior moments (squares) are also included for perspective
(see Hojen-Sorensen, Winther, & Hansen, 2002, for details). The MF approach is
performing very well indeed, especially when the so-called linear response (LR)
correction is taken into account. This is an indicator that in the low-noise regime,
ICA techniques such as mean field ICA may prove to be accurate approaches.

optimizer in the M-step. The gradient and the bound value are expressed in
terms of the sufficient statistics, which are obtained in the E-step (Olsson,
Lehn-Schigler, & Petersen, 2005). Recently, another general technique, by
Salakhudinov and Roweis (2003), called adaptive overrelaxed EM, was pro-
posed, leading to considerable faster convergence (Petersen & Winther,
2005b). The key idea of the adaptive, overrelaxed EM is to boost the update
by a factor n > 1. Combining this with the low-noise-limit analysis, we get

At = Ay + (A — Ay) = Ay +07nA, + 0"
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That is, adaptive, overrelaxed EM works because the step size factor n di-
rectly counters the small magnitude of the noise variance. The only down-
side is that there is no longer a guarantee of an increase in the likelihood,
and a test-step is introduced to remedy this.

3 Variational Bayes EM

In variational Bayes EM, we expand the model to include a distribution
over the model parameters A and o2, treating them at the same footing as
the hidden variables. (See Beal & Ghahramani, 2003, for an introduction to
variational Bayes techniques.) The algorithm is aimed at maximizing the
lower bound of the marginal log likelihood and allows convenient addition
of prior information on the parameters. We choose a zero-mean gaussian
prior for the mixing matrix, with covariance X, and an inverse gamma
distribution with (hyper) parameters o), and f:

p(A) ocexp [— %Tr(AE;lAT)]
plo) oc(0?) "V exp[-,/07].

Combining these priors with the observation model, we obtain the vari-
ational approximations for the posterior distributions, which have the
moments that are updated sequentially in the VBEM algorithm. At con-
vergence, we use the posterior mean of these variational distributions as
estimators of the unknown model parameters.

The statistics that determines the width of the posterior distribution of A
is (1/02). Defining 7> = 1/(1/0%), the low-noise limit corresponds tor? — 0,
and we can expand the moments involved in updating the A pdf, in powers
of r:

(A)yi1 = X(S)T[SST) +125,1] 7" = (A), + OG?)
Var(A),1 = r2[(88T) + 125,17 =0+ 06?),

and accordingly for the parameters «, 8 of the inversed-gamma distri-
buted o2,

mN
Upt1 =0p + T =0y
Bus1=Bp + NBS® = Bu + NOG?)

2 2 2
Tyl = But1/oni1 =1, + o),
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where ,B,fﬁs =1 — rank((A),11)/m. Hence, we find that the VBEM update
for the mixing matrix and the crucial moment of the noise distribution is

freezing exactly as in EM.

4 Discussion

The analysis shows that for linear models with low gaussian noise, both
the traditional EM algorithm and the variational Bayes extension, which
practically degenerates back into an EM algorithm, have serious defects
with respect to the rate of convergence. Experience from ICA problems
furthermore indicates that the window in which the noise is sufficiently
large to make the convergence reasonable and yet not too large with respect
to estimation of parameters is indeed very small.

Furthermore, note that in Salakhutdinov, Rowels, and Ghahramani
(2003), the convergence rate in a gaussian mixture model is demonstrated to
be slow when the noise level is large, that is, when the mixtures have consid-
erable overlap. The situation analyzed in this article, however, is a limit of
low noise in which the problem intuitively should have an extraordinarily
clear and well-defined solution. In that sense, this result is counterintuitive
and different from some of the previous observations regarding the slow-
down of the EM algorithm. Most likely the explanation is that there is more
than one situation in which the EM algorithm becomes slow and that these
different situations are not effects of the same underlying reason but rather
truly different.

Finally, it is crucial for the analysis that the observation model is linear,
since we otherwise cannot get closed-form expressions in the M-step. But
practical experience and preliminary analysis suggest that this is not the
core of the convergence problem and we are instead conjecturing that it is
indeed the low-noise limit that is the essence of the matter.
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