Online (Budgeted) Social Choice

1. Overview of the Problem

- **High-level:** Multi-winner social choice in an online setting.
- **Given:** agents arrive in an online manner, with preferences over various items.
- **Goal:** Design algorithms for incrementally adding the "best" set of items.

2. Overview of the Process

- Agents arrive in an online manner, with \(v \) (cost of \(- Setting evenly.
- Random order of arrival: \((W, \pi) \) determined in advance; order of arrival is uniformly random. A common model in online computation (e.g., \([2, 3]\)).
- Distributional: Every ranking is sampled i.i.d. from an unknown distribution \(D \).
- An important special case: Mallows \(\pi \)-distribution \(D((x, \pi)) \). The reference ranking \(x \) is unknown to the algorithm; dispersion parameter \(\pi \) is known.

3. Model & Definitions

- Alternative set \(A = \{a_1, \ldots, a_m\} \).
- Algorithm starts with an empty slate \(S_t = \emptyset \), capacity \(k \).
- \(n \) agents, arriving in an online manner.
- Upon arrival in step \(t = 1, \ldots, n \):
 - Agent \(t \) reveals her full preference \(v_t \) – ranking over \(A \).
 - The algorithm can add items to the slate (or leave it unchanged). \(S_t \) - state of the slate after step \(t \).
 - Agent \(t \) takes the highest ranked item in \(S_t \), based on \(v_t \).
 - No additional items can added when \(|S_t| = k \).
- ALG maps preferences sequences to slate states:
 \((v_1, v_2, \ldots, v_n) \Rightarrow (S_1, S_2, \ldots, S_n) \)
- Initial assumption: alternative addition is *irrevocable*.
- The Buyback relaxation: allow for the removal of items at a cost of \(p \). [1]

4. Objective Function

- Use **positional scoring rule:**
 - Non-increasing score vector: \(e \in \mathbb{R}^m \)
 - Agent \(t \)'s value for \(a \in A \): \(F_t(a) = a(v_t(a)). \)
 - Agent \(t \)'s value for slate \(S_t \); \(F_t(S_t) = \max_{s \subset A} F_t(s) \).

- **Competitive ratio:** The ratio of the sum of the agents’ scores, to the score of best offline slate \(S^* \):

\[
\min_{v} \frac{\sum_{t=1}^{n} F_t(S_t)}{\max_{S \subset A, |S| = k} \sum_{t=1}^{n} F_t(S)} = \text{ALG's total score} \tag{1}
\]

5. Input Models

- We consider three models of sequential input:
 1. **Worst-case:** Adversarial construction of \(v = (v_1, \ldots, v_n) \):
 - Adaptive adversary: Determines \(v_t \) based on \(S_1, \ldots, S_{t-1} \).
 - Non-adaptive adversary: Needs to provide \(v \) in advance.
 2. Random order of arrival: Preferences \((v_1, \ldots, v_n) \) determined in advance; order of arrival is uniformly random. A common model in online computation (e.g., \([2, 3]\)).
 3. Distributional: Every ranking is sampled i.i.d. from an unknown distribution \(D \).

6. Summary of Results

1. **Worst-case:**
 1. Adaptive adversary: a trivial upper bound of \(\Omega(k/n) \).
 2. Non-adaptive adversary: a worst-case example \((v, k) \), with \(k = 1 \) for which no randomized algorithm obtains a \(\Omega(\log_{m} \log_{m} m) \)-competitive ratio.

2. **Random Order of arrival:** can approximate the offline \(k \)-slate optimization problem using sampling. Combined with a brute force \(k \)-optimization, can obtain \(\left(1 - 1 - o(1) \right) \)-comp. ratio. Using a standard greedy algorithm can obtain \(\Omega \left(1 - 1 - o(1) \right) \)-ratio.

3. **Distributional:** For Mallows dist., can obtain \(\left(1 - o(1) \right) \)-competitive ratio using \(\Theta(\log m \cdot \log m) \) many samples.

4. **Worst-case revisited:** A buyback relaxation:
 - \(k > 1 \): Can obtain similar results using additional brute force \(k \)-slate optimization. Can get polytime algorithm under additional assumptions on scores.

7. The Worst-Case Model

- **Adaptive adversary:** Set \(\alpha = (1, 0, \ldots, 0) \) – each agent wants a specific alternative. The adversary will present agents who are interested alternatives that are not offered. At most \(k \) agents can be satisfied.
- **Non-adaptive:** \(k = 1 \) Same score vector \(\alpha \). Define a family of input sequences: \(\{v_1, v_2, \ldots, v_n\} \), for \(\ell \leq m \).
 - For \(v_\ell \): begins with \(\ell \) blocks \(B_1, \ldots, B_\ell \); \(|B_\ell| = n^\ell \cdot X^\ell \), for some \(X, \ell \).\(|B_{\ell-1}| \leq n \). Distribute remainder from \(n \) evenly.

- **Agents in block \(B_1 \):** only want alternative \(a_1 \).
- **Others:** \(X, n \) are constants. \(a_1 \) is the highest scored item in \(B_1 \).
 - For other alternative \(a \neq a_1 \), score of \(|B_{\ell-1}| \leq \frac{n}{m} (X^{\ell-1}) + 1 \). Setting \(X = \ell = \log_{m} \log_{m} m \) gives the stated ratio.

8. The Random Order Model

- **Step 1:** agents arrive in blocks of size \(B \).
- **Step 2:** between blocks \((\ell - 1), \ell \), delete \(S_{\ell-1} \) (cost of \(\ell \cdot B \)), pick \(S_\ell \) based on \(F(S_\ell) \).
- **Step 3:** Remaining agents arrive, using resulting slate.

- We can estimate the offline objective function \(F(S) \) (average score for slate \(S \)), by sampling first \(t = \Theta(\log n + k \log m) \) rankings.

- **Bound on estimation error:** Hoefding+union bound.

- **Optimizing slate \(S \) given \(F(S) \):
 - Brute force: \(S^* = \arg \max_{S \in \mathcal{S}} F(S) \).
 - Greedy: for \(\ell \leq k \), given \(S_\ell \), add \(\max_{a \in A} F(S_\ell \cup a) - F(S_\ell) \).

9. The Buyback Extension

- An alternative can be removed at a cost of \(p \).
- Partition the sequence \(v \) into blocks of size \(B \).
- Between blocks \((\ell - 1), \ell \), delete \(S_{\ell-1} \) (cost of \(B \)), pick \(S_\ell \) based on \(F(S_\ell) \).
- Use multiplicative weight update algorithm (MWU) [4] for selecting each block-slate.
- The regret (additive loss): regret of MWU + total removal cost.

10. Open Problems

- Lower bound: extension to \(k > 1 \).
- Other objective functions: Knapsack, production cost, etc.
- Other relaxations of the irrevocability assumption.

Bibliography