Efficient Vote Elicitation under Candidate Uncertainty

Craig Boutilier and Yuval Filmus and Joel Oren
Department of Computer Science, University of Toronto

Abstract

Top-k voting is an especially natural form of partial vote
elicitation in which only length k prefixes of rankings are
elicited. We analyze the ability of top-k vote elicitation to
correctly determine true winners, with high probability,
given probabilistic models of voter preferences and can-
didate availability. We provide bounds on the minimal
value of k required to determine the correct winner un-
der the plurality and Borda voting rules in both the worst-
case preference profiles and under impartial culture and
Mallows models; and we derive conditions under which
the special case of zero-elicitation (i.e., k = 0) produces
the correct winner. Empirical results confirm the value of
top-k voting.

1 Introduction

Social choice has provided valuable foundations for the de-
velopment of computational approaches to preference aggre-
gation, group decision making and a variety of other prob-
lems in recent years. As algorithmic advances and data ac-
cessibility make the methods of social choice more broadly
applicable, relaxing the assumptions of classical models to
fit a richer class of practical problems becomes imperative.
To this end, research has begun to address the informational
demands of preference aggregation, considering models in
which information about, say, available candidates [13; 1;
3], or voter preferences [11; 22; 15] may be incomplete.

In this work, we bring together two such lines of research
to investigate the feasibility and value of rop-k voting. Our
first main motivation is to use intelligent vote elicitation tech-
niques to minimize the amount of voter preference infor-
mation required to determine the winner in an election (or
more broadly, the desired outcome of a group decision). Vote
elicitation has received considerable attention recently [7; 6;
10; 15; 16; 81, and has proven to be effective in reducing
the amount of information, and corresponding cognitive and
communication burden, needed to determine winners in prac-
tice. Our second motivation is handling uncertainty in the set
of available candidates. In many settings, voters may need to
specify their preferences over a range of potential candidates
prior to knowing which are in fact available or viable for se-
lection [13; 1; 3]. Examples include ranking job candidates,
public projects, or even restaurants. The potential impact of

candidate unavailability on vote elicitation is clear: since cer-
tain desirable alternatives may turn out to be unavailable, one
may need to elicit more preference information than is typical
in the case of fully known candidates in order to ensure the
correct winner is chosen.

We address efficient preference elicitation in this context in
the form of top-k elicitation, in which the agents are asked to
provide the length k prefix of their ranking instead of their full
ranking. In the standard “known candidates” model, top-k
voting has been used heuristically [10] and the optimal choice
of k has been analyzed from a sample-complexity-theoretic
perspective [16]. However, bounds on the required values of
k for specific preference distributions and voting rules have
remained unaddressed, as has the impact of unavailable can-
didates on top-k voting. We focus on two common voting
rules, plurality and Borda. Given a prior distribution on the
preference profile, and a distribution over the set of avail-
able candidates (for which the standard “known candidates”
model is a special case), we ask: what is the minimal value
of k for which top-k voting determines the true winner (with
high probability), with respect to the underlying preference
profile? We provide theoretical results, in the form of upper
and lower bounds on k&, for both worst-case preferences and
certain preference distributions (including impartial culture
and Mallows distributions). As a special case, we consider
zero-elicitation protocols, where k = 0: as a function of elec-
tion parameters, we show when the true winner can be deter-
mined with high probability without eliciting any information
from voters. We also provide empirical results demonstrating
the extent to which top-k voting determines true winners as a
function of k.

2 The Model

Let C = {c1,...,cm} be the set of (potential) candidates
from which a winner is to be selected using some voting
rule. Let N = {1,...,n} be the set of voters, and let
voter i’s preference m; be a permutation of C': intuitively, for
1 <j <j < m,m(j) is preferred by ¢ to m;(j'). Let £
denote the set of all preferences over C. A preference profile
™ = (m,...,7,) € L™ represents the collection of voter
preferences. A voting rule v: L™ x 2¢ — C selects a winner
from C given a vote profile and a set of available candidates.

We consider two voting rules: plurality and Borda. In
plurality voting, given a profile 7, the plurality score of



candidate c is the number of times that ¢ is ranked first:
scP(e,m) = |{i € N : m;(1) = c}|. The plurality win-
ner is the candidate with maximal plurality score (ties can be
handled arbitrarily; the tie-breaking rule used does not im-
pact our results). In Borda voting, the Borda score of c is
the number of candidates ranked below it, summed over all
preferences 7;: sc?(c, ) = Y, y[m—m; " (c)]. The Borda
winner is the candidate with maximal Borda score.

Unavailable Candidates. Recent attention has been paid
to the possibility of voting over a slate of potential candi-
dates C, prior to determining the availability of the actual set
of candidates A C C'. When determining the availability of
candidates is costly or risky (e.g., making job offers, deter-
mining feasibility of public projects, calling restaurants for
reservations), it often makes sense to elicit voter preferences
prior to determining availability, focusing availability deter-
mination on candidates most likely to be winners relative to
the true available set A [13; 1; 3]. Following these recent
models, we assume that each candidate ¢ € C is available
i.i.d. with some fixed probability p € (0, 1] (this simplifies
our presentation, but having distinct availabilities p. for dif-
ferent ¢ does not change the nature of our results, which can
be adapted accordingly).

Given a set A C C of available candidates, a reduced pref-
erence T;| o is obtained by restricting 7; to the candidates in
A; we denote by 7| 4 the reduced preference profile obtained
in this way. Plurality and Borda voting in the unavailable can-
didate model are determined in a straightforward way, using
the scores obtained relative to the reduced profile. Notice that
in the unavailable candidates model, it is no longer sufficient
to run plurality voting by eliciting just the top-ranked candi-
date from each voter: in general the entire ranking is needed.

Top-k voting. Recent research has focused on the use
of intelligent preference elicitation schemes to minimize the
burden on voters and obviate the need to provide full pref-
erence rankings. One especially natural approach is fop-k
voting, in which voters are asked to list only their k£ most pre-
ferred candidates (or the k-th prefix of their ranking) [10; 15;
16]. We discuss below alternative ways in which such votes
can be used to determine winners; but here we adopt an espe-
cially simple approach.

Given a voting rule v and some k € [m], we denote by
(w(k)) = (7r§k)7 e ,777(,,]6)) the k-truncated preference profile.
We use this truncated profile to determine plurality scores in
the obvious fashion, by counting the number of first place
rankings. We compute Borda scores by assigning a score of
m — 7, ' (c) to any candidate c in voter i’s k-truncated vote,
where m is the number of available candidates, and a score
of zero otherwise. In the unavailable candidates model, we
employ the same technique, restricting the truncated vote to
the available set A. Our goal is to determine values of & that
suffice to determine the true winner (with high probability)
relative to the true (untruncated) preference profile.

If candidates are always available (i.e., p = 1) then k = 1
is sufficient to determine the correct plurality winner, and
general top-k voting is of no value. In contrast, the possi-
bility of unavailable candidates intuitively requires that one

use larger values of k for most voting rules.

Probabilistic preference models. It has become increas-
ingly common to analyze voting rules under the assumption
that agent preferences are drawn from a prior distribution over
permutations. One important class of distributions, widely
used in psychometrics, statistics, and machine learning, is the
Mallows p-distribution [17; 18]. Tt is described by two pa-
rameters: a reference ranking © € L, and a dispersion pa-
rameter o (controlling variance). The probability of a per-
mutation 7 under this model is Pr(7) = ¢7(™%) /Z,. where
7(m, ) is the Kendall-tau distance,

7(m1,ma) = |{e, ¢ sy M (e) < 7w t() and w5t (e) > w5 ()},

and Z,, is a normalization constant. Importantly, when
@ = 1, one obtains the uniform distribution over L, the so-
called impartial culture (IC) assumption, a modeling assump-
tion widely used in social choice.

Related Work. As mentioned, vote elicitation has attracted
considerable recent attention, usually in the context of stan-
dard “known available candidate” models. Of particular rele-
vance is work on top-k voting. Unlike our model, in which we
“zero out” the scores of unavailable candidates, other work
has treated the uncertainty in the missing candidates more
cautiously. Kalech et al. [10] use top-k ballots to determine
possible and necessary winners [11] and develop heuristic
elicitation schemes to extend these ballots to quickly iden-
tify true winners for several different voting rules. Lu and
Boutilier [15] use minimax regret to measure error in winner
determination and to guide elicitation heuristically as well.
Both methods show good empirical performance (and handle
general partial votes) but provide no theoretical guarantees
on the required values of k. The optimal choice of k has been
analyzed from a sample-complexity-theoretic perspective in
[16], which provides bounds on the required number of sam-
pled profiles needed to estimate the required value of k for ar-
bitrary distributions; but this does not provide direct bounds
on k itself. None of these models considers unavailability.

The idea of voting with unavailable candidates was consid-
ered in [13; 1], who study the impact of missing candidates
on the fidelity of a winner using voting rules such as Borda,
and how close ranking policies for selecting winners approx-
imate the true winner. More general querying policies, as-
suming costly availability tests, were studied in [3]. Unavail-
able candidate models also bear a strong connection to the
study of manipulation by candidate addition and deletion [9;
2]. These models do not consider partial preferences. Cheva-
lyre et al. [5] consider the possible and necessary winner
problem under (general) partial preferences, when new can-
didates are added to an election, for several voting rules, but
do not consider elicitation or quantifying the amount of infor-
mation needed to determine a necessary winner.

Our results. In most of our theoretical bounds, we say that
a value of k produces a correct winner with high probability
(w.h.p.) if the probability that top-k voting returns the true
(full profile) winner is 1 — o(1), where o(1) — 0 as m — oc.
For plurality, we provide an upper bound of O(logm) on the
k that produces the correct winner w.h.p., if n is polynomial
in m, even if the preference profile is selected by an adver-



[ Voting rule [[ Adv. preferences | IC ]

Plurality, n = poly(m) k = O(logm) k = O(logm)
Plurality, n = exp(m) k= Q(m) k = O(logm)
Borda, n = Q(m®logm) k= Q(m) k = Q(m/logm)

Table 1: Top-£ voting: bounds on &

sary. If n is exponentially larger than m, we show that under
impartial culture we require & = O(log m), while k = Q(m)
is needed in the worst case. For Borda, we show that for a
sufficiently large n (polynomial in m), k is Q(m/logm) un-
der impartial culture, even if p = 1; and it has a lower-bound
of k = Q(m) in the worst case. Our top-k results are summa-
rized in Table 1.

We also provide theoretical results for the special case of
k = 0, or zero elicitation, and for cases where preferences
are distributed according to a Mallows model with reference
ranking 7, providing lower bounds on the required number of
voters n needed to find winners w.h.p., as a function of ¢ and
m. For plurality, we show that if n = Q(logm/(1 — ¢)3),
then the top candidate in 7 is the winner w.h.p. For Borda,
we derive a lower bound of Inm - I'(p) on n, where I'(¢) =
B+ -9’ +1+¢)/(1—¢)

We support our theoretical findings by testing the perfor-
mance of top-k voting (including the special case of zero elic-
itation) under varying parameter values (k, n, m, ). Our em-
pirical results suggest that when the dispersion parameter is
bounded away from 1, fairly low values of k are sufficient for
correct winner determination.

Space precludes inclusion of proofs for all results. Omitted
proofs can be found in a longer version of this paper (this will
be made available online after the reviewing period).

3 Top-% Voting and Plurality Scoring

We start with a theoretical analysis of the performance of
top-k voting with plurality scoring, assessing the values of
k needed to determine the true plurality winner w.h.p. As
noted above, if the candidate availability probability p is 1,
setting £ = 1 trivially guarantees correct winner selection.
Therefore, in this section we assume that p is a fixed proba-
bility, bounded away from 1. We distinguish: (a) worst-case
results, in which an adversarial preference profile is selected
to minimize the odds of correct winner selection, and expec-
tations are taken over available sets A; and (b) average-case
results, in which profiles are drawn from some distribution
(e.g., impartial culture), and expectations are taken over both
profiles and available sets.

We first show that, even in the worst case, when the number
of voters n is “small” relative to the number of candidates m,
a small value of & suffices for plurality:

Theorem 1 (Worst-case upper bound, poly. n). If n =
poly(m), then top-k voting with k = O(logm) determines
the correct plurality winner w.h.p. in the worst case.

Proof. Consider a vote 7 € L. Set k = 2logn/log(11;).
The probability that all top-k candidates are unavailable is
1/n?. Taking a union bound over all votes, the probability

that some vote has all top-k candidates unavailable is 1 —
1/n=1-0(1). O

Since this O(log m) upper bound applies in the worst case,
it also applies to the average case for any profile distribution.
However, in the worst case, having n sub-exponential in m is
required if we want a small k.

Theorem 2 (Worst-case lower bound, exp. n). If n =
exp(poly(m)), top-k voting requires k = §2(m) to determine
the correct plurality winner w.h.p. in the worst-case.

Proof. Let C = {c1,...,cm} U{a,b}, and p = 1/2. A key
observation is that the unavailable set has size at least m/2
with probability very close to 1/2 (we assume for simplicity
that m is even). We create a scenario in which a and b have
very close plurality scores, requiring a large value of & to tell
which has the higher score. Consider the set H = {S C C :
|S| = m/2} containing all subsets of C' of size m/2. We
show that & > m/2 is required. Create two sets of votes:

1. Vi: This set ensures @ and b have the two highest scores
if available (which occurs with constant probability, so
assume both are). Lett = 2-|#|, and foraset S C C, let
lin(S) be an arbitrary ordering of S. Create ¢ + 1 copies
of a > lin(C \ {a}), and ¢ copies of b > lin(C \ b).
Note: a gets one more vote than b in V7.

2. Vo: For every S € H, create two copies of the ranking
lin(S) = b>a > lin(C\ (SU{a,b})).

Now, suppose the unavailable set has size at least m /2. The
plurality score of a is t + 1, the score of b is at least ¢ 4 2, and
so b is the true winner. Otherwise, the score of a is t + 1, that
of bis t, and a is the winner. (All other candidates have score
at most ¢.) If k& < m/2 then the voting scheme doesn’t see b
in the set V5, and so it gives incorrect results with probability
roughly p? /2. O

Thus, for large n, we must set k > m/2 in the worst-
case. However, under impartial culture, a small value of k =
O(logm) again suffices for the average case:

Theorem 3 (Avg. case upper bound, exp. n). If n =
exp(Q2(m)), then top-k voting with k = O(log m) determines
the correct plurality winner w.h.p. under impartial culture.

Proof. Partition V into two sets: V43 = {m € V :
one of m;(1),...,m;(k) is available}, Vo = V' \ V;. Let A C
C be the available set, let m = |Al,n; = |Vi],n2 = |Va].
For ¢ € O, let scf’(c) and sck’(¢) be its plurality scores in
elections (V1, A), (Va, A), respectively. W.l.o.g., order can-
didates based on sci’(): sci(c1) > scf(er) > -+ >
sct’(ci). We prove that ¢y is the true winner w.h.p.

By a simple Chernoff-bound argument, % <m < 2m:-p,
w.h.p. Similarly, a simple calculation shows that E[ns] =
n - (1 — p)*, and using a Chernoff bound we obtain ny <
2n - (1 — p)¥ w.h.p. Hence, ny > n —2n - (1 — p)¥ w.h.p.

We now give an anti-concentration argument about the dif-
ference between the scores according to V7. We let DZ{ ;=

sct (¢;) — sct’(cj) (we define Df’j similarly).
Lemma 4. D1, = Q(ny/m>®) with high probability.

Proof. After conditioning on A, consider the votes V7 se-
quentially. By a simple balls and bins argument, the differ-
ence between the scores of ¢; and c¢; increases by 1 due to



vote 7y (t = 1,...,nq) with probability 1/, decreases by 1

with probability 1/m, and does not change with probability

1 — 2/m. We can thus treat this change as a random variable

X, rewriting D} ; = >} Xy, where X; = 1,X; = —1

each with probability 1/m, and X; = 0 with probability

1 — 2/m. Then Var(Xt) = E[X?] = 2,E[D}}] = 24,
E[[X:[’] =

and p = . The Berry-Esseen Theorem allows

us to prove that Dj 2 (and hence D j forevery js.t.c; € A)
is “large enough.”

Lemma 5 (Berry-Esseen [12]). Ler X = X; + --- + X,
be the sum of i.i.d. zero-mean random variables s.t. E[X?] =
02 > 0,E[|X;|?] = p < oo. Let F,,(-) be the cdf of X, and
let ®(-) be the cdf of the normal distribution. Then:

®(z)| < O_f\’/’ﬁ

sup |Fn () — (1)

where 0 < C' < 0.4784.

3 2 _
C -? / ,/ . Hence,
m

S effectlvely given by the normal
1), which gives us:
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Setting t = \/; and taking the union bound over all

p0s51ble pairs (i, j) gives D{ , = Q(5345) with probability
O(1/m) =1-o0(1), where the last ¢ equality follows from
the concentration bound on 7. O

A concentration bound on D7 ; (for all ¢; € A\ {1})
follows from a Chernoff bound and a union bound over all j:

1
n1

Pr[|D; ;| < t] <

Pr[D7 ; < 21/ = -logmforallj >2]=1-0(1) (3)
We now summarize by showing that, w.h.p., D , > Dij

\/7 V/na2 -logm
M35 NS

Asm > m and /m > 1, it suffices to show:

C)

vn—2n-(1-
p— 5 > +/2n-(1—p)k-logm 5)

The above holds (for n, m sufficiently large) if we set (1 —
p)* = m~8, which gives k = O(logm), as required. O

A matching lower-bound shows this upper-bound is tight:

Theorem 6 (Avg. case lower bound). If n = exp(Q(m)),
k = Q(logm) is necessary for top-k voting to produce the
true plurality winner w.h.p. under impartial culture.

Proof. The proof is largely symmetric to the proof of the
upper-bound. We use the same notation as in the previ-
ous proof. We first prove an upper-bound on the difference
between the score of the highest-ranking candidate and the

second-highest. As before, order C' based on their scores
in Vi: scf(e1) > scf(ep)... (for completeness, let un-
available candidates have score 0). Also, recall that D1 =

st (¢;) —sct’(c;). The following lemma' asserts that the top

two scores are hkely to be close to one another.

nlog? logm n
Lemma 7. Di, = O(\/%) =o(y/Z) w.h.p.

Proof. Let A C C be the availability set (|JA| = m), and
partition A into two (roughly) equal size sets: A;, As C A,
such that | 41| = |m/2],|As| = [m/2]. Define two random
variables: t; = maXee A, 5C) (c),ts = max.ea, sci(c). It
it easy to see that D{ , < [t; — t2], so we prove the claim
by upper-bounding the rh.s. of the inequality. The number
of the votes in V7 that rank candidates in A; (A») first is
bounded away from 1, /2 by O(/n1) w.h.p. So the score of
each candidate in A; and As is distributed according to a typ-
ical balls-and-bins process, in which n1/2 £ o(n;) balls are
thrown into Th/ 2 bins, at random. Using Thm. 1 of [20], we

|_@<\/nllogm\/ 1+6 loglog:rh) ,

210gm
for e > 0 whp, for : = 1,2. Using our bounds on
m, n1, and the approximation /1 — x = 1 —©(x), we derive

|t1 _ t2| — O( /n-lffm loilgoim) — O(nlolg:;;l:;g m)’ Whp 0

Lemma 8. Let k = o(logm). Then D3 ; = Q(y/n/m) with
constant probability.

have |t; —

The proof is similar to that of Lemma 4. O

To summarize, we see that top-k voting can be very ef-
fective for plurality voting with the possibility of unavailable
candidates under the impartial culture model, requiring elic-
itation of only the O(log m) most-preferred candidates from
voters to ensure the correct winner w.h.p. (this upper bound
is tight). If one wants worst case assurances, this same bound
suffices for “small” elections (with a number of voters poly-
nomial in n); but for “large” elections (with an exponential
number of voters), top-k voting offers no savings.

4 Top-£ Voting and Borda Scoring

We now turn our attention to Borda scoring, and provide
similar results. As with plurality, we begin with a worst-
case lower bound on k. We note that the following result
follows quite directly from a general result on the (deter-
ministic) communication complexity of any rank-based vot-
ing rule, which Conitzer and Sandholm [7] show to require
O(nmlogm) bits in the worst case. However, we provide a
direct construction for Borda.

Theorem 9 (Worst case lower bound). Top-k voting requires
k = Q(m) to determine the correct Borda winner w.h.p. in
the worst-case, even when p = 1.

Proof. Assume for simplicity that |C| is odd and larger than
5. Let C = {c}UA for some designated candidate c. Let 7 be
an arbitrary ordering of A, and 7" its reverse. Let (71, 72) be
a profile with two votes, s.t. 7y and 7o are obtained by placing

'"We thank Neal Young for the idea of the proof.



¢ between candidates ranked (m — 1)/2 — 1 and (m — 1)/2
inmand 7", If k = (m —1)/2 — 1, cis not the Borda winner,
though its average score is (m + 1)/2, whereas the average
score of all other candidates is (m — 1)/2. O

We now provide an average-case lower bound on k under
the impartial culture assumption.

Theorem 10 (Avg. case lower bound). Ifn = Q(m?-logm),
then k = Q(m/logm) is necessary for top-k voting to pro-
duce the true Borda winner w.h.p. under impartial culture,
even when p = 1.

Sketch of Proof We provide a brief proof sketch. The
proof idea is similar to that for plurality: we upper bound
the observed difference in score between the winner and any
other candidate under top-k voting. We then show that with
constant probability the score difference between winner and
the second-highest candidate is eliminated as a result of dis-
counted votes. Given the true Borda scores sc? (-) of the can-
didates in vote 7;, let a;(c) = scB(c) if scB(c) > m — k,
and o; = 0, otherwise. That is, a;(c) is the Borda score of
c according to top-k voting. Similarly, let 3;(c) = scP(c)
if sc2(c) < m — k and B;(c) = 0 otherwise; i.e., the extra
score “lost” due to top-k voting. We let a(c) = >,y i(c)
and B(c) = ) ;cn Bi(c). Finally, for two distinct candi-
dates ¢, ¢’ € C, DT (¢,') = ale) — a(c'), and DB(c, ') =
B(c) — B(c'). We argue that if ¢ and ¢’ are the highest
and second-highest scoring candidates under top-k voting,
if k = o(m/logm), DT (c,¢') < D®(c,c) with constant
probability.

Lemma 11. If k = o(m/logm), then for all ¢,d € C,
DT (c,c) = o(\/n-2-) with high probability.

logm

The above lemma can be proved by bounding the variance
of DT (¢, ) and applying the Bernstein inequality.

Next, we claim that difference in uncounted scores due to
truncation can be greater than this observed gap between the
highest and second highest scores, impacting the true winner.

Lemma 12. If k = O(m/logm) then D®(c',c) =
Q(m+/n) with constant probability, where ¢ and ¢ are the
candidates with the highest and second highest scores.

The proof of Lemma 12 is similar to Lemma 4 (albeit
somewhat more involved) and requires the bounding of the
second and third moment of DZ(¢/, ¢) and making use of the
Berry-Esseen theorem.

Combining Lemma 11 and Lemma 12 we get that
D(e,c') = DB(c,c') + DT(c,c’) < 0 with constant prob-
ability, which proves the theorem. U

To summarize, top-k voting cannot ease the elicitation bur-
den in Borda elections in the worst case. Under impartial
culture, there is hope for some elicitation savings for elec-
tions of reasonable size, as indicated by our lower bound
of £ = Q(m/logm), which suggests that O(m/logm)
might suffice. But these savings are not nearly as substan-
tial as in the case of plurality, nor are they guaranteed with-
out a matching upper bound. A matching upper bound, or a
stronger lower bound—for instance, perhaps our proof could

be strengthened to give a lower bound of £2(m)—is an im-
portant result needed to complete the picture regarding Borda
under impartial culture. Despite this, we will see below that
top-k voting can, in fact, help substantially in Borda voting
under other, more realistic preference distributions.

5 Zero-elicitation Protocols

It is widely recognized that the impartial culture assumption
does not provide a realistic model of real-world preferences
or voting situations [21]. For this reason, exploring the abil-
ity to limit elicitation under other, more realistic probabilistic
models of voter preference is of great import. We consider
one such model in this work, namely the Mallows model,
since it allows us to generalize the impartial culture model
(which is a special case) by simply varying the dispersion or
degree of concentration of voter preferences in a natural way.
While we do not claim that the Mallows model is an ideal
model for all social choice situations (though it serves as an
important backbone for mixture models of preferences [19;
4; 14]), it serves as an important starting point for the broader
investigation of top-k voting.

In this section, we theoretically analyze the special case of
zero elicitation, in other words, setting £ = 0 in top-k voting,
under Mallows model distributions. Specifically, we ask how
concentrated voter preferences need to be—what dispersion
values ¢ suffice—to ensure that correct plurality and Borda
winners can be selected w.h.p. without eliciting any informa-
tion from voters. For ease of presentation, we assume p = 1
(i.e., all candidates are available); however, our proofs can
be modified to accommodate p < 1, using simple applica-
tions of Chernoff and union bounds to account for missing
candidates. In the next section, we empirically analyze top-k
voting for both zero elicitation and more general values of &
under Mallows models.

Assume a Mallows model (7, ) over m candidates C.
With no elicitation, the candidate with the expected highest
(plurality or Borda) score is obviously the highest ranked can-
didate (1), and it has the highest probability of winning (as-
suming ¢ < 1, otherwise all candidates are equally likely to
be winners). Under plurality voting, we can show that with a
large enough voter population, this approach performs well.

Theorem 13. If n = (%), then the highest

ranked candidate 7 (1) is the plurality winner w.h.p.

Thm. 13 can be proved using the Bernstein inequality and
union bound to bound the probability that the highest-ranked
candidate in 7 is dominated by another.

We can derive a similar bound for Borda voting.

Theorem 14. If n > T'(¢)Inm, where T'(p) = (8(1 +
©)2(1 — )2 + (1 +¢))/(1 — ¢)7, then the highest ranked
candidate 7 (1) is the Borda winner w.h.p.

As with Thm. 13, Thm. 14 makes use of the Bernstein theo-
rem, more precisely, a version that requires a refined analysis
of the distribution of Borda scores, and involves bounding the
k’th moment of the difference in the Borda scores of the first
and 7’th candidates.
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6 Empirical Results

The bounds above provide some theoretical justification for
the use of top-k voting; however, they do not prescribe pre-
cise values for the choice of £ with respect to specific priors
and election sizes (m,n). In this section we present simula-
tion results for small elections with m = 10 candidates and
n = 100 to 5000 voters to illustrate the probability of correct
winner selection in both plurality and Borda elections using
top-k voting for several values of k (including zero elicita-
tion), under Mallows models with a range of dispersions ¢.
In our experiments, we generate 10,000 random preference
profiles for each parameter setting by drawing voter rankings
i.i.d. from the appropriate Mallows model, and measure the
fraction of such profiles in which top-k gives the true win-
ning candidate. (We assume p = 0.5 throughout, except for
the results concerning zero elicitation.)

For top-k experiments dispersion ¢ < 0.7, winner predic-
tion was essentially perfect, even with k = 1, regardless of
the other parameters. Fig. 1 shows the success rate of top-
k voting for plurality and Borda for ¢ = 0.7 and m = 10
as we vary k and the number of voters. In all cases top-k
converges to the correct prediction, and is near perfect when
k = 3. With more voters the performance is better, but the
dependence is slight and almost negligible for &k = 3.

For zero elicitation, we measured how often the first-
ranked candidate in the Mallows reference ranking is the true
election winner under plurality and Borda. We set m = 10,
p = 1 for simplicity, vary ¢ and n, and show results averaged
over 10,000 elections each in Fig. 2. For ¢ < 0.8, predictions
are near-perfect for n > 700, and ¢ < 0.7, n > 400 suffices
for near 100% accuracy. We note that results are better for
Borda than for plurality. For populations with an extremely
high degree of dispersion (¢ = 0.9), plurality success rate is
only 0.8 at n = 1000, and Borda success rate is only 0.92.
This conforms to our theoretical bounds in the sense that the
success probability depends exponentially on ¢, which means
that it decreases dramatically for larger values of .

ingly, the probability of complete ranking reconstruction is
significantly lower than the probability to correctly forecast
the winner. However, n = 1000 allows almost perfect recon-
struction under Borda for ¢ < 0.8. Notice that the difference
between plurality and Borda is even more pronounced than in
winner prediction. Under Borda, n = 5000 suffices to recon-
struct the entire ranking even for ¢ = 0.9, while for plurality,
results for ¢ = 0.9 are much worse (about 0.6), and even for
¢ = 0.7 do not reach 100%.

7 Conclusions

We have provided a detailed analysis of top-k voting, allow-
ing for the possibility of unavailable candidates, for both plu-
rality and Borda voting. Our theoretical results place bounds
(in some cases tight) on the required values of & needed to de-
termine the correct winner w.h.p., in both a worst-case sense
and an average-case sense under impartial culture, and also
showed under what conditions zero elicitation admits correct
winner prediction under Mallows models. Our empirical re-
sults further demonstrated that relatively small values of &
work well in practice. Even zero elicitation shows strong
promise when preferences exhibit just mild degrees of cor-
relation for elections with a sufficient number of voters.

There are a number of interesting directions for future re-
search. Extending our analysis to other voting rules is of
great interest. For example, preliminary results suggest that
Copeland exhibits behavior similar to Borda, requiring large
k for impartial culture; do certain voting rules exhibit behav-
ior that is intermediate between plurality and Borda? Extend-
ing our analysis to a richer class of realistic preference dis-
tributions, such as the Plackett-Luce model, or Mallows mix-
tures, is an important next step, as is testing our approach on
real data sets.

A third direction is the investigation of multi-round elicita-
tion protocols [16]. In such protocols, voting data is elicited
in stages, and the protocol terminates when the winner can be
determined with high probability. Such protocols are adap-
tive and dynamic, eliciting information in a given stage con-
ditioned on information gleaned in earlier stages. An impor-
tant question is whether it is possible to elicit less information
on average with such a protocol.

5000
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