
Efficient Sum-Based Hierarchical Smoothing Under `1-Norm

Siavosh Benabbas∗

siavosh@cs.toronto.edu

Hyun Chul Lee†

chul.lee@thoora.com

Joel Oren∗‡

oren@cs.toronto.edu

Yuli Ye∗‡

y3ye@cs.toronto.edu

August 7, 2011

Abstract

We introduce a new regression problem which we call the Sum-Based Hierarchical Smoothing
problem. Given a directed acyclic graph and a non-negative value, called target value, for each
vertex in the graph, we wish to find non-negative values for the vertices satisfying a certain
constraint while minimizing the distance of these assigned values and the target values in the
`p-norm. The constraint is that the value assigned to each vertex should be no less than the
sum of the values assigned to its children. We motivate this problem with applications in
information retrieval and web mining. While our problem can be solved in polynomial time
using linear programming, given the input size in these applications such a solution is too slow.

We mainly study the `1-norm case restricting the underlying graphs to rooted trees. For this
case we provide an efficient algorithm, running in O(n2) time. While the algorithm is purely
combinatorial, its proof of correctness is an elegant use of linear programming duality. We also
present a number of other positive and negatives results for different norms and certain other
special cases.

We believe that our approach may be applicable to similar problems, where comparable
hierarchical constraints are involved, e.g. considering the average of the values assigned to the
children of each vertex. While similar in flavour to other smoothing problems like Isotonic
Regression (see for example [Angelov et al. SODA’06]), our problem is arguably richer and
theoretically more challenging.

∗Department of Computer Science, University of Toronto
†Thoora Inc., Toronto, ON, Canada
‡This research was supported by the MITACS Accelerate program, Thoora Inc., and The University of Toronto,

Department of Computer Science.

1 Introduction

The prevalence of popular web services like Amazon, Google, Netflix, and StumbleUpon has given
rise to many interesting large-scale problems related to classification, recommendation, ranking,
and collaborative filtering. In several recent studies (e.g. [KFB09, PG08, CKP07]), researchers
have incorporated the underlying class hierarchies of the data-sets into the setting of recommenda-
tion systems. Moreover, Koren et al. [DKK11] recently demonstrated an application of hierarchical
classifications of topics, i.e. taxonomies, in Collaborative Filtering settings, in particular, music rec-
ommendation. In these application scenarios, the taxonomies are abstracted as trees. Associated
with the vertices are scalar target values, typically inferred through the use of various machine
learning or information retrieval methods. For instance, given a hierarchy of topics and a search
query, the target values could be the relevance measures of the topics to the search query.

When a taxonomy is used, one would usually like to enforce particular constraints on the value
assigned to the vertices to properly represent the hierarchical relationship among them. Typically,
the relevant machine learning approaches are ill-equipped to handle these requirements. Often,
these constraints state that the value of each vertex should be at least some function of the value
of its direct children in the taxonomy (e.g. [PG08, CKP07]).

Going back to the previous example of topics and search query, imagine that the taxonomy
contains the topics sports, baseball, football, and basketball with the first topic being the parent
of the other three and that the search query is “ESPN”. One would like to find the relevance of
this query to every topic in the taxonomy. A reasonable requirement of these relevance values
would be that the relevance of “ESPN” to sports would be no less than the sum of its relevance to
baseball, football, and basketball. One way to solve this problem would be to directly impose such
a constraint on the learning algorithm that infers the relevance values using regularization; i.e.
adding an additional term in the objective function of that algorithm penalizing any violation of
the constraint. However, this approach has two problems. First, it “softens” our requirements; i.e.
it allows for possible violations, to some limited extend. Moreover, it can dramatically deteriorate
the running time of the process of learning or restrict our choice of the learning algorithm.

Instead, we take the following, widely used, two-step approach. Given a search query s, we
first infer each of the relevance scores of each of the topics, disregarding the hierarchy constraints.
Then, we smoothen the inferred relevance scores by modifying them so as to uphold the above sum
constraint. We would want the change of the relevance scores in the second step to be as small
as possible. As the relevance scores are scalar values, we can represent both the original and final
relevance scores as two vectors with non-negative values, and measure their difference in a suitable
norm (e.g. the `1, `2 or the `∞ norms). The subject of this paper is how to perform the second
step.

We formulate this problem which we call the Sum-Based Hierarchical Smoothing problem
(SBHSP) as follows. Given a rooted tree (or in general a directed acyclic graph) G = (V,E)
and a vector of original vertex values (called target values) a = (av1 , av2 , . . . , avn) the objective is to
find a vector of new vertex values (called assigned values) x = (xv1 , xv2 , . . . , xvn) with the following
properties. (i) for any node w with incoming edges (u1, w), . . . , (uk, w) we have xu1 +· · ·+xuk

≤ xw.
(ii) ||a − x||p is minimized. Different values of p result in different variants of the problem. We
mainly study the problem for p = 1 and p = ∞ but the case of p = 2 is also interesting. It is not
hard to see that for p = 1 the problem can be solved in polynomial time using linear programming
(see inequalties (3a)-(3d)) and for p > 1 it can be solved by using a suitable separation oracle and
the Ellipsoid method. However given the typical size of taxonomies these solutions are too slow.

1

We note that this problem seems to be more complex than other previously considered similar
problems as the assigned value of each vertex affects the possible values for any vertex it shares a
parent with. In particular, to the best of our knowledge techniques used for similar problems are
ineffective for it.

Contributions: Our main contribution is a purely combinatorial algorithm when the input is a
rooted tree and p = 1 (i.e. the `1 norm) that runs in time O(n2). We note that the `1 norm was
previously used as a good measure of difference in similar regression problems (e.g. see [AHKW06]).
As many hierarchical structures in practice are trees, our algorithm can be used in many practical
applications. Our second contribution is a linear time algorithm for the case p = ∞ which works
for any directed acyclic graph. We also show an efficient FPTAS for optimizing the `1 norm for
another class of DAGs (directed bilayer graphs.) Finally, we show that if one adds the extra
condition that the assigned values should be integral the problem is hard to approximate (to within
a polylogarithmic factor) for any `p norm for 1 ≤ p < ∞. Interestingly, given that our algorithm
for the `1 norm on trees always outputs an integral solution this last result suggests that new ideas
are needed to extend it to general DAGs.

Our algorithm for the `1 case has a rather simple structure. We assign values to the vertices of
the tree in a bottom-up manner. For each vertex we first assign a valid (but possibly suboptimal)
value and then use paths going down from that vertex to “push the excess” down the tree and
improve the objective value. While the algorithm is purely combinatorial, its proof of correctness
is an elegent use of linear programming duality. In particular, we use the complementary slackness
condition to show that if the algorithm can no longer push the excess of a node down the tree the
values assigned to its subtree most be optimal.

Organization: We present the relevant previous work in Section 2. In Section 3, we present a
precise definition of the problem and some preliminaries. We present our first algorithm which is
for the case of trees and `1 norm in Section 4 and prove its correctness. In Section 5 we show how
this algorithm can be optimized to run in the promissed O(n2) time. We conclude and propose
several open problems in Section 6. We extend the algorithm to the case of weighted `1 norm in
Appendix A. We present our algorithm for the case of `∞ in Appendix B. We leave our hardness of
approximation result to Appendix C and our results for the case of bilayer graphs to Appendix D.

2 Previous Work

The main motivation of the current paper is the application of taxonomies in regression. A recent
example, studied by Koren et al. [DKK11], is the application of topic hierarchies in the context
of collaborative filtering. They provide a method of linking the data-set to a four level taxonomy,
which helps them circumvent difficulties related to the size of the data-set.

Regression and smoothing problems have been studied extensively in recent years. Perhaps the
most relevant problem to our setting is the Isotonic regression problem and its variants. There
one wishes to find a closest fit to a given vector subject to a set of monotonicity constraints. More
precisely, let a = 〈a1, . . . , an〉 be n target values, and let E be a set of m pairwise order constraints
on these variables. The Isotonic regression problem is to find values x = 〈x1, . . . , xn〉 such that
xi ≥ xj whenever (i, j) ∈ E for which the distance between x and a is minimized. To put things in
a language similar to ours, in isotonic regression the assigned value of each vertex should be bigger
than the maximum of the assigned value of its children as opposed to the sum of those values in
our problem.

Common choices of distance functions include the weighted `1, `2 and `∞ norms. The Isotonic

2

regression problem for such weighted norms have been studied extensively. For some of the results
for the `1 and `2 norms see [Sto08, AHKW06, BC90]. Stout also maintains a web site containing
some of the fastest known Isotonic regression algorithms for different settings at [Sto].

The Isotonic regression problem belongs to a more general class of problems known as order
restricted statistical inference. Order restricted statistical inference was first studied by Barlow et
al [BBBB72]. The Isotonic regression problem became popular since it has many applications in
testing [LB01, MAC01], modelling [MJDP+00, Ulm86], data smoothing [FT84, PG08] and other
areas [RWD88] related to statistical and computational data analysis. It has been shown to be an
important post-processing smoothing tool to impose desired hard constraints on the values that a
learning algorithm has produced. Variations of Isotonic regression have been used for other appli-
cations like template learning [CKP07], ranking [DCZ+10, MSCZ10], and classification [KFB09].

3 Preliminaries

We now formally define the problem as follows. Given a tree (or DAG) T = (V,E) rooted at node
r ∈ V , and a vector a ∈ Rn

≥0 of the target values of the vertices. We wish to find the closest vector
x ∈ Rn

≥0, in the `p-norm, so that for each node v, with children u1, . . . , uk, xv ≥ xu1 +xu2 +· · ·+xuk
.

While most of the paper addresses the case of p = 1, we also discuss the case of p = ∞ in
Appendix B. Note that our hardness results apply to all 1 ≤ p <∞.

For a vertex u ∈ T , we denote the set of nodes with edges to u the children of u or C(u),
similarly the parent of u is A(u) (in the case where the underlying graph is a general DAG, A(u)
will be a set of nodes). Throughout the paper, we will make extensive use of various paths in the
given tree. For this purpose, we let Pu→v denote the (unique) path from vertex u to vertex v in
T . We denote the sub-tree rooted in vertex v by Tv. For a given sub-tree Tv, we define a|Tv as the
vector of target values corresponding to the nodes in Tv; we similarly define x|Tv .

4 The Algorithmic Approach for `1

As an initial attempt, consider the following trivial feasible solution. For each leaf ` ∈ T , set
x` = a`. Then, for each internal node v set xv = max(av,

∑
u∈C(v) xu), by traversing the tree in

post-order. However, it is not hard to see that this approach would be arbitrarily sub-optimal (see
Figure 1.) Indeed, in some cases it is preferable to lower the existing x values of a given node’s
children, instead of raising the node’s x value, as this might help the objective value on the nodes
ancestors as well.

In order to optimize the objective function, our algorithm will proceed as follows. By traversing
the tree T in post-order, it performs the following sequence of steps for every vertex v. xv is initially
set to the maximum of av and the sum of the x values of its children, which is clearly a feasible
assignment for Tv. It then improves the assignments for Tv by sequentially decreasing the values of
some vertices that are located on some path P from v to some other node in Tv. The adjustments
are made so that the overall improvement in the objective function equals the improvement in
|av − xv|. We will refer to such paths as push-paths, and the improvements made on them as push
operations. The algorithm is presented below as Algorithm 1. The procedure Push−Path(x, P, ε)
checks what is the improvement on the objective function value if we reduce the x value of all
vertices in the path P by ε. This path will always start at the current vertex v.

For now we do not discuss how to find the push path or the exact value that we push down that
path. This abstraction was made deliberately, so as to to separate the correctness of the algorithm
from its performance. In fact, we later show that the individual paths need not be enumerated
separately.

3

Algorithm 1: Push-Improve

Input: Undirected tree T = (V,E), with a vector of vertex weights a ∈ Rn
+

Output: A feasible vector of weights x ∈ Rn
+ for V

Let v1, v2, . . . , vn−1, vn be the vertices in T sorted in post-order.1

for v ← 1 to n do2

xv = max{
∑

u∈C(vi)
xu, av}3

ImproveSubtree(v)4

end5

ImproveSubtree(Vertex u)6

while ∃ path P from u down to a vertex v, and ε > 0 such that v is either a leaf or7

xv >
∑

w∈C(v) xw and Push-Path (x, P ,ε)=ε do

Push-Path(x, p, ε)8

end9

Push-Path(Assignment x, Path P , Non-negative real-value ε)10

begin11

Let v1, . . . , vk be the sequence of nodes on the P from top to bottom.12

old =
∑

1≤i≤k |xvi − avi |13

xv1 = xv1 − ε14

for i = 2 to k do15

t =
∑

u∈C(vi−1)
xu − xvi−116

if t > 0 then17

xvi = xvi − t18

end19

end20

new =
∑

1≤i≤k |xvi − avi |21

return old− new22

end23

The following theorem states that the output of Algorithm 1 is optimal.

Theorem 4.1. When Algorithm 1 terminates, the obtained vector x is a feasible and optimal
assignment for the given tree T .

Our proof of Theorem 4.1 will proceed as follows. We begin by characterizing the necessary
push-path improvement at each step of the while-loop. We then inductively argue that before and
after each push operation, the value of the objective function for each sub-tree rooted in a child
of the current node remains optimal. We conclude by using an LP duality argument in order to
show that once no more push operations exist for the current vertex in the for-loop, Tv is assigned
optimal x values.

The following lemma refers to the series of improvements performed on node v, and can be
viewed as the set of invariants of the outer for-loop.

Lemma 1. Let v be the current node, P = (v = u0, . . . , uk) be a push-path such that for 1 ≤ i ≤ k,
ui ∈ C(ui−1). Then the following invariants hold throughout the execution of the inner while-loop:

4

1. If, for ε > 0, Push − Path(x, P, ε) > 0, then Push − Path(x, P, ε) ≤ ε. Furthermore, if
for path P and ε > 0, Push − Path(x, P, ε) = δ > 0, then there exists ε′ > 0 such that
Push− Path(x, P, ε′) = ε′.

2. If for path P and ε > 0 Push−Path(x, P, ε) = ε, then for each u ∈ C(v), Tu is optimally set
before and after running Push− Path(x, P, ε).

Proof. First, notice that the above invariants clearly hold if the current node v is a leaf, as their
initial x values are set to their a values, and will only be modified as a result of performing
Push− Path on their ancestors. Assume that the invariants hold for all nodes preceding v in the
post-order, and suppose for contradiction that there exists some path P = (v = u0, . . . , um) and
ε > 0 such that Push− Path(x, P, ε) > ε. The first part of the first invariant clearly holds since
the sub-trees rooted in the children of v are assumed optimal. Hence, any ε-improvement on v
cannot entail an additional improvement on the rest of the push-path.

We now consider the second invariant, while briefly deferring the proof of the second part of the
first invariant. First, notice that for each ` ∈ C(v)−{u1}, the assignments to T` do not change. Let
P be a modification-path, and ε > 0 such that Push−Path(x, P, ε) = ε. On the other hand, notice
that xv is reduced by exactly ε. This implies that ‖x|Tu1

− a|Tu1
‖ remains unchanged, thereby

remaining optimal.
We now turn to the remaining part of the first invariant. Consider a modification-path P and

δ > 0. By the first part of the invariant, Push − Path(x, P, δ) ≤ δ. If Push − Path(x, P, δ) = δ,
then the claim holds trivially. Hence, assume Push− Path(x, P, δ) < δ.

We restrict ourselves to dealing with δ values in the range (0, xv−av]. The following observation
stems from the fact that during the push operation, x values along P only decrease.

Observation 1. For path P and ε > 0, if Push− Path(x, P, ε) > 0

|{j ∈ P : xj > aj}| > |{j ∈ P : xj ≤ aj}| (1)

In fact, using the induction hypothesis, we can make Observation 1 even stronger:

Claim 1. For path P and ε > 0, if Push− Path(x, P, ε) > 0

|{j ∈ P : xj > aj}| − |{j ∈ P : xj ≤ aj}| = 1 (2)

Claim 1 can be justified by noticing that otherwise, the sub-tree rooted in one of v’s children
would be amenable to path-improvements, contradicting optimality. The invariant follows, as we
could simply set ε to be the minimum (positive) amount that maintains the number of nodes along
P with x values that are larger than their a values.

Lemma 1 implies that each push operation improves the value of the objective function for
the current sub-tree, while maintaining the optimality of the sub-trees rooted in the children of
v. However, in order to show that the local optimum obtained by the algorithm is the globally
optimal feasible solution, we need to argue that as long as the current assignment is not optimal,
there exists a feasible path-improvement with a corresponding ε > 0 value. The following theorem,
which constitutes the main technical part of this paper, formalizes this notion.

Theorem 4.2. Upon termination of the inner while-loop, the sub-tree rooted in vertex v is assigned
optimal x values.

5

Proof. First, notice that the algorithm clearly maintains the feasibility of the solution throughout
its execution. The following observation follows from the definition of the algorithm.

Observation 2. During the execution of the algorithm, xv ≥ av. Furthermore, if xv = av, the
solution is trivially optimal.

The proof of Theorem 4.2 will proceed as follows. We give the LP for the optimization problem,
and its corresponding dual LP. We then construct a feasible solution for the dual LP that satisfies
the complementary slackness conditions with respect to the solution of the algorithm. In order
to construct a valid dual solution, we inductively bootstrap the dual solutions constructed for the
nodes rooted sub-trees. From LP duality, we then conclude that the two solutions are optimal for
the primal and dual problems. Recall that we inductively assume that the sub-trees rooted in the
children of v are optimally adjusted.

It is not hard to write a linear program which formulates our problem. This program and its
dual can be seen below. The variables di are introduced to avoid using absolute values in the
objective function.

min
∑
i∈Tv

di

subject to di + xi ≥ ai (3a)

di − xi ≥ −ai (3b)

xi −
∑

j∈C(i)

xj ≥ 0 (3c)

xi ≥ 0 ∀i ∈ Tv (3d)

max
∑
i∈Tv

ai(λi − λ′i)

subject to λi + λ′i = 1 ∀i ∈ Tv (4a)

(λi − λ′i) + αi − αp(i) ≤ 0 ∀i ∈ Tv\{v}
(4b)

(λv − λ′v) + αv ≤ 0 (4c)

λi, λ
′
i, αi ≥ 0 ∀i ∈ Tv (4d)

Note the special case for vertex v (inequality 4c). By denoting βi = λi − λ′i, one can simplify the
dual LP:

max
∑
i∈Tv

aiβi

subject to − 1 ≤ βi ≤ 1 ∀i ∈ Tv (5a)

βi + αi − αA(i) ≤ 0 ∀i ∈ Tv − v (5b)

βv + αv ≤ 0 (5c)

αi ≥ 0 ∀i ∈ Tv (5d)

We now summarize the necessary complementary slackness conditions required by the dual:

xi > ai ⇒ λi = 0, λ′i = 1 (βi = −1) (C1)

xi < ai ⇒ λi = 1, λ′i = 0 (βi = 1) (C2)

xi >
∑

j∈C(i)

xj ⇒ αi = 0 (C3)

xi > 0⇒ λi − λ′i + αi − αp(i) = 0 (C4)

Since throughout the execution of the while loop xv ≥ av and the case where xv = av is trivial, we
will assume from now on that xv > av. This implies the last necessary condition:

xv > av ⇒ αv = 1 (C5)

6

We begin by suggesting an initial assignment which might not be feasible, and in addition,
might violate one of the complementary slackness properties.

The following lemma is a direct consequence of the construction of the dual LP and the com-
plementary slackness constraints. It refers to a family of assignments to the dual LP that satisfy a
subset of the complementary slackness conditions.

Lemma 2. Let x,d be a feasible solution for the primal such that the sub-trees rooted in v are
optimally assigned and v admits no Push-Path improvements. Let α, β be an assignment for the
dual variables such that the following holds:

{
αi = αp(i) − βi, if xi > 0

αi ≤ αp(i) − βi, otherwise
βi =


−1, if xi > ai
1, if xi < ai

a value in [−1, 1], if xi = ai

(6)

Then α, β satisfy all the properties of a feasible dual solution, and (α, β) along with (x,d)
satisfy complementary slackness except that αi might be negative for some nodes, and condition C3
could be falsified.

Next, we observe that if our modified dual LP admits an optimal feasible solution, then our
range of possible values for α, β can be narrowed due the total unimodularity of the simplified
constraint matrix of the dual LP:

Observation 3. If the dual LP has an optimal and feasible solution, then it has an integral, feasible
and optimal solution, as well. In particular, for every i ∈ Tv, βi ∈ {−1, 0, 1}).

Observation 3 can be verified by induction on the constraint matrix of the dual LP, in order to
show that every square sub-matrix of it has a determinant of ±1.

The following lemma complements Lemma 2 by suggesting a concrete assignment for each βi
in the case whenever xi = ai.

Lemma 3. Consider an assignment as described in Lemma 2. If we set βi = 1 whenever xi = ai,
then:

∀j ∈ Tv, xj >
∑

k:child of j

xk ⇒ αj ≤ 0

Proof. We prove the claim by way of contradiction. Suppose that the claim is false, and let j be
the highest node for which the claim does not hold. That is, xj >

∑
k∈C(j) xk and αj > 0. Consider

Pj→v, the path from j to v. As we are trying to prove an upper bound for αj , we will assume that
for every node k on the path from v to j αk = αp(k) − βk, as lower values will only strengthen our
claim. This implies

αj = −
∑

k∈Pj→v

βk. (7)

Since βi = 1 for all nodes i such that xi ≤ ai, and βi = −1 otherwise, αj > 0 implies:

|{k ∈ Pj→v : xi > ai}| > |{k ∈ Pj→v : xi ≤ ai}| (8)

This implies that we can reduce all x values of nodes Pj→v by an amount of at most xj−
∑

k∈C(j) xk
so as to get a feasible solution with a better objective function value. However, this is exactly a
push operation, thereby contradicting the assumption of no further path-paths.

7

The following corollary is the contra-positive statement of Lemma 3

Corollary 1. If there exists a node j ∈ Tv such that αj > 0 and xj −
∑

k∈C(j) xk > 0, then there
exists an ancestor i of j such that βi ∈ {0,−1} and xi = ai.

We now prove the main theorem by way of induction. We inductively assume that the sub-trees
rooted in v have both an optimal setting for the primal LP, and there exists an integral and feasible
solution for the dual LP that satisfy the complementary slackness conditions. Without loss of
generality, we assume that no child i of v has xi = 0, since otherwise, we could use its assignments
without any modifications, as xi does not harden the feasibility constraints of v.

Consider the assumed set of assignments for the sub-trees rooted in v. By the assumption,
they have corresponding assignments to the dual LPs. Observe that since the conditions listed
in Lemma 2 are a subset of the complementary slackness conditions, Lemma 2 applies to them
automatically.

We will start from a tentative solution to the dual by initially set the (α, β) according to the
assumed assignments, and set αv = 1, βv = −1. We let s1 denote the above assignment. Notice
that for each child i of v, the dual LP that corresponds to the current assignment had

αi + βi = 0,

as i was the root (this is a strict equality as by our assumption xi > 0). However, in the current
LP, the corresponding dual inequality becomes

βi + αi − αv = 0,

As αv = 1, this equality is therefore violated. In order to rectify this, we first raise all the α value
(except v’s) by 1, and denote the resulting solution by s2. Note that by the feasibility of the original
assignments to the sub-trees and by the definition of s2 all the nodes in Tv have non-negative α
values. Also observe that s2 now has all the properties listed in Lemma 2. Thus, by Lemma 2,
we can conclude that s2 is a feasible solution to the dual LP, and s2 along with (x,d) satisfy
complementary slackness except that complementary slackness condition C3 might be violated.

Our next step would be to adjust s2 so as to fix any violation condition of condition C3. Let
W be the set of all infeasible nodes:

W = {j ∈ Tv : xj >
∑

k∈C(j)

xk and αi > 0} (9)

By Corollary 1, for each j ∈W there exists an ancestor i such that (1) xi = ai and (2) βi ∈ {−1, 0}.
We let

X = {i ∈ Tv : xi = ai, βi ∈ {−1, 0}} (10)

Moreover, we let
Y = {i ∈ X : there is no ancestor of i in X} (11)

Thus, for each node j ∈W there exists an ancestor i ∈ Y .
We now define the final solution to the dual LP. Define assignment s3 to the dual LP for Tv by

taking solution s2 with the following modifications:

1. ∀k ∈ Ti, such that i ∈ Y , subtract αk by 1.

8

2. ∀i ∈ Y add 1 to βj .

Increasing the βj values by 1 makes sure that complementary slackness condition C4 is satisfied
after applying the first step. Applying the first modification step guarantees that complementary
slackness condition C3 is again satisfied, as all nodes in W undergo the first modification. Observe
that by definition, all the sub-trees rooted in nodes in Y are pair-wise disjoint. Hence, each α value
can be decremented at most once. Also observe that in addition to nodes in W , other nodes may
have their α values decremented. However, as by the definition of W , these nodes do not need to
maintain condition C3, and thus this step will not violate their constraints. In addition, their α
values are guaranteed to remain non-negative as they were previously incremented by 1.

In conclusion, all of the complementary slackness conditions for the dual LP now hold for (x,d)
and s3. Therefore, (x,d) is an optimal solution for Tv.

5 The Algorithm

Given the general technique presented in Algorithm 1, we conclude our results by giving an O(n2)
algorithm that follows the spirit of improving by pushing the surplus from a given vertex downward,
along a path. Recall that the algorithm Push-Improve performs the push operations one path at
a time. Instead, we can leverage the fact that some paths can share the same prefix. Specifically,
instead of the inner while-loop, executed for each node v in the tree, we introduce a depth-first-
search algorithm in which for each node j ∈ Tv, the algorithm remembers the maximal amount,
pushable through Pv→j .

We make use of two measures, defined for each node u ∈ Tv. Let δu = |{j ∈ Pv→u : xj >
aj}|−|{j ∈ Pv→u : xj ≤ aj}|. In other words, for any push operation along Pv→u, δu is the difference
between the number of nodes that will improve the objective function value, and the number of
nodes that will worsen the objective function value, if we push a small enough value through Pv→u.
Additionally, we define the positive bottleneck along Pv→u as εu = minj∈Pv→u{xj − aj : xj > aj}.
This is the maximum ε we can push on the path Pv→u while gaining exactly δuε in the objective
function. In order to maintain feasibility, we restrict εu to be no more than xk, for any node k
on Pv→u. This value will have a similar function as the ε value given in Algorithm 1. That is,
for the current node v, and a successor u, εu will serve as the amount of excess we push through
Pv→u. Our algorithm will maintain feasability by restricting the decrease in xu by the sum of the
decreases made on its direct children of u (unless xu was strictly bigger than the sum of the x’s of
its children before the decrease.)

The final algorithm for optimizing the assignment to Tv, can be seen as Algorithm 4 in Ap-
pendix E. It differs from Algorithm 1 in the way the sub-tree Tv is modified for each node v.

The following theorem states that Algorithm 4 is optimal.

Theorem 5.1. When Algorithm 4 leaves node v ∈ V , there is no push-path going from the root r,
ends at a leaf, and passes through v.

Proof. First, we note the following observation, which suggests that the potential for improvement
on any path from the root to a node v cannot increase.

Observation 4. Let u be a node in T . Let

δ∗u = |{i ∈ Pr→u : xv > av}| − |{i ∈ Pr→u : xv ≤ av}|.

δ∗u does not increase throughout the execution of the algorithm.

9

The observation follows immediately from the fact that the only modifications to the x values
of the nodes are decreases.

We proceed to prove the lemma by induction on the height h of the node v. For h = 0 (leaves),
the claim is trivial. Assume the claim holds for h = k, and let v be a node of height k + 1. The
claim follows immediately from Observation 4: no sub-tree rooted in a child of v can be improved
as a result of a push-path through it. Additionally, the path from r to v never becomes amenable to
improvements through push operations, once the algorithm leaves v. This concludes the proof.

Running Time The algorithm essentially performs a depth-first-search for every node v on the
tree. Therefore, the running time of the algorithm is O(n2).

6 Conclusions and Future Work

We have demonstrated the technical difficulties that our problem entails, as well as an efficient
method for handling a broad class of instances of the problem. Due to their high efficiency, our
methods can be run on relatively large instances in practice. We also believe that our algorithm
might be applicable to settings beyond recommendation systems.

An immediate open question is to extend our algorithm to the case of general DAGs. It seems
that one needs some new ideas to give a combinatorial algorithm for this general case. In fact even
a (fast) approximation algorithm for this case seems to be beyond the reach of our techniques.
Another interesting direction would be to consider other measures such as the `2-norm. Due to
the fundamental difference between the `1 and `2 norms, we suspect that this different distance
measure will require a completely different approach.

In addition to considering alternative objective functions, we can also consider other constraints.
For instance, we can consider comparing the value assigned to each node to the average value of
its children. Another type of constraint would be to require equality between the value of a node,
and the sum of the values of its children.

References

[AHKW06] Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang. Weighted iso-
tonic regression under the `1 norm. In SODA, pages 783–791, 2006.

[BBBB72] R. E. Barlow, D. J. Bartholomew, J. M. Bremmer, and H. D. Brunk. Statistical
Inference Under Order Restrictions. Wiley, 1972.

[BC90] M. J. Best and N. Chakravarti. Active set algorithms for isotonic regression: a unifying
framework. Math. Program., 47:425–439, August 1990.

[CKP07] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level template detection
via isotonic smoothing. In WWW, pages 61–70, 2007.

[DCZ+10] Anlei Dong, Yi Chang, Zhaohui Zheng, Gilad Mishne, Jing Bai, Ruiqiang Zhang,
Karolina Buchner, Ciya Liao, and Fernando Diaz. Towards recency ranking in web
search. In WSDM, pages 11–20, 2010.

[DKK11] Gideon Dror, Noam Koenigstein, and Yehuda Koren. Yahoo! music recommendations:
Modeling music ratings with temporal dynamics and item taxonomy. In Recommender
Systems, Chicago, IL, USA, 2011. ACM.

10

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634–652,
July 1998.

[Fle04] Lisa Fleischer. A fast approximation scheme for fractional covering problems with
variable upper bounds. In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’04, pages 1001–1010, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics.

[FT84] J. Friedman and R. Tibshirani. The monotone smoothing of scatterplots. Technomet-
rics, 1984.

[KFB09] Rémon Kamp, Ad Feelders, and Nicola Barile. Isotonic classification trees. In Pro-
ceedings of the 8th International Symposium on Intelligent Data Analysis: Advances
in Intelligent Data Analysis VIII, IDA ’09, pages 405–416, Berlin, Heidelberg, 2009.
Springer-Verlag.

[LB01] Klervi Leuraud and Jacques Benichou. A comparison of several methods to test for
the existence of a monotonic dose-response relationship in clinical and epidemiological
studies. Statistics in Medicine, 20(22):3335–3351, 2001.

[MAC01] Jessica Y. Mancuso, Hongshik Ahn, and James J. Chen. Order-restricted dose-related
trend tests. Statistics in Medicine, 20(15):2305–2318, 2001.

[MJDP+00] Tony Morton-Jones, Peter Diggle, Louise Parker, Heather O. Dickinson, and Keith
Binks. Additive isotonic regression models in epidemiology. Statistics in Medicine,
19(6):849–859, 2000.

[MSCZ10] Taesup Moon, Alex J. Smola, Yi Chang, and Zhaohui Zheng. Intervalrank: isotonic
regression with listwise and pairwise constraints. In WSDM, pages 151–160, 2010.

[PG08] Kunal Punera and Joydeep Ghosh. Enhanced hierarchical classification via isotonic
smoothing. In WWW, pages 151–160, 2008.

[RWD88] T. ROBERTSON, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical In-
ference. Wiley, 1988.

[Sto] Quentin F. Stout. Isotonic Regression Algorithms.
http://www.eecs.umich.edu/˜qstout/IsoRegAlg.html. Retrieved: Aug. 6th, 2011.

[Sto08] Quentin F. Stout. Unimodal regression via prefix isotonic regression. Computational
Statistics & Data Analysis, 53(2):289–297, 2008.

[Ulm86] K. Ulm. Nonparametric analysis of dose-response relations in epidemiology. Mathe-
matical Modelling, 7(5-8):777 – 783, 1986.

A The Weighted `1-Norm Case

We now discuss the case where the nodes on the given tree can have varying levels of importance
with respect to the objective function. Specifically, as done in related studies, we consider the case
in which for each node i ∈ V , there is an associated weight wi. For ease of presentation, we assume
that all weights are integral, i.e. w ∈ Nn

≥. The objective function will be g(x) =
∑

i∈V wi · |ai−xi|.

11

Hence, we can simply reinterpret the variable δi defined for Algorithm 4 as the weighted bal-
ance between the nodes which will benefit, and the nodes that will “suffer” as a result of a
Push-Path operation. More precisely, when considering the path Pv→i, we will compute δi =∑

j∈Pv→i:xj>aj
wj −

∑
j∈Pv→i:xj≤aj wj . Therefore, a feasible push-improvement across a path Pv→u

would lead to an improvement if and only if δu > 0.
The above discussion leads to the following simple modification to procedure SetParams, given

in Algorithm 2. Note that the weighted case reduces to the unweighted case by setting the weights

Algorithm 2: The modified Set-Params procedure for the weighted case

Input: Vertex v

Set-Params(Vertex i, Non-negative integer δ, Non-negative real-value ε)1

begin2

if xi > ai then3

δi ← δ + wi, εi ← min{ε, xi − ai}4

end5

else6

δi ← δ − wi, εi ← min{xi, ε}7

end8

end9

to 1. Clearly, the algorithm has the same O(n2) running time of the original algorithm. The
following theorem argues about the optimality of the modified algorithm:

Theorem A.1. The algorithm resulting from the modification given in Algorithm 2 obtains the
optimal weighted-`1 objective function value.

Proof. In order to argue about the correctness of the modified algorithm, we compare the objective
function obtained by the algorithm to the one obtained by the original algorithm, on an equivalent
unweighted tree.

The construction We construct the tree T̃ = (Ṽ , Ẽ) by replacing each node i with a chain
i1, . . . , iwi , such that for any 1 ≤ j < wi, (ij , ij+1) ∈ Ẽ. Additionally, we set for children k ∈ C(i)
(kwk

, i1) ∈ Ẽ, and for i’s parent ` (iwi , `1) ∈ Ẽ.
It is easy to see that T̃ is a tree. Notice that T̃ might be arbitrarily large (according to the

weights). However, it is used only for the sake of proof of correctness, and never actually constructed
by the algorithm. The following proof sketch highlights the equivalence of the uniform weight case
to the weighted case.

Claim 2. Let x and x̃ be optimal assignments for T and T̃ , respectively. Then g(x) = f(x̃).

The following immediate observation, which follows from the construction of T̃ , implies the
above claim.

Observation 5. Let x̃ be an optimal assignment for T̃ . Then for any chain (i1, . . . , iwi) that
corresponds to vertex i in T :

xi1 = xi2 = . . . = xiwi

The following claim complements claim 2:

12

Claim 3. Let x and x̃ be the feasible assignments returned by Algorithm 4 and the modified algo-
rithm for weighted trees, respectively. Then

g(x) = f(x̃)

B The `∞-norm

We now turn our attention to the case of the `∞-norm; i.e. minimizing the maximal difference
maxu∈V |ai − xi|. In contrast to the case of the `1-norm, this optimization problem can be solved
in a straightforward manner by using dynamic programming, even when the underlying graph is a
directed acyclic graph.

For a given value t ≥ 0, the algorithm will go over all nodes and tries to produce an assignment of
objective value at most t. We can show that if the algorithm fails then there is no valid assignment
of objective value at most t. To find the optimal objective value then one only needs to run a
binary search on the variable t.

Algorithm 3: The dynamic programming algorithm for the `∞-norm case

Input: DAG G=(V,E), vertices 1, . . . , n sorted in topological order, vertex weight vector a.
for i← 1 to n do1

xmin
i ← max{0,

∑
j∈C(i) x

min
j , ai − t}2

end3

return xmin4

As mentioned above, we perform a binary search on t in the range [0,
∑

i ai]. Clearly, for an
instance of the problem with optimal solution value τ , the running time of Algorithm 3 would be
O(n · logτ). We now briefly outline the proof of correctness of the algorithm.

Theorem B.1. For any given t ≥ 0, x = xmin is a valid solution. Furthermore, if ||x− a||∞ > t,
then there does not exist a valid solution x′ such that ||a− x′||∞ ≤ t.

Proof. The validity of x follows from definition. To prove the second part we show the following
simple lemma.

Lemma 4. If x′ is a valid solution and ||a− x′||∞ ≤ t, then for all i, x′i ≥ xmin
i

Proof. The proof follows with a simple induction on i. Note that because ||a−x′||∞ ≤ t, x′i ≥ ai−t.
Furthermore, x′ is a valid solution so x′i ≥ 0 and

x′i ≥
∑

j∈C(i)

x′j ≥
∑

j∈C(i)

xmin
j = xmin

i ,

where we have used the induction hypothesis for the second inequality. It then follows that,

x′i ≥ max{0,
∑

j∈C(i)

xmin
j , ai − t} = xmin

i .

13

Now assume that there is a valid solution x′ with objective value at most t. It follows that for
all i,

ai − t ≤ xmin
i ≤ x′i ≤ ai + t,

that is, ||xmin − a||∞ ≤ t.

C Hardness of Approximation in General Graphs

As mentioned before when the objective value is the `1 norm of the difference between the x and a
vectors the (most general case of the) problem can be solved exactly in polynomial time by solving
a linear program. In fact, it is not hard to see that using a similar approach one can solve this
general case of the problem for any `p norm with 1 ≤ p ≤ ∞. The only difference is that one has
a linear program with infinitely many facets which has an efficient separation oracle and can be
solved with the Ellipsoid method.

For an instance where all the input values are integral, one might ask whether the task of finding
an optimal integral solution is tractable or not. This is especially interesting for the `1 case, since
in the case of trees, an integral solution can be found efficiently by our algorithm of Section 4, if
the initial a values are integrals. Unfortunately, as soon as one considers the DAG case (even the
special case of layered dags) this problem becomes intractable for essentially all `p norms. The
following theorem summarizes our hardness results.

Theorem C.1. Unless NP ⊆ TIME(nO(log logn)) it is NP-hard to approximate the Integral Iso-

tonic Regression problem for the case of directed acyclic graphs better than Θ((log n)1/p) for the `p
norm.

Proof. We prove the theorem by a reduction from the Set Cover problem. In the Set Cover problem
one is given sets S1, S2, . . . , Sm such that S1 ∪ S2 ∪ ... ∪ Sm = {1, 2, . . . , n} and the objective is
to select a minimum number of Si’s such that their union is still {1, 2, . . . , n}. It is a well known
result of Feige [Fei98] that unless NP ⊆ TIME(nO(log logn)) it is NP-hard to approximate Set
Cover better than a factor of (1 − o(1)) log n. Our reduction uses vertex weights so as to simplify
the construction. However, one can easily adapt the construction to the uniform case by adding
multiple copies of nodes so as to simulate large weights.

Given an instance of the Set Cover problem We construct the following instance of the SBHSP
problem:

• The vertex set of the output digraph will be V = {v1, . . . , vm, u1, . . . un}.

• The edge set of the output digraph will be E = {(vi, uj) : j ∈ Si}.

• The a values on the vertices will be as follows. For all vi we have a(vi) = 1, while for all uj
we have a(uj) = |{i : j ∈ Si}| − 1.

• The w values (weights) of the vertices will be as follows. For all vi we have w(vi) = 1, while
for all uj we have w(uj) = m.

On the one hand it is easy to see that for any set cover of the original instance (of size α) one can
construct a solution to the SBHSP instance (of cost p

√
α) by assigning x(vi) = 0 if Si is selected

and 1 otherwise, and x(uj) = a(uj) for all uj .
On the other hand it is not hard to see that the optimal solution to the SBHSP will have

x(vi) ∈ {0, 1} for all i and x(uj) = a(uj) for all j. Furthermore, for any such solution (of cost

14

α) the set of Si for which x(vi) = 0 can be easily seen to be a valid set cover of size αp. Hence,
a hardness of approximation of (1 − o(1)) log n for the Set Cover problem implies a hardness of
approximation of Θ(p

√
log n) for SBHSP when the objective value is defined using the `p norm for

any 1 ≤ p <∞.

Remark 1. The hard-instances of Set-Cover generated by Feige [Fei98] have less Sets than elements.
As a result it is not hard to see that the hardness achieved by the proof of the above theorem is in

fact ((1− o(1)) lnn)1/p for the weighted case and
(
(1−o(1)) lnn

2

)1/p
for the non-weighted case.

D FPTAS for optimizing under the `1 norm for Bilayered graphs

Consider a DAG G = (V,E) which is bilayered, i.e. the vertex set can be partitioned as V = U ∪W
and each edge is from the U side to the W side (E ⊆ U ×W .) In this section we show a fast Fully
Polynomial Approximation Scheme for SBHSP with the `1 norm for such DAGs. The run time will
be close to linear in the size of the DAG. The algorithm is a simple reduction to a well known class
of problems which admit such FPTASes. These problems are restricted class of the Mixed Positive
Packing and Covering Problem, see [Fle04].

We start by the following simple observation.

Lemma 5. When optimizing the `1 norm and when the input DAG is bilayered there is always an
optimal solution with the following two properties, (i) ∀w ∈W : xw = aw, (ii) ∀u ∈ U : xu ≤ au.

Proof. Consider any optimal solution x, and a vertex w ∈ W for which xw 6= aw. If xw < aw
changing the assigned value of this vertex to aw produces another valid solution with a better
objective function value. Now consider the case in which xw > aw. If xw >

∑
u∈C(w) xu then again

we can improve the objective function by decreasing xw slightly, and if xw =
∑

u∈C(w) xu we can
simultaneously decrease xw and the assigned value of some of its children. This last step would help
the objective value due to the improvement on w, and possibly hurt it by the exact same amount
due to the decrease on its children, while maintaining a valid the solution. Doing this step on every
node on the W side results in a solution that satisfies the first condition.

For the second condition observe that if xu > au we can simply decrease it to au without
changing the validity of the solution while decreasing the objective function. In other words any
optimal solution must satisfy the second condition.

Given the above lemma one can write the following linear program whose solution is the exact
value of the optimal solution. The left hand side is the original program based on the LP (3a)-(3d)
while the right hand side is the result of a simplification.

min
∑
v∈V

di

subject to du ≥ 0 ∀u ∈ U
xu ≥ 0 ∀u ∈ U

du + xu = au ∀u ∈ U∑
u∈C(w)

xu ≤ aw ∀w ∈W

min
∑
v∈V

di

subject to du ≥ 0 ∀u ∈ U (13a)

du ≤ au ∀u ∈ U (13b)∑
u∈C(w)

du ≥ (
∑

u∈C(w)

au)− aw ∀w ∈W (13c)

Once written in this form the above formulation is a, so called, Mixed Positive Packing and Covering

15

Program. In fact it is among a certain class of such programs for which Fleischer [Fle04] provides
a fast FPTAS. In particular, we have the following theorem.

Theorem D.1. When the input is a bilayered graph and the objective value is in terms of the `1
norm, there is an algorithm that given ε > 0 runs in time O(|V ||E| log(|V |)/ε2) and returns a valid
solution with objective value no more than (1 + ε) times that of the optimum.

Proof. The proof is a simple application of Theorem 2.1 from [Fle04] to the above Linear Program.
A simple corollary of that theorem is that the algorithm finishes in O(|V ||E| log(|V |)/ε2) steps1

and in each step one has to find the most unsatisfied constraint among (13a)-(13c) given a current
solution d. Each such step can be done by evaluating all the constraints in total time |E|.

E Omitted figures and algorithms

/.-,()*+8

/.-,()*+8

OO

/.-,()*+5

@@�������� /.-,()*+5

^>̂>>>>>>>

Figure 1: A counter-example for the naive algorithm. Node annotations denote the a values. The
naive algorithm will obtain an objective function value of 4, whereas the optimum value is 2.

1the constant C in Theorem 2.1 of [Fle04] is 1 in our case.

16

Algorithm 4: The improved ImproveSubtree procedure

Input: Vertex v

begin1

/* If xv = av T (v) is optimal */

if xv > av then2

Push-Search(v,∞, 0)3

end4

end5

Push-Search(Vertex u, Non-negative real-value ε, Non-negative Integer δ)6

begin7

Set-Params(u, ε, δ)8

if εu = 0 then9

return 010

end11

sum← 012

`← min{εu, xu −
∑

k:child of u xk}13

if ` > 0 and δu > 0 then14

xu ← xu − `, sum← `15

Set-Params(u, δ, ε− `)16

end17

foreach j ∈ c(u) do18

if sum = εu then19

return 0 /* Speedup20

end21

t←Push-Search(j, εu, δu)22

sum← sum+ t, xu ← xu − t23

Set-Params(u, δ, ε− sum)24

end25

return sum26

end27

Set-Params(Vertex i, Non-negative integer δ, Non-negative real-value ε)28

if xi > ai then29

δi ← δ + 1, εi ← min{ε, xi − ai}30

end31

else32

δi ← δ − 1, εi ← min{xi, ε}33

end34

17

