## Misrepresentation in District Voting

Yoram Bachrach, Omer Lev, Yoad Lewenberg & Yair Zick



#### The problem UK

#### 1951 UK elections:





 Popular vote:
 48%
 48.8%

 Parliament seats:
 321 (51.6%)
 295 (47.2%)



#### The problem US

#### 1876 US elections:





Popular vote:

Electoral votes:

47.9%

185

50.9%

184



#### The problem US

#### 2000 US elections:





Popular vote:

47.9%

271

48.4%

Electoral votes:

266



#### **District voting setup**

Set C of *m* candidates.

Set V of voters divided into a partition  $D_1, ..., D_z$ of equal size, so that each district has *n* voters.



### **District voting setup**

Each district uses voting rule f to determine winner.

The candidate that wins over the plurality of the districts is the winner of the overall election.



# Score-monotone voting rules

A voting rule f is score-monotone if it assigns some type of score to a candidate, and selects the candidate maximizing/minimizing this score.

> E.g.: Scoring rules Copeland Maximin

• • •



### Price of districting

How much are voters being misrepresented? (for score-based voting rules *f*)

 $\max_{i \in C} \quad \begin{array}{l} \text{score of candidate } i \text{ in } f(V) \\ \text{score of winning candidate in } f(V) \end{array}$ 



### Plurality 2 candidates

2  $\ell$ +1 districts, each with 2*t*+1 voters





#### Plurality m candidates





#### Plurality m candidates



$$1 + \frac{n - 2\lceil \frac{n}{2} \rceil + 1}{q + 2} + \frac{(z + 1)(\lceil \frac{n}{2} \rceil - 1) - n}{(\ell + 2)(q + 2)} \approx \Theta(m^2)$$
$$q = \lfloor \frac{n}{m} \rfloor$$



# Plurality majority twist m candidates

$$\frac{q+1}{q+2} + \frac{n(\lceil \frac{n}{2} \rceil - 1)}{(q+2)(\lfloor \frac{n}{2} \rfloor + 1)} \quad \approx \quad \Theta(m)$$

m



#### Other scoring rules

*k*-approval:  $\Theta(m^2/k)$ 

Veto: 
$$\Theta(m)$$

Borda: 
$$\Theta(m^2)$$



#### Copeland



District winner is *a*. Copeland winner is *b* with score 2, *a* with score 0.



## **Copeland Price of districting**



District winner may have worst possible score, while Copeland winner has best possible score.



#### Simulations: Borda uniform





#### Simulations: plurality Mallows





#### Simulations: Copeland Mallows





#### What's next?

Another paper with Yoad... (complexity, geography, real world data)

More voting methods

Is Homogeneity/heterogeneity of districts good or bad?

More effects of districts on outcomes and their representability.



Thanks for listening!