Empirical Aspects of Plurality Elections

David R. M. Thompson, Omer Lev,
Kevin Leyton-Brown \& Jeffrey S. Rosenschein

COMSOC 2012
Kraków, Poland

What is a (pure) Nash Equilibrium?

A solution concept involving games where all players know the strategies of all others. If there is a set of strategies with the property that no player can benefit by changing her strategy while the other players keep their strategies unchanged, then that set of strategies and the corresponding payoffs constitute the Nash Equilibrium.

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

1 st
preference

$2^{\text {nd }}$
preference

Pete

Delmar

Escape

Stay in
prison
Riot 9

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

Suppose tie is broken by
deciding to stay in prison

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

	Everett		Pete Delmar
1 st preference	Escape	Riot	Stay in prison
$2^{\text {nd }}$ preference	Riot	Escape \%	Escape \$
$3 \text { rd }$ preference	Stay in prison	Stay in prison	Riot

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

Pete

Delmar
$2^{\text {nd }}$
preference

Stay in
prison

Escape

Riot 9

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

But if players are not truthful, weird things can happen...

What is a Nash Equilibrium? Example: voting prisoners' dilemma...

Everett

Pete

Delmar

$1^{\text {st }}$
preference

$2^{\text {nd }}$ preference
Riot

Stay in
prison

Problem 1: Can we dearease the number of pure Nash equilibria?
 (especially eliminating the senseless ones...)

The truthfulness incentive

Each player's utility is not just dependent on the end result, but players also receive a small ε when voting truthfully. The incentive is not large enough as to influence a voter's choice when it can affect the result.

The truthfulness incentive Example

Pete

Delmar

Escape

Riot 9

Problem 2: How can we identify pure Nash equilibria?

Action Graph Games

A compact way to represent games with 2 properties:

Anonymity: payoff depends on own action and number of players for each action.

Calculating the equilibria using Support Enumeration Method (worst case exponential, but thanks to heuristics, not common).

Now we have a way to find pure equilibria, and a way to ignore absurd ones.

So?

The scenario

5 candidates \& 10 voters.

Voters have Borda-like utility functions
(gets 4 if favorite elected, 3 if $2^{\text {nd }}$ best elected, etc.)
with added truthfulness incentive of $\varepsilon=10^{-6}$.
They are randomly assigned a preference order over the candidates.

This was repeated 1,000 times.

Results: number of equilibria

In 63.3% of games, voting truthfully was a Nash equilibrium. 96.2% have less than 10 pure equilibria (without permutations). 1.1% of games have no pure Nash equilibrium at all.

Results: type of equilibria truthol

80.4% of games had at least one truthful equilibrium. Average share of truthful-outcome equilibria: 41.56% (without incentive -21.77%).

Results: type of equilibria condorcet

92.3% of games had at least one Condorcet equilibrium. Average share of Condorcet equilibrium: 40.14\%.

Results: social welfare averoge rank

71.65% of winners were, on average, above median. 52.3% of games had all equilibria above median.

Results: social welfare raw sum

92.8% of games, there was no pure equilibrium with the worst result (only in 29.7% was best result not an equilibrium). 59% of games had truthful voting as best result (obviously dominated by best equilibrium).

But what about more common situations, when we don't have full information?

Bayes-Nash equilibrium

Each player doesn't know what others prefer, but knows the distribution according to which they are chosen. So, for example, Everett and Pete don't know what Delmar prefers, but they know that:

$1{ }^{\text {st }}$
preference

$2^{\text {nd }}$
preference
Escape
45%
5\%
0%

$3^{\text {rd }}$
preference
Riot

Escape
Riot

Bayes-Nash equilibrium scenario

5 candidates \& 10 voters.
We choose a distribution: assign a probability to each preference order. To ease calculations - only 6 orders have non-zero probability.

We compute equilibria assuming voters are chosen i.i.d from this distribution. All with Borda-like utility functions \& trutbfulhess incentive of $\varepsilon=10^{-6}$.

Results: number of equilibria

Change (from incentive-less scenario) is less profound than in the Nash equilibrium case (76% had only 5 new equilibria).

Results: type of equilibria

$\square_{\text {truthful }}$ not truthful

95.2% of equilibria had only 2 or 3 candidates involved in the equilibria. Leading to...

Results: proposition

In a plurality election with a truthfulness incentive of ε, as long as ε is small enough, for every $c_{1}, c_{2} \in C$ either c_{1} Pareto dominates c_{2} (i.e., all voters rank c_{1} higher than c_{2}), or there exists a pure Bayes-Nash equilibrium in which each voter votes for his most preferred among these two candidates.

Proof sketch

Suppose I prefer c_{1} to c_{2}.

If it isn't Pareto-dominated, there is a probability
P that a voter would prefer c_{2} over c_{1},
hence $\mathrm{P}^{\mathrm{n} / 2}$ that my vote would be pivotal.

If ε is small enough, so one wouldn't be tempted to vote truthfully, each voter voting for preferred type of c_{1} or c_{2} is an equilibrium

What did we see?

Empirical work enables us to better analyze voting systems. E.g., potential tool enabling comparison according likelihood of truthful equilibria...

Truthfulness incentive induces, we believe, more realistic equilibria.

Clustering: in PSNE, clusters formed around the equilibria with "better" winners. In BNE, clusters formed around subsets of candidates.

Future directions

More cases - different number of voters and candidates.

More voting systems - go beyond plurality.

More distributions - not just random one.

More utilities - more intricate than Borda.

More empirical work - utilize this tool to analyze different complex voting problems, bringing about More Nash equilibria...

(Yes, they escaped...)

Thanks for listening!

