
An Algorithm for the 
Coalitional Manipulation 
Problem under Maximin 
Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein 

(Simulations by Amitai Levy) 

 

BISFAI, June 2011 



Introduction 

¤ Elections 
¤  Voters submit linear orders of the candidates 

¤  A voting rule determines the winner based on the 
votes 

¤ Manipulation 
¤  A voter casts a vote that is not his true preference, to 

make himself better off 

¤ Gibbard – Satterthwaite theorem 
¤  Every reasonable voting rule is manipulable 



Unweighted Coalitional 
Optimization (UCO) problem 

¤ Given 
¤  A voting rule r 

¤  The Profile of Non-Manipulators PNM 

¤  Candidate p preferred by the manipulators 

¤ We are asked to find the minimum k such that 
there exists a set of manipulators M with |M| = 
k, and a Profile of Manipulators PM such that p 
is the winner of PNM ∪ PM under r. 



Our setting, Maximin 

¤  C = {c1,…,cm} – the set of candidates 

¤  S, |S| = N – the set of N non-manipulators 

¤  T, |T| = n – the set of n manipulators, on which we fix an order 

¤  Ni(c, cʼ’) = |{ k | c ≻k cʼ’, ≻k∈S ∪ {1,…,i}}| – the number of 
voters from S and from the i first manipulators, which prefer c 
over cʼ’ 

¤  Si(c) = mincʼ’≠cNi(c, cʼ’) – the Maximin score of c from S and the 
first i manipulators 

¤  Maximin winner = argmaxc{Sn(c)} 

¤  Denote MINi(c) = {cʻ‘∈C | Si(c) = Ni(c, cʼ’)} 



CCUM Complexity 

¤ CCUM under Maximin is NP-complete for any 
fixed number of manipulators (≥ 2) 

     (Xia et al. IJCAI 2009) 

¤  It follows that the UCO is not approximable by 
constant better than 3/2, unless P = NP 
¤  Otherwise, if opt = 2, then the output of the algorithm 

would be < 3, i.e., 2 

¤  Hence, it would solve the CCUM for n = 2, a 
contradiction 



The heuristic / approximation 
algorithm 
¤  The current manipulator i 

¤  Ranks p first 

¤  Builds a digraph Gi-1 = (V, Ei-1), where 

¤  V = C \ {p}; 

¤  (x, y)∈ Ei-1 iff (y ∈ MINi-1(x) and p ∉ MINi-1(x)) 

¤   Iterates over the candidates who have not yet been 
ranked 

¤    If there is a candidate with out-degree 0, then it adds 
such a candidate with the lowest score 

¤    Otherwise, adds a vertex with the lowest score 

¤    Removes all the outgoing edges of vertices who had 
outgoing edge to newly added vertex 



Additions to the algorithm	

¤ The candidates with out-degree 0 are kept in 
stacks in order to guarantee a DFS-like order 
among the candidates with the same scores 

¤  If there is no candidate (vertex) with out-
degree 0, then it first searches for a cycle, with 2 
adjacent vertices having the lowest scores 
¤  If it finds such a pair of vertices, it adds the front vertex 



Example 

¤  C = {a, b, c, d, e, p} 

¤  |S| = 6 

¤  |T| = 2 

¤  The non-manipulatorsʼ’ votes: 
¤  a ≻ b ≻ c ≻ d ≻ p ≻ e 
¤  a ≻ b ≻ c ≻ d ≻ p ≻ e 
¤  b ≻ c ≻ a ≻ p ≻ e ≻ d 
¤  b ≻ c ≻ p ≻ e ≻ d ≻ a 
¤  e ≻ d ≻ p ≻ c ≻ a ≻ b 
¤  e ≻ d ≻ p ≻ c ≻ a ≻ b 

G0: 

2 

2 

2 

2 

S0(p) = N0(p, b) = 2 
S0(e) = N0(e, p) = 2 

b 

a 

c 

d 

e 2 

2 



Example (2) 

¤ The non-manipulatorsʼ’ votes: 
¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 

¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 
¤ b ≻ c ≻ a ≻ p ≻ e ≻ d 

¤ b ≻ c ≻ p ≻ e ≻ d ≻ a 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 

¤ The manipulatorsʼ’ votes: 

b 

a 

c 

d 

e 2 

2 

G0: 

2 

2 

2 

2 

p ≻ e ≻ d ≻ b ≻ c ≻ a 

S0(p) = N0(p, b) = 2 
S0(e) = N0(e, p) = 2 

3 



Example (3) 

¤ The non-manipulatorsʼ’ votes: 
¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 

¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 
¤ b ≻ c ≻ a ≻ p ≻ e ≻ d 

¤ b ≻ c ≻ p ≻ e ≻ d ≻ a 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 

¤ The manipulatorsʼ’ votes: 

b 

a 

c 

d 

e 2 

2 

G1: 3 

2 

p ≻ e ≻ d ≻ b ≻ c ≻ a 

S1(p) = N1(p, b) = 3 
S1(e) = N1(e, p) = 2 

p ≻ e ≻ d ≻ c ≻ a ≻ b 

3 



Example (4) 

¤ The non-manipulatorsʼ’ votes: 
¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 

¤ a ≻ b ≻ c ≻ d ≻ p ≻ e 
¤ b ≻ c ≻ a ≻ p ≻ e ≻ d 

¤ b ≻ c ≻ p ≻ e ≻ d ≻ a 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 
¤ e ≻ d ≻ p ≻ c ≻ a ≻ b 

¤ The manipulatorsʼ’ votes: 

b 

a 

c 

d 

e 2 

2 

G2: 3 

3 

S2(p) = N2(p, b) = 4 
maxx≠pS2(x) = 3 

p is the winner! 
p ≻ e ≻ d ≻ b ≻ c ≻ a 
p ≻ e ≻ d ≻ c ≻ a ≻ b 



Instances without 2-cycles 

¤ Denote msi = maxc≠pSi(c) 
¤  The maximum score of p’s opponents after i stages 

¤ Lemma: If there are no 2-cycles in the graphs 
built by the algorithm, then for all i, 0 ≤ i ≤ n-3 it 
holds that msi+3 ≤ msi + 1 

¤ Theorem: If there are no 2-cycles, then the 
algorithm gives a 5/3-approximation of the 
optimum 



Proof of Theorem 

p a b c d 

ms0 

S0(p) 

opt ≥ ms0 – S0(p) + 1 

n = ⌈(3 ms0 – 3S0(p) + 3)/2⌉ 

The ratio n/opt is the biggest when opt = 3, n = ⌈3/2 * 3⌉ = 5 



Eliminating the 2-cycles 

¤  Lemma: If at a certain stage i there are no 2-cycles, then 
for all j > i, there will be no 2-cycles at stage j 

¤  We prove that the algorithm performs optimally while 
there are 2-cycles 
¤  Intuitively, if there is a 2-cycle, then one of its vertices has 

the highest score, and it will always be placed in the end 
– until the cycle is eliminated 

¤  Once the 2-cycles have been eliminated, our algorithm 
performs a 5/3-approximation on the number of stages 
left 

¤  Generally we have 5/3-approximation of the optimal 
solution 



Conclusions 

¤  A new heuristic / approximation algorithm for CCUM / 
UCO under Maximin 

¤  Gives a 5/3-approximation to the optimum 

¤  The lower bound on the approximation ratio of the 
algorithm (and any algorithm) is 1½  

¤  Simulation results – comparison between this algorithm 
and the simple greedy algorithm in Zuckerman et al. 2009 

¤  Future work 

¤  Prove the approx. ratio for a similar algorithm without our 
technical additions 



Thank You 
Questions? 


