An Algorithm for the Coalitional Manipulation Problem under Maximin

Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein
(Simulations by Amitai Levy)

BISFAI, June 2011

Introduction

- Elections
- Voters submit linear orders of the candidates
- A voting rule determines the winner based on the votes
- Manipulation
- A voter casts a vote that is not his true preference, to make himself better off
- Gibbard - Satterthwaite theorem
- Every reasonable voting rule is manipulable

Unweighted Coalitional Optimization (UCO) problem

- Given
- A voting rule r
- The Profile of Non-Manipulators PNM
- Candidate p preferred by the manipulators
\square We are asked to find the minimum k such that there exists a set of manipulators M with $|M|=$ k, and a Profile of Manipulators PM such that p is the winner of PNM $\cup P M$ under r.

Our setting, Maximin

- $C=\left\{C_{1}, \ldots, c_{m}\right\}$ - the set of candidates
- $S,|S|=N$ - the set of N non-manipulators
- $\mathrm{T},|\mathrm{T}|=\mathrm{n}$ - the set of n manipulators, on which we fix an order
$\square N_{i}\left(c, c^{\prime}\right)=\left|\left\{k \mid c>_{k} c^{\prime},>_{k} \in S \cup\{1, \ldots, i\}\right\}\right|$ - the number of voters from S and from the i first manipulators, which prefer c over c'
$\square S_{i}(c)=\min _{c^{\prime} \neq c} N_{i}\left(c, c^{\prime}\right)$ - the Maximin score of c from S and the first i manipulators
\square Maximin winner $=\operatorname{argmax}_{c}\left\{S_{n}(c)\right\}$
Denote $\operatorname{MIN}_{i}(c)=\left\{c^{\prime} \in C \mid S_{i}(c)=N_{i}\left(c, C^{\prime}\right)\right\}$

CCUM Complexity

\square CCUM under Maximin is NP-complete for any fixed number of manipulators (≥ 2)
(Xia et al. IJCAI 2009)

- It follows that the UCO is not approximable by constant better than $3 / 2$, unless $P=N P$
- Otherwise, if opt $=2$, then the output of the algorithm would be < 3, i.e., 2
- Hence, it would solve the CCUM for $\mathrm{n}=2$, a contradiction

The heuristic / approximation algorithm

- The current manipulator i
- Ranks p first
- Builds a digraph $\mathrm{G}^{\mathrm{i}-1}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{i}-1}\right)$, where
$\square \vee=C \backslash\{p\} ;$
$\square(x, y) \in E^{i-1}$ iff $\left(y \in \operatorname{MIN}_{i_{-1}}(x)\right.$ and $\left.p \notin \mathrm{MIN}_{\mathrm{i}_{-1}}(x)\right)$
- Iterates over the candidates who have not yet been ranked
- If there is a candidate with out-degree 0 , then it adds such a candidate with the lowest score
- Otherwise, adds a vertex with the lowest score
- Removes all the outgoing edges of vertices who had outgoing edge to newly added vertex

Additions to the algorithm

\square The candidates with out-degree 0 are kept in stacks in order to guarantee a DFS-like order among the candidates with the same scores

- If there is no candidate (vertex) with outdegree 0 , then it first searches for a cycle, with 2 adjacent vertices having the lowest scores
- If it finds such a pair of vertices, it adds the front vertex

Example

G^{0} :

$\square C=\{a, b, c, d, e, p\}$

- $|S|=6$
- $|T|=2$
\square The non-manipulators' votes:
- a $>\mathrm{b}>\mathrm{c}>\mathrm{d}>p>e$

- $a>b>c>d>p>e$
- $b>c>a>p>e>d$

■ $b>c>p>e>d>a$

$$
S_{0}(p)=N_{0}(p, b)=2
$$

- $e>d>p>c>a>b$

$$
S_{0}(e)=N_{0}(e, p)=2
$$

$\boldsymbol{\square} \boldsymbol{e}>\mathrm{d}>\mathrm{p}>\mathrm{c}>\mathrm{a}>\mathrm{b}$

Example (2)

- The non-manipulators' votes:
- $a>b>c>d>p>e$
- $a>b>c>d>p>e$
ab>c>a>p>e>d
- $b>c>p>e>d>a$
- $e>d>p>c>a>b$

$$
G^{0}:
$$

- $e>d>p>c>a>b$
- The manipulators' votes:

$$
\begin{aligned}
& S_{0}(p)=N_{0}(p, b)=2 \\
& S_{0}(e)=N_{0}(e, p)=2
\end{aligned}
$$

$p>e>d>b>c>a$

Example (3)

- The non-manipulators' votes: b
- $a>b>c>d>p>e$
- $a>b>c>d>p>e$
- $b>c>a>p>e>d$
ab>c>p>e>d>a
- $e>d>p>c>a>b$

- $e>d>p>c>a>b$

$$
\begin{aligned}
& S_{1}(p)=N_{1}(p, b)=3 \\
& S_{1}(e)=N_{1}(e, p)=2
\end{aligned}
$$

$p>e>d>b>c>a$
$p>e>d>c>a>b$

Example (4)

- The non-manipulators' votes: b
- $a>b>c>d>p>e$
- $a>b>c>d>p>e$
- $b>c>a>p>e>d$
ab>c>p>e>d>a
- $e>d>p>c>a>b$

- $e>d>p>c>a>b$
- The manipulators' votes:

$$
\begin{aligned}
& S_{2}(p)=N_{2}(p, b)=4 \\
& \max _{x \neq p} S_{2}(x)=3
\end{aligned}
$$

p is the winner!

Instances without 2-cycles

- Denote $\mathrm{ms}_{\mathrm{i}}=\max _{\mathrm{c} \neq \mathrm{p}} \mathrm{s}_{\mathrm{i}}(\mathrm{c})$
- The maximum score of p 's opponents after i stages

Lemma: If there are no 2-cycles in the graphs built by the algorithm, then for all $\mathrm{i}, \mathrm{O} \leq \mathrm{i} \leq \mathrm{n}-3$ it holds that $\mathrm{ms}_{\mathrm{i}+3} \leq \mathrm{ms}_{\mathrm{i}}+1$

- Theorem: If there are no 2-cycles, then the algorithm gives a 5/3-approximation of the optimum

Proof of Theorem

The ratio $\mathrm{n} /$ opt is the biggest when opt $=3, \mathrm{n}=\Gamma 3 / 2 * 37=5$

Eliminating the 2-cycles

- Lemma: If at a certain stage i there are no 2-cycles, then for all j > i, there will be no 2-cycles at stage j
- We prove that the algorithm performs optimally while there are 2-cycles
- Intuitively, if there is a 2 -cycle, then one of its vertices has the highest score, and it will always be placed in the end - until the cycle is eliminated
- Once the 2-cycles have been eliminated, our algorithm performs a 5/3-approximation on the number of stages left
- Generally we have 5/3-approximation of the optimal solution

Conclusions

- A new heuristic / approximation algorithm for CCUM / UCO under Maximin
- Gives a 5/3-approximation to the optimum
\square The lower bound on the approximation ratio of the algorithm (and any algorithm) is $11 / 2$
- Simulation results - comparison between this algorithm and the simple greedy algorithm in Zuckerman et al. 2009
- Future work
- Prove the approx. ratio for a similar algorithm without our technical additions

Thank YOU

Questions?

