Beyond Plurality: Truth-Bias in Binary Scoring Rules

Svetlana Obraztsova, Omer Lev, Evangelos Markakis, Zinovi Rabinovich, and Jeffrey S. Rosenschein

Why truth-bias?

Why truth-bias?

Jiminy Cricket

Gideon the cat
$1^{\text {st }}$ preference
Puppet show

Pleasure island

Puppet
 show

Puppet
show

Pleasure
island

What's truth-hias?

Each voter gets an ε extra utility from being truthful. The ε is small enough so that a voter would rather change the winner to someone more to its liking than to be truthful.

Why truth-bias?

Jiminy Cricket

Gideon the cat
$1^{\text {st }}$ preference
Puppet
show

Do what the blue fairy say.

Do what the blue fairy says

What's the k-approval voting rule?

Each voter gives a point to k candidates and the rest do not receive any point from the voter.

The candidate with the most points, wins.

When $k=1$, this is plurality.
When $k=$ number of candidates- 1 , this is veto.

Meto

What about the equilibria?

They don't necessarily exist...

$$
\begin{aligned}
& a>c>b \\
& c>a>b \\
& c>a>b \\
& c>a>b \\
& c>b>a
\end{aligned}
$$

What about the equilibria?

They don't necessarily exist...

What about the equilibria?

They don't necessarily exist...

$$
\begin{aligned}
& \text { a }>c>b \\
& c>a>b \quad a>b>c \\
& c>a>b \\
& c>a>b \\
& c>a>b \\
& \mathrm{c}>\mathrm{b}>\mathrm{a}
\end{aligned}
$$

What about the equilibria?

They don't necessarily exist...

Can we say anything about it?

If an equilibrium is non-truthful:
The winner's score is the same as in the truthful setting.

There is a threshold candidate, that would win if the winner lost a point.

All non-truthful voters veto a "runner-up", i.e., candidates one point away from winning.

Can we say if candidate whas an equilibrium where it wins?

No.

Finding if there is an equilibrium in which candidate w is the winner in a veto election with truth-biased voters is NP-complete.

Furthermore,
Finding if there is an equilibrium a veto election with truth-biased voters is NPcomplete.

But do not falter!

The candidate following w in the tie breaking rule - t - has a truthful score at least as high as w.

All voters that do not veto w prefer it to the candidate following w in the tie breaking rule $\left.(w\rangle_{i} t\right)$.

The truth(-bias) is out there!

In veto elections with truth-biased voters, if the 2 conditions hold for a candidate w, determining if there is an equilibrium in which it wins can be done in polynomial time.

Not true for each condition separately!

Creating a graph: potential deviations

Nodes are source, sink, C (candidates), V (voters)
For a voter v truthfully vetoing r we add an edge (r, v).
And for each c such that $w{ }_{v} c>{ }_{v} r$ we add an edge (v, c).

Creating a graph: deviations

If a candidate c needs more points to beat w, there is an edge (source, c) with capacity of the score it needs to add to become a runner-up.

If a candidate c beats w, there is an edge ($(c, \sin k)$ with capacity of the score it needs to lose to become a runner-up.

If maxflow<incoming to sink - not enough points changed to make w the winner.

If maxflow=incoming to sink - some tweaks to flow manifestation will show the flow means voters moving veto from some candidates to others.

But what about the condifions? (1)

> The candidate following w in the tie breaking rule - t - has a truthful score at least as high as w.

Condition ensured t was the threshold candidate

But what about the condifions? (2)

All voters that do not veto w prefer it to the candidate following w in the tie breaking rule $\left.(w\rangle_{i} t\right)$.

Condition ensured no one would veto w, making t, the threshold candidate, the winner.

Plurality

Plurality truth-bias

Equilibrium not ensured.

Knowing if equilibrium exists is NP-complete.

Winner increases score (if not-truthful)

Runner-up score does not change

k-approval truth-bias

Winner score can stay the same or rise.

Runner-up score can increase or decrease

Future directions

> | Other voting rules! |
| :--- |
| (we're not even sure what's going on |
| in non-binary scoring rules...) |

Simulation / analysis: how good are the winners?

More useful conditions to make problems poly-solvable.

Classes of truth-biased equilibria?

THE TRUTH IS OUT THERE

Thanks for listening!

