Mergers and Collusion in All-Pay Auctions and Crowdsourcing Contests

Omer Lev, Maria Polukarov, Yoram Bachrach & Jeffrey S. Rosenschein

> AAMAS 2013 St. Paul, Minnesota

Perliminaries

Bidders bid and pay their **bid** to the auctioneer

Auction winner is one which submitted the highest bid

Why all-pay auctions?

Explicit all-pay auctions are rare, but implicit ones are extremely common:

Competition for patents between firms

Crowdsourcing competitions (e.g., Netflix challenge, TopCoder, etc.)

Hiring employees

Employee competition ("employee of the month")

Auctioneer types

"sum profit"

Gets the bids from all bidders – regardless of their winning status

E.g., "emloyee of the month"

"max profit"

Gets only the winner's bid. Other bids are, effectively, "burned"

E.g., hiring an emplyee

All-pay auction equilibrium

All bidders give the object in question a value of 1

A single symmetric equilibrium – for *n* bidders:

 $F_n(x) = x^{\frac{1}{n-1}}$

All-pay auction equilibrium bidder properties

Baye, Kovenock, de Vries

All-pay auction equilibrium auctioneer properties

Sum profit expected profit: Sum profit

profit variance:

 $\frac{n}{2n-1} - \frac{1}{n}$

Max profit expected profit:

Max profit profit variance:

$$\frac{n}{2n-1}$$

$$\frac{n(n-1)^2}{(3n-2)(2n-1)^2}$$

Baye, Kovenock, de Vries

Example no collusion case

3 bidders

Bidders' c.d.f is \sqrt{x} and the expected bid is ¹/₃, with variance of $\frac{4}{45}$. Expected profit is 0 with variance of $\frac{2}{15}$.

Sum profit auctioneer has expected profit of 1 with variance of $\frac{4}{15}$.

Max profit auctioneer has expected profit of $\frac{3}{5}$ with variance of $\frac{12}{175}$.

Baye, Kovenock, de Vries

k bidders (out of the total n)
collaborate, having a joint
strategy. All other bidders are
aware of this.

Merger properties

c knowledge)

collaboration pu

Equilibrium remains the same – but with smaller n

Example no collusion case

3 bidders

ic knowledge)

collaboration pu

Bidders' c.d.f is \sqrt{x} and the expected bid is $\frac{1}{3}$, with variance of $\frac{4}{45}$. Expected profit is 0 with variance of $\frac{2}{15}$.

Sum profit auctioneer has expected profit of 1 with variance of $\frac{4}{15}$.

Max profit auctioneer has expected profit of $\frac{3}{5}$ with variance of $\frac{12}{175}$.

Example merger case

3 bidders, 2 of them merged

c knowledge)

collaboration p

Bidders' c.d.f is uniform, and the expected bid is $\frac{1}{2}$, with variance of $\frac{1}{12}$. Expected profit is 0 with variance of $\frac{1}{12}$.

Sum profit auctioneer has expected profit of 1 with variance of %.

Max profit auctioneer has expected profit of $\frac{2}{3}$ with variance of $\frac{1}{18}$.

Collusions

k bidders (out of the total *n*) collaborate, having a joint strategy. **Other bidders are not aware of this and continue to pursue their previous strategies.**

Collusion colluders

Colluders have a pure, optimal strategy

$$b^* = \left(\frac{n-k}{n-1}\right)^{\frac{n-1}{k-1}}$$

Producing an expected profit of:

$$\left(\frac{n-k}{n-1}\right)^{\frac{n-1}{k-1}} \left(\frac{k-1}{n-1}\right)$$

Colluders' profit **per colluder** increases as number of colluders grows

Profit variance:

$$\left(\frac{n-k}{n-1}\right)^{\frac{n-k}{k-1}} - \left(\frac{n-k}{n-1}\right)^{\frac{2(n-k)}{k-1}}$$

vate knowledge)

collaborati

Sum profit:
$$\frac{n-k}{n} + \left(\frac{n-k}{n-1}\right)^{\frac{n-1}{k-1}}$$
 k: n:

Max profit:
$$\frac{n-k}{2n-k-1} \left(1 + \left(\frac{n-k}{n-1}\right)^{\frac{2(n-k)}{k-1}} \right)$$
 k: n:

For large enough *n* exceed non-colluding profits

Collusion non-colluding bidders

Utility for non-colluding bidders is:

snowledge

$$\frac{k}{n(n-k)} - \frac{\left(\frac{n-k}{n-1}\right)^{\frac{n-k}{k-1}}}{n-k}$$

For large enough k (e.g., $\frac{n}{2}$) this expression is positive. **I.e., non-colluders profit from collusion**

If a non-colluder discovers the collusion, best to bid a bit above colluders

Example no collusion case

3 bidders

private knowledge)

Bidders' c.d.f is \sqrt{x} and the expected bid is $\frac{1}{3}$, with variance of $\frac{4}{45}$. Expected profit is 0 with variance of $\frac{2}{15}$.

Sum profit auctioneer has expected profit of 1 with variance of $\frac{4}{15}$.

Max profit auctioneer has expected profit of $\frac{3}{5}$ with variance of $\frac{12}{175}$.

Example merger case

3 bidders, 2 of them merged

Bidders' c.d.f is uniform, and the expected bid is $\frac{1}{2}$, with variance of $\frac{1}{12}$. Expected profit is 0 with variance of $\frac{1}{12}$.

Sum profit auctioneer has expected profit of 1 with variance of %.

Max profit auctioneer has expected profit of $\frac{2}{3}$ with variance of $\frac{1}{18}$.

Example collusion case

3 bidders, 2 of them collude

knowledge

One bidder has c.d.f of \sqrt{x} (expected bid of $\frac{1}{3}$), colluders bid $\frac{1}{4}$. Colluders' expected profit is $\frac{1}{4}$, while the non-colluder expected *profit* is $\frac{1}{6}$.

Sum profit auctioneer expected profit only $\frac{7}{12}$.

Max profit auctioneer has expected profit of $\frac{10}{24}$.

Future directions

Adding bidders' skills to model

Detecting collusions by other bidders

Designing crowdsourcing mechanisms less susceptible to collusion

Adding probability to win based on effort

Thanks for listening!