CONVERGENCE OF ITERATIVE VOTING

Omer Lev \& Jeffrey S. Rosenschein

AAMAS 2012
Valencia, Spain

What is Iterative Voting?

Color of the new car...

What is Iterative Voking?

Color of the new car...

Wait a minute!

What is Iterative Voting?

Color of the new car...

What is Iterative Voking?

Color of the new car...

Wait a minute!

What is Iterative Voting?

Color of the new car...

What is Iterative Voking?

Color of the new car...

Can't we all just get along?

What we know:

 (meir et al. - An月l 2010)Assuming players play a myopic "best response" - reacting to the current state:

Iterative Plurality converges

2 cases:

 cantexatdafulucstana to which ties are resolued
$>$ Deterministic tie breaking rules: from any state (including non-truthful)

Tie-breaking rules

Linear:

$$
\ggg \gg
$$

Non-linear:

There is no set order between red and orange

Pastry example:
(thanks to
Ilan Nehama)

Short oside:

 What are seoring rulesScoring rules for m candidates define a scoring vector:

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right)
$$

under the condition

$$
\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots \geq \alpha_{m}=0
$$

A voter gives α_{1} points to his most preferred candidate, α_{2} points to his $2^{\text {nd }}$ preference, etc.

The winner is the candidate with most points

Short aride:
 Eramples of scoring rules

Plurality: $(1,0, \ldots, 0,0)$

Veto: $(1,1, \ldots, 1,0)$

Borda: ($m-1, m-2, \ldots, 1,0$)

k-veto:

$$
(1,1, \ldots, 1,0,0, \ldots, 0)
$$

Tie-breaking rules makter

When using any arbitrary tiebreaking rule (i.e., not necessarily linear ones), every scoring rule \& Maximin has tie-breaking rule for which it will not always converge

Theorem I: Proof sketeh (scoring rules)

4 candidates, 2 voters, tie breaking rule makes c win if not tied with b. b wins if not tied with d. d wins if not tied with a.

Theorem Il: Borda doesnºt work

When using the Borda voting rule,
regardless of tie-breaking rules,
the iterative process may never converge

Theorem II: Proof sketch

4 candidates, 2 voters (tie breaking doesn't matter):

Theorem Ill: Iterative Veto converges

When using linear tie-breaking rules, iterative Veto will always converge - from truthful or nontruthful starting point

Theorem III: Proof

"Best response" straight-forwardly defined as vetoing the current (unwanted) winner.

Lemma 1: If there is a cycle, taking a stage in the cycle where there is more than one candidate with the maximal score, suppose winner score is s. Then winning score at any other stage is s or $s+1$. Any stage with $s+1$ score has only one candidate with that score.

Theorem III: Proof temma I

The futility of having a single winner - the score can't get higher, and you can't get multiple candidates to share the score:

Theorem III: Proof

Lemma 2: If there is a cycle, all stages with more than one candidate with the maximal score have the same number of candidates with maximal score and maximal- 1 score, and these are the same candidates in all the cycle.

$$
\begin{gathered}
s+1 \\
s \\
s-1
\end{gathered}
$$

Theorem III: Proof

2 types of player moves:

A candidate with a

 score of sbecomes winner with score of $s+1$

A candidate with a score of s-1 gets point and becomes winner

Previously vetoed candidates become winners
(gaining a point), i.e., voters' situation progressively worse. This is a finite process

Theorem IV:

 k-Approval doesn't workWhen using k-approval voting rule for $k \geq 2$, even with linear tiebreaking rule, the iterative process may never converge

Theorem IV: Proof sketch

4 candidates, 2 voters, and the tie breaking rule is alphabetical $(\mathrm{a}>\mathrm{b}>\mathrm{c}>\mathrm{d})$

$$
\begin{aligned}
& \mathrm{b}>\mathrm{d}>\mathrm{c}>\mathrm{a} \quad \mathrm{~b}>\mathrm{d}>\mathrm{c}>\mathrm{a} \\
& \mathrm{a}>\mathrm{d}>\mathrm{c}>\mathrm{b} \\
& \text { d-2; a, b-1; c-0 } \\
& 1 \\
& \mathbf{b}>\mathbf{c}>\mathbf{d}>\mathbf{a} \\
& \mathrm{a}>\mathrm{d}>\mathrm{c}>\mathrm{b} \\
& \text { a, b, c, d-1 }
\end{aligned}
$$

Current problems: lazy-bedt Borda (with mosia Polutarate)

Lazy-best means we put the new winner in $1^{\text {st }}$ place, and push everyone else back one spot.

Does this converge with Borda?

Using a simulator, it seems lazy-best Borda converges.

If we don't allow ties, it's
easy to prove convergence.
Tie-breaking is key.

Score increase may be high (up to $\mathrm{m}-1$ points), but points are lowered one point at a time - so a cycle has many stages in which maximal score is either static or gets lowered.

Current problems: Polynomial Veto (with maria Polukoror)

Plurality converges after a polynomial number of steps.

Does Veto converge in polynomial time?

Many characteristics found in convergence proof apply:

After initial moves, only candidates with top two scores are relevant
4 types of moves:

fulure work

Better understanding of what influences convergence (tie-breaking rules identified, what else?)

What is best-response for complex voting rules?
Moving beyond myopic best-response to more complex and varied responses

Computational complexity issues for best-response in complex voting rules

Weighted games

(guess they decided to compromise on the car colors...)

Thanks for listening!

