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Abstract
Motivated by a radically new peer review system
that the National Science Foundation recently ex-
perimented with, we study peer review systems in
which proposals are reviewed by PIs who have sub-
mitted proposals themselves. An (m, k)-selection
mechanism asks each PI to reviewm proposals, and
uses these reviews to select (at most) k proposals.
We are interested in impartial mechanisms, which
guarantee that the ratings given by a PI to others’
proposals do not affect the likelihood of the PI’s
own proposal being selected. We design an impar-
tial mechanism that selects a k-subset of proposals
that is nearly as highly rated as the one selected by
the non-impartial (abstract version of) the NSF pi-
lot mechanism, even when the latter mechanism has
the “unfair” advantage of eliciting honest reviews.

1 Introduction
The Sensors and Sensing Systems (SSS) program of the Na-
tional Science Foundation (NSF) recently experimented with
a drastically different peer review method. Traditionally,
grant proposals submitted to a specific program are evaluated
by a panel of reviewers. Potential conflicts of interest play a
crucial role in composing the panel; most importantly, princi-
pal investigators (PIs) whose proposals are being evaluated by
the panel cannot serve on the panel. In stark contrast, the new
peer review method — originally designed by Merrifield and
Saari [2009] for the review of proposals for telescope time
— requires the PIs themselves to review each other’s propos-
als! A “dear colleague letter” [Hazelrigg, 2013] explains the
potential merits of the new process:

“This pilot is an attempt to find an alternative pro-
posal review process that can preserve the ability of
investigators to submit multiple proposals at more
than one opportunity per year while encouraging
high quality and collaborative research, placing
the burden of proposal review onto the reviewer
community in proportion to the burden each indi-
vidual imposes on the system, simplifying the in-
ternal NSF review process, ameliorating concerns

of conflict-of-interest, maintaining high quality in
the review process, and substantially reducing pro-
posal review costs.”

Under the Saari-Merrifield mechanism, each PI must re-
view m proposals submitted by other PIs; in the NSF pilot,
m = 7. The PI then ranks the m proposals according to their
quality. These reviews are aggregated using the Borda count
voting rule, so each PI awardsm−i points to the proposal she
ranks in position i. A proposal’s overall rating is the average
over the points awarded by the m PIs who reviewed it. Addi-
tionally, a PI’s own proposal receives a small bonus based on
the similarity between the PI’s submitted ranking and the ag-
gregate ranking of the proposals she reviewed; this is meant to
encourage PIs to make an effort to produce accurate reviews.

The NSF pilot sparked a lively debate amongst mechanism
design and social choice researchers in the blogosphere [Pro-
caccia, 2013; Vohra, 2013; Mitzenmacher, 2013]. While
most researchers seem to agree that the NSF should be com-
mended for trying out an ambitious peer review method, seri-
ous concerns have been raised regarding the pilot mechanism
itself. Perhaps most strikingly, while the NSF announce-
ment [Hazelrigg, 2013] states that the “theoretical basis for
the proposed review process lies in an area of mathemat-
ics referred to as mechanism design”, the pilot mechanism
provides no theoretical guarantees. In particular, the mecha-
nism is susceptible to strategic manipulation: PIs will often
be able to advance their own proposals by giving low scores
to competitive proposals (even though they may forfeit some
of the small bonus for similarity to others’ reviews). Fur-
thermore, while most researchers who sit on NSF panels are
well-respected, the pilot mechanism cannot control the qual-
ity (or morality) of PIs who submit proposals (and review
proposals)— leaving open the very real possibility of game-
theoretic mayhem.

In this paper, we alleviate these concerns by proposing a
peer review mechanism which is not susceptible to such ma-
nipulations. Each PI who submits a proposal or paper will
review some other PIs’ proposals or papers. Our mechanism
is impartial: reviewers will not be able to affect the chances
of their own proposals being selected. Our research challenge
is therefore to design provably impartial peer review mecha-
nisms that provide formal quality guarantees.
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We believe that solutions to this problem truly matter. The
NSF plays a huge role in enabling scientific research in the
United States, and its consideration of alternative peer review
methods may transform how scientific funding is allocated
in the US. The need to build sound foundations for these
methods therefore provides a unique opportunity for compu-
tational game theory research, and AI research more broadly.

1.1 Our Approach
In our setting there are n PIs, each associated with a proposal.
Each PI i has a hypothetical (honest) evaluation of the quality
of the proposal j, which is the rating i would give j if she
were asked to review that proposal (and could not affect her
own chances of selection). The (honest) score of a proposal
is the average (honest) rating given to it by other PIs. As
NSF program directors, if our budget is sufficient to fund k
proposals, we would ideally want to select a set of k proposals
with maximum honest score.1 There are two obstacles we
must overcome: we cannot possibly ask each PI to review all
other proposals, and the reviews may be dishonest.

To address the first problem, we consider only mechanisms
which request m reviews per PI (much like the NSF pilot).
We define an (m, k)-selection mechanism as follows. First,
the mechanism asks each PI to review m proposals, in a way
that each proposal is reviewed by exactly m PIs; for every
such pair (i, j), PI i’s evaluation for proposal j is revealed.
Based on these elicited reviews, the mechanism selects k ver-
tices. The most natural (m, k)-selection mechanism is an ab-
stract version of the NSF pilot mechanism, which we fondly
refer to as the VANILLA mechanism; it choosesm reviews per
PI uniformly at random (subject to the constraint that each
proposal is reviewed by m PIs), and then selects the k ver-
tices with highest average rating, based only on the sampled
reviews.

Returning to the second problem — dishonest reviewing —
we will consider only mechanisms where reviewers cannot
affect their chances of being selected by misreporting their
reviews. A selection mechanism is impartial if the probabil-
ity of proposal i being selected is independent of the ratings
given by PI i. The motivation for our work stems from the ob-
servation that the VANILLA mechanism is not impartial: we
seek mechanisms that are.

How should we evaluate the impartial mechanisms we de-
sign? Without any assumptions, competing with an omni-
scient mechanism that maximizes underlying scores is clearly
impossible.2 We therefore use the VANILLA mechanism as
our performance benchmark. Competing with VANILLA is
nontrivial, because we give it the “unfair” advantage of as-
suming that reviews are honest, even though it is not im-
partial. Specifically, we say that an impartial mechanism α-
approximates VANILLA if, in the worst case over reviews, the
ratio between the expected score (based on the largely unseen

1We distill the strategic aspects of the NSF reviewing setting and
abstract away some other practical aspects, such as the fact that PIs
may submit multiple proposals to the same program. However, our
model and results easily extend.

2Indeed, even VANILLA with truthful reviews will be unable to
do so!

set of all possible reviews) of the set of proposals selected by
the impartial mechanism, and the expected score of the set of
proposals selected by VANILLA, is at least α.

The choice of VANILLA as a benchmark has two main ad-
vantages. First, since the VANILLA Mechanism is an abstrac-
tion of the NSF pilot mechanism, our choice of benchmark
allows us to quantify how much the NSF must sacrifice to
achieve impartiality — and our results show that this sacri-
fice is negligible. Moreover, innovations that are closest to the
current accepted practice are the most likely to be adopted.

Second, modulo its lack of impartiality, VANILLA is in-
tuitively the “right” mechanism: it selects those nodes with
the highest sampled scores. Furthermore, in an average-case
model where each proposal has an intrinsic quality, and re-
views are drawn from a well-behaved distribution whose ex-
pectation is the true quality of a proposal, VANILLA will pin-
point the best proposals given a sufficiently large m. Even
when we assume reviews are worst-case, we can obtain an
excellent approximation of VANILLA via an impartial mech-
anism, and that guarantee immediately extends to the average
case model.

1.2 Our Results
In §3 we present an impartial (m, k)-selection mechanism,
CREDIBLE SUBSET, which (usually) selects k proposals at
random from a slightly larger pool (of size k+m) of eligible
proposals. We prove that CREDIBLE SUBSET gives an ap-
proximation ratio of k

k+m to VANILLA. We think of m, the
number of reviews per PI, as being a small constant, and we
would like to think of k, the number of proposals to be se-
lected, as significantly larger. In particular, when m = o(k),
the approximation ratio goes to 1 as k goes to infinity (in an
ideal world, where growth in funding outpaces growth in the
quantity of work for reviewers, see §5).

In §4, we show that CREDIBLE SUBSET is the optimal im-
partial mechanism, in the sense that its approximation ratio of
k

k+m is asymptotically tight (when k = m2 is a constant and
the number of PIs n grows).

1.3 Related Work
Our paper is closely related to the work of Alon et al. [2011].
In parallel with Holzman and Moulin [2013], Alon et al. in-
troduced the notion of impartial selection mechanisms (using
the term “strategyproofness” for impartiality). Their model
can be interpreted as a special case of our model, where
m = n − 1 (i.e., each PI reviews all other proposals) and
all the ratings are in {0, 1}. The main result of Alon et al. is
the design of an impartial mechanism that approximates the
score of the optimal subset of k vertices to a factor that goes
to 1 as k grows. When m = n − 1 and all ratings are in
{0, 1}, this is equivalent to approximating Vanilla: Vanilla
can see all ratings and will select the optimal subset. But
when m � n − 1 we cannot reason about scores directly, as
Alon et al. do. In fact, in this regime, which is typical for a
peer review setting, our results are incomparable to theirs: our
mechanisms use far less information, but the performance of
these mechanisms is (necessarily) measured against a weaker
benchmark.
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Other papers on impartial mechanisms include the ones by
de Clippel et al. [2008], Holzman and Moulin [2013], Fischer
and Klimm [2014], Berga and Gjorgjiev [2014], Tamura and
Ohseto [2014], and Mackenzie [2014].

Merrifield and Saari [2009] are not the first researchers to
suggest improvements to the peer review process, although
most other papers focus on conference reviewing [Nierstrasz,
2000; Haenni, 2008; Douceur, 2009; Roos et al., 2011]. For
example, in a AAAI’11 paper, Roos et al. [2011] propose a
method for calibrating the ratings of potentially biased re-
viewers via a maximum likelihood estimation (MLE) ap-
proach.

2 The Model
LetN = {1, 2, . . . , n} be the set of proposals and also the set
of strategizing reviewers. Each reviewer i has an estimate of
the quality of every other proposal j 6= i — the score i would
give j if i honestly reviewed j. We represent this setting as a
weighted, complete, directed graph G = (N,E,wG) where
E = {(i, j) | i, j ∈ N, i 6= j}, and wG(i, j) ∈ R+ is the
quality of j according to i’s evaluation. We call G the under-
lying graph.

Let m be the number of proposals that each PI can re-
view, which must equal to the number of reviews each pro-
posal receives (we assume each PI submits one proposal). In
our model, m is the number of outgoing edges from each
vertex and the number of incoming edges to each vertex.
Slightly abusing terminology, we say that a directed graph
is m-regular if it satisfies these properties.

A peer review process is governed by an (m, k)-selection
mechanism, which works in two stages:

1. The mechanism selects (possibly randomly) a directed
m-regular graph Gm = (N,E(Gm)), called the sam-
pled graph. We assume this graph is drawn prior to the
next step: that the sampling is done all at once indepen-
dent of the edge weights.

2. Given the underlying graph G, the weight wG(i, j) is
revealed for each edge (i, j) ∈ E(Gm). The mechanism
then maps these elicited ratings to a subset of selected
vertices of size at most k.

Step 1 corresponds to the mechanism assigning m propos-
als to each PI. Based on the reviews wG(i, j) for (i, j) ∈
E(Gm), in Step 2, the mechanism selects a subset of at most
k proposals that will receive funding.

Let us reinterpret the NSF pilot mechanism [Hazelrigg,
2013] in this framework, abstracting away details such as the
use of Borda count and the bonus component for accurate re-
views. To this end, let Gm denote the uniform distribution
over m-regular graphs. Given a weighted m-regular graph
Gm, let

topk(G
m) ∈ argmax

Y⊆N : |Y |=k

∑
i∈Y

∑
j:(j,i)∈E(Gm)

wG(j, i),

breaking ties lexicographically (i.e., the k nodes with the
largest sum of incoming edge weights in the graph). Now,
the Vanilla mechanism, denotedMv , is defined as follows:

VANILLA (G,m, k)

1. Draw Gm ∼ Gm.
2. Return topk(G

m).
Intuitively, the mechanism assigns proposals to PIs for re-

view based on the graph Gm, and then returns the k highest-
rated reviews based on the sampled reviews (for convenience
we look at the sum of ratings, which is equivalent to the aver-
age).

For a mechanismM and an underlying graphG, letM(G)
be a random variable, which takes the value X ⊆ N with
the same probability thatM outputs X when the underlying
graph is G. Then we can use P[i ∈ M(G)] to denote the
probability thatM selects i ∈ N when the underlying graph
isG. We say thatM is impartial if for any i ∈ N and any two
underlying graphs G and G′ that differ only in the weights on
the outgoing edges of i, P[i ∈M(G)] = P[i ∈M(G′)].

Unfortunately, VANILLA is clearly not impartial. To see
this, let k = 1, m = 1, and define the weights of G and G′ as
follows:

wG(i, j) =


n+ 1 i = 1

1 j = 1, i 6= 1

0 otherwise

and

wG′(i, j) =


0 i = 1

1 j = 1, i 6= 1

0 otherwise
.

Then P[1 ∈ Mv(G)] = 0, whereas P[1 ∈ Mv(G′)] = 1
(using lexicographic tie-breaking, 1 would be selected even if
only 0-weight edges are sampled).

The purpose of this paper is to design (m, k)-selection
mechanisms that are simultaneously impartial (unlike
VANILLA), yet similarly practical in terms of the number of
reviews per proposal and similar in the quality of the out-
put. We measure the quality of a mechanism by the expected
score of the vertices it selects. Formally, let sc(i, G) =∑

(j,i)∈E wG(j, i) be the score of vertex i in G, and let
sc(X,G) =

∑
i∈X sc(i, G) be the score of a set of vertices

X ⊆ N in G. We can now define

sc(M, G) = EX∼M(G)[sc(X,G)].

This is our optimization objective.
Note that for some underlying graphs G, VANILLA itself

may do poorly in terms of sc(M, G). As an extreme example,
let k = 1, m = 1, and define the weights of the underlying
graph G as follows:

wG(i, j) =


1000 i = 1 ∧ j = 2

1/n j = 1

0 otherwise

It is very likely that the edge (1, 2) will not be sampled
by VANILLA, and therefore the mechanism will likely se-
lect vertex 1, the only one with non-zero score. However,
sc(1, G) = n−1

n < 1, whereas sc(2, G) = 1000. This is not a
shortcoming of VANILLA specifically — it is clear that such
examples can be constructed for any (m, k)-selection mech-
anism when m is much smaller than n.
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Nevertheless, we can use VANILLA as a benchmark. We
wish to design impartial mechanisms whose quality guaran-
tee is quite close to that of VANILLA pointwise (assuming
all reviews given to VANILLA were truthful). We say that an
(m, k)-selection mechanism M α-approximates VANILLA,
for α = α(m,n, k) ≤ 1, if for every underlying graph G,

sc(M, G)

sc(Mv, G)
≥ α.

3 The Credible Subset Mechanism
In this section we present and analyze an (m, k)-selection
mechanism, the Credible Subset mechanism. The mechanism
relies on two ideas:

1. Every vertex that has the potential to be among the top
k by changing its outgoing edges must have a chance to
be selected. Such vertices are called credible. There are
not too many of them, and they include the actual top k.

2. A credible vertex can potentially affect the number of
credible vertices (by giving a low score to another cred-
ible vertex), and therefore the probability of selecting a
credible vertex must be independent of the number of
credible vertices.

The Credible Subset mechanism, denoted Mcs, formally
works as follows.

CREDIBLE SUBSET(G,m, k)

1. Draw Gm ∼ Gm.
2. P ← {i /∈ topk(G

m) | if i reported ∀j : w(i, j) = 0,

i would be in topk(G
m)}

3. S ← topk(G
m) ∪ P .

4. With probability |S|
k+m return a random k-subset of S,

and with probability 1− |S|
k+m return ∅.

Let us verify that CREDIBLE SUBSET is well-defined, in
the sense that |S|k+m ≤ 1. Recall that for the purpose of com-
puting topk(G

m), ties are broken lexicographically. This im-
plies that, for a given i /∈ topk(G

m), the only way for i to en-
ter P would be to reduce weights on outgoing edges to some
of the top k vertices. It can reduce its outgoing weights to at
most m vertices; thus, any vertex that makes it into the top
k after reducing weights must have been in the top k +m to
begin with, where k + m is defined with respect to the tie-
breaking order. We conclude that there cannot be more than
m vertices that can enter topk(G

m) by reducing their outgo-
ing weights. That is, |P | ≤ m, and hence

|S| = |topk(G
m)|+ |P | ≤ k +m.

Theorem 1. CREDIBLE SUBSET is an impartial (m, k)-
selection mechanism which k

k+m -approximates VANILLA.

Proof. We first establish impartiality. The mechanism is
clearly impartial with respect to vertices i ∈ N \S: for anyG
and G′ that differ only in the weights of outgoing edges from
i,

P[i ∈Mcs(G) | i /∈ S] = 0 = P[i ∈Mcs(G′) | i /∈ S].

The mechanism is also impartial for i ∈ S. Indeed, some
k-subset of S is selected with probability |S|

k+m . Given that
some k-subset of S is selected, the probability that i ∈ S is
selected is k

|S| . Thus,

P[i ∈Mcs(G)] =
| S |
k +m

· k

| S |
=

k

k +m
. (1)

In other words, for two graphs G and G′ as above,

P[i ∈Mcs(G) | i ∈ S] = k

k +m
= P[i ∈Mcs(G′) | i ∈ S],

and we conclude that for all i ∈ N ,

P[i ∈Mcs(G)] = P[i ∈Mcs(G′)].

Next we establish the approximation guarantees of
CREDIBLE SUBSET. Notice that CREDIBLE SUBSET sam-
ples from Gm, just as VANILLA does. In addition, for a fixed
sampled graph Gm ∼ Gm, VANILLA outputs topk(G

m).
Thus, for every underlying graph G, the approximation ratio
given by CREDIBLE SUBSET is

sc(Mcs, G)

sc(Mv, G)

=

∑
Gm P[Gm] ·

∑
i∈N P[i ∈Mcs(G)| Gm] · sc(i, G)∑

Gm P[Gm] ·
∑

i∈N P[i ∈Mv(G)| Gm] · sc(i, G)

≥
∑

Gm P[Gm] ·
∑

i∈N I[i ∈ topk(G
m)] · k

k+m
· sc(i, G)∑

Gm P[Gm] ·
∑

i∈N I[i ∈ topk(G
m)] · sc(i, G)

=
k

k +m
,

where the second transition follows from Equation (1), and
I[E] is an indicator variable that takes that value 1 if the event
E is true and 0 if E is false.

We remark that the mechanism may return subsets of size
smaller than k — empty subsets, in fact! Choosing empty
subsets is not necessary: the same approximation guarantee
can be achieved by defining a finer distribution over subsets
preserving that each vertex in S is selected with probability
k

k+m (this is the insight that drives the proof of Theorem 1).
We focus on the simpler formulation of the mechanism for
ease of exposition, and further discuss this point in §5.

4 Impossibility Results
In §3 we proved that CREDIBLE SUBSET approximates
VANILLA to a factor of k

k+m . When m = o(k), this is
1 − o(1). But when both k and m are constants, this ratio
is bounded away from 1 even when n → ∞. It is natural to
wonder, though, if an impartial (m, k)-selection mechanism
can approximate VANILLA to a factor of 1 − o(1) when k
and m are constants and n grows. After all, in this regime
the performance of VANILLA will be very poor in the worst
case (as Gm gives an extremely incomplete picture of G), so
VANILLA becomes easier to approximate. We answer this
question in the negative: we show below that the k

k+m ratio
is essentially the best possible for impartial (m, k)-selection
mechanisms.
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Let us start with an informal discussion of a simple upper
bound of k

k+1 that only assumes that k ≤ m (that is, it gives
a constant upper bound for k = O(1) even if m grows). Let
G be an underlying graph such that

wG(i, j) =

{
ε j = 1

0 otherwise

VANILLA will certainly select vertex 1. Consider an impartial
(m, k)-selection mechanismM, and let P[1 ∈ M(G)] = p.
Since 1 is the only vertex with nonzero score, the approxima-
tion ratio ofM on G is p.

Next, consider the underlying graph G′ with weights:

wG′(i, j) =


ε j = 1

1 i = 1

0 otherwise

For ε � 1
n−1 , VANILLA will certainly select k vertices

with score 1, so sc(Mv, G′) = k. By impartiality, P[1 ∈
M(G′)] = p, hence

sc(M, G′) ≤ (1− p)k + p(k − 1 + (n− 1)ε).

Since ε is arbitrarily small, the approximation ratio is upper-
bounded in the limit by

α = min

{
p, (1− p) + p(k − 1)

k

}
.

Maximizing α over all p ∈ [0, 1] gives p = k
k+1 as an upper

bound on the approximation ratio.
Let us now turn to our more intricate upper bound.

Theorem 2. Let c ∈ (0, 14 ), k = m2, and m ≤ nc. Then any

impartial mechanism at best
(

k
k+m + ε(n)

)
-approximates

VANILLA, for ε(n) = o(1).

We require the following probabilistic lemma, whose easy
proof is omitted due to lack of space.

Lemma 1. Let c ∈ (0, 1/4). Suppose nc distinct elements
are drawn from a universe of size n uniformly at random and
independently. Suppose this experiment is repeated nc times,
and let the selected set in round t be denoted Nt. Then, with
high probability, Nt ∩Nt′ = ∅, for all t 6= t′.

Proof of Theorem 2. Let M be an impartial mechanism.
Consider a setX ⊂ N of sizem. We will build up a matching
µ between X and N \ X , such that the probabilityM sam-
ples the edge (µ(i), i) is small (roughly m/n) for all i. This
will imply thatM will have to select i with similar probabil-
ity on two graphs which differ only in the weight of the edge
(µ(i), i).

We will now select vertices and relabel them, adding them
to X as we progress. Select an arbitrary vertex and label it
1. Let µ(1) = argminjP[M samples (j, 1)] (the vertex with
the smallest probability of (j, 1) being sampled byM). Let
q1 = P[M samples (µ(1), 1)]; note that q1 ≤ m

n−1 by a
simple averaging argument. Then, for each i ∈ [2, . . . ,m],

select another arbitrary vertex and label it i such that i /∈
{1, . . . , i− 1} ∪ {µ(1), . . . , µ(i− 1)}, and let
µ(i) = argminj /∈{1,...,i}∪{µ(1),...,µ(i−1)}P[M samples (j, i)],

be the vertex such that (µ(i), i) has the smallest probability of
being sampled byM which is not already part of the match-
ing, and

qi = P[M samples (µ(i), i)]
be that probability. Note that qi ≤ m

n−2(i−1)−1 , else the ex-
pected number of edges incident to i would be larger than m.

Now, we construct an underlying graph G that is defined
using the following weights:

wG(i, j) =


1 i ∈ X, j /∈ X
ε� 1

m i /∈ X, j ∈ X
0 otherwise

For each i ∈ X , let the graph G′i on n vertices be as follows:

wG′
i
(j, j′) =


M � 1 j = µ(i), j′ = i

1 j ∈ X, j 6= i, j′ /∈ X
ε� 1

m j /∈ X, j′ ∈ X, (j, j′) 6= (µ(i), i)

0 otherwise

Notice that G′i differs from G in two ways: it has one high-
weight edge to i, and the outgoing edges from i have weight
0 rather than weight 1.

We begin by showing that
sc(Mv, G) ≥ |X|k(1− o(1)). (2)

To prove (2), denote the set of vertices adjacent to a set Y
in the sampled graph Gm by NGm(Y ). Notice that the ver-
tices j ∈ NGm(X) have strictly higher sampled ratings than
all other vertices in Gm. Moreover, |NGm(X)| ≤ k, so
VANILLA will select all j ∈ NGm(X). Thus,

sc(Mv, G) =
∑
j

P[j ∈ topk(G
m)]sc(j,G)

≥
∑
j /∈X

P[j ∈ topk(G
m)]sc(j,G)

≥
∑
j /∈X

P[j ∈ NGm(X)]sc(j,G)

≥ |X|
∑
j /∈X

P[j ∈ NGm(X)] = |X| · E [|NGm(X)|]

≥ |X|(k(1− o(1))),
where the final transition follows from Lemma 1 and the as-
sumption that c ∈ (0, 14 ) and m ≤ nc.

Next, we claim that
sc(Mv, G′i) ≥M. (3)

Let Gm denote the sampled graph. Then, notice that there is
a trivial upper bound on the size of |NGm(X \ {i})|:

|NGm(X \ {i})| ≤ m(|X| − 1) = k −m. (4)
Therefore,

sc(Mv, G′
i) =

∑
j

P[j ∈ topk(G
m)]sc(j,G′

i)

≥M · P[i ∈ topk(G
m)] ≥M · P[X ⊂ topk(G

m)]

=M · P[|NGm(X \ {i})| ≤ k −m] =M.
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The fourth transition follows from the observation that the
only vertices with nonzero sampled ratings are in X ∪
NGm(X \ {i}) (which implies VANILLA will select all of
them, if there are not more than k), and the final equality
comes from from (4).

Now, we revisit the impartial mechanismM. We show the
probability i is selected by M in G cannot be too different
from the probability i is selected byM in G′i. Let pi = P[i ∈
M(G)]. Consider the “intermediate” graph G′′i such that

wG′′
i
(j, j′) =


M � 1 j = µ(i), j′ = i

1 j ∈ X, j′ /∈ X
ε� 1

m j /∈ X, j′ ∈ X, (j, j′) 6= (µ(i), i)

0 otherwise

That is, G′′i is the graph G with the added heavy-weight edge
to i, or the graph G′i with the outgoing edges from i set to 1.

Let Gm be the graph sampled by M. If (µ(i), i) /∈
E(Gm),M cannot distinguish between G and G′′i , and thus
must select i with the same probability in those cases. Then,
by impartiality, M must select i with equal (unconditional)
probability in G′i, G

′′
i , since they differ only in the outgoing

edges from i.
In more detail, let us denote pi = P[i ∈M(G)]. We have

pi = P[i ∈M(G) | (µ(i), i) ∈ E(Gm)]P[(µ(i), i) ∈ E(Gm)]+

P[i ∈M(G) | (µ(i), i) /∈ E(Gm)]P[(µ(i), i) /∈ E(Gm)]

=P[i ∈M(G) | (µ(i), i) ∈ E(Gm)]P[(µ(i), i) ∈ E(Gm)]+

P[i ∈M(G) | (µ(i), i) /∈ E(Gm)](1− P[(µ(i), i) ∈ E(Gm)]).

Then, we explicitly write pi in terms of qi:
pi =P[i ∈M(G) | (µ(i), i) ∈ E(Gm)]qi

+ P[i ∈M(G) | (µ(i), i) /∈ E(Gm)] (1− qi) .
Therefore,
P[i ∈M(G′′i ) | (µ(i), i) /∈ E(Gm)]

= P[i ∈M(G) | (µ(i), i) /∈ E(Gm)]

=
pi − qiP[i ∈M(G) | (µ(i), i) ∈ E(Gm)]

(1− qi)
≤ pi

(1− qi)
.

We can use this inequality to derive an upper bound on the
probability that i ∈M(G′′i ):
P[i ∈M(G′′

i )] = (1− qi)P[i ∈M(G′′
i )|(µ(i), i) /∈ E(Gm)]

+ qiP[i ∈M(G′′
i )|(µ(i), i) ∈ E(Gm)]

≤ (1− qi)
pi

1− qi
+ qi = pi + qi.

Then, by impartiality, P[i ∈ M(G′i)] = P[i ∈ M(G′′i )] ≤
pi + qi. It follows that
sc(M, G′

i)

sc(Mv, G′
i)

≤ (pi + qi)(M + (k − 1)(|X| − 1)) + (1− pi − qi)k(|X| − 1)

M

= pi + qi +
((pi + qi)(k − 1) + (1− pi − qi)k)(|X| − 1)

M

≤ pi + qi +
((pi + qi)k + (1− pi − qi)k)(|X| − 1)

M

= pi + qi +
k(|X| − 1)

M
(5)

where the first inequality comes from a simple calculation of
scores, Equation (3), and the bound pi+ qi ≥ P[i ∈M(G′i)].

On the other hand, let p =
∑

i∈X pi
m . Then

sc(M, G)

sc(Mv, G)
≤

(k −
∑

i∈X pi)|X|+ ε(n− |X|)
∑

i∈X pi

(1− o(1))|X|k

=
(k −

∑
i∈X pi)m+ ε(n−m)

∑
i∈X pi

(1− o(1))mk

=
(k − pm)m+ ε (n−m) pm

(1− o(1))mk

=

(
1− pm

k

)
+ ε (n−m) p

k

(1− o(1)) ≤
(
1− pm

k

)
+ εn p

k

(1− o(1)) .

(6)

Now, some pi ≤ p, by a simple averaging argument; con-
sider that i. In the construction of µ above, we showed the up-
per bound qi ≤ m

n−2(i−1)−1 on the probability that (µ(i), i)
is sampled byM. Notice that the approximation ratio forM
is at most

α ≤ min

{
pi + qi +

k(|X| − 1)

M
,

(
1− pm

k

)
+ εn pk

(1− o(1))

}

≤ min

{
p+ qi +

k(|X| − 1)

M
,

(
1− pm

k

)
+ εn pk

(1− o(1))

}
,

by (5) and (6). Since ε is arbitrarily small, M is arbitrarily
large, and qi = o(1), α ≤ min

{
p,
(
1− pm

k

)}
+ o(1). We

derive an upper bound on the minimum by equalizing the two
expressions and solving for p, which yields p = k

k+m . It
follows that α ≤ k

k+m + o(1).

We remark that Alon et al. [2011] prove an upper bound
of k2+k−1

k2+k for their setting, which is the special case of ours
in the regime m = n − 1. They do this by creating a graph
where all edges have weight 0 except for a cycle of length
k + 1 of edges of weight 1. One of the vertices in this cycle
— call it i — is selected with probability at most k/(k + 1).
The upper bound is obtained by reducing the weight on i’s
outgoing edge to 0. In this new graph, i is still selected with
probability at most k

k+1 by impartiality, so the mechanism’s
score is at most k

k+1k+
1
k+1 (k−1), whereas the optimal solu-

tion (which is equivalent to VANILLA in this regime) achieves
score k. It is interesting to note that this argument does not
extend to the case of m � n, because VANILLA is unlikely
to see the cycle of valuable edges.

5 Discussion
From a practical point of view, with NSF reviewing in mind,
Theorem 1, and CREDIBLE SUBSET itself, are quite com-
pelling. To implement the insights behind Theorem 1, one
should slightly expand the set of eligible winners to include
all “credible” proposals (associated with PIs who can manip-
ulate their way into the top k), and randomly choose k among
them. This seems justifiable, because it is difficult to distin-
guish between proposals at the very top.

Our formulation of CREDIBLE SUBSET selects empty sub-
sets with small probability to achieve impartiality. As noted
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above, we can replace this with a distribution over nonempty
subsets. Moreover, in practice, this aspect of the mechanism
can perhaps be ignored: PIs would be able to ever-so-slightly
increase the probability of their own proposals being accepted
by decreasing the number of credible vertices, but the incen-
tives for manipulation under this almost impartial version of
CREDIBLE SUBSET would be weak compared to VANILLA.

One of the ways in which the mechanism of Merrifield and
Saari [2009] differs from our setting is that reviewers are re-
stricted to ranking the proposals. Since Borda count is used
to aggregate the rankings, this is equivalent to limiting the
reviewers to handing out the ratings m− 1,m− 2, . . . , 0 (ex-
actly one of each) — even though their true ratings may be
different. Our ideas readily extend to this setting.

Finally, while we have focused on NSF reviewing in the in-
troduction (and, indeed, this is the real-world setting that mo-
tivated us), our results can certainly be applied to conference
reviewing. For example, in large conferences such as AAAI
and IJCAI, the PC includes hundreds of people — a large
fraction of the researchers who actually submit papers to the
conference. These conferences are a great fit with our model
and results, because: (i) VANILLA is, essentially, the mech-
anism that is typically used (modulo choosing the m-regular
graph in a way that matches reviewers with suitable papers),
and (ii) k (the number of papers selected for presentation and
publication) is much larger thanm (the number of reviews per
PC member) — in IJCAI’13 (the previous IJCAI), the values
were k = 413 and m < 10, making the CREDIBLE SUBSET
Mechanism (or a variation thereof) eminently practical.
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