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Abstract. It is well known that standard game-theoretic approaches to voting
mechanisms lead to a multitude of Nash Equilibria (NE), many of which are
counter-intuitive. We focus on truth-biased voters, a model recently proposed to
avoid such issues. The model introduces an incentive for voters to be truthful
when their vote is not pivotal. This is a powerful refinement, and recent simula-
tions reveal that the surviving equilibria tend to have desirable properties.
However, truth-bias has been studied only within the context of plurality, which is
an extreme example of k-approval rules with k = 1. We undertake an equilibrium
analysis of the complete range of k-approval. Our analysis begins with the veto
rule, the other extreme point of k-approval, where each ballot approves all candi-
dates but one. We identify several crucial properties of pure NE for truth-biased
veto. These properties show a clear distinction from the setting of truth-biased
plurality. We proceed by establishing that deciding on the existence of NE in
truth-biased veto is an NP-hard problem. We also characterise a tight (in a certain
sense) subclass of instances for which the existence of a NE can be decided in
poly-time. Finally, we study analogous questions for general k-approval rules.

1 Introduction

Voting mechanisms are processes by which preferences can be aggregated, and col-
lective decisions can be made, in various multi-agent contexts. Under most voting
rules, potentially beneficial strategic behavior is essentially inherent, as the Gibbard-
Satterthwaite theorem famously states [7,16]. Hence, under mild assumptions, voters
may have incentives to misreport their preferences. Given this negative result, a natu-
ral approach, initiated by Farquharson [5], is to undertake a game-theoretic analysis of
voting, viewing voters as strategic agents, and examining the set of Nash equilibria of
the underlying game.

However, most voting games contain an enormous amount of Nash equilibria, with
even small games reaching hundreds of thousands of equilibria. Furthermore, many of
the equilibria are votes which will not occur in the real world (e.g., for most voting
rules, if all voters rank the same candidate last, the case where all voters vote for this
least favorite option is a Nash equilibrium). Therefore, there has been very little anal-
ysis regarding the structure of the different equilibria—such an analysis would not be



informative about the voting procedure and its quality. Moreover, without an under-
standing of strategic effects on voting, the ability to compare voting rules and choose
an appropriate one for each setting is very limited.

In the past few years, several ideas have been raised regarding sensible limitations
on the structure of games or equilibria, in order to provide a better game-theoretic anal-
ysis of voting scenarios. One of the most popular ideas, raised both in the social choice
literature [3] and in the computer-science literature [17,11] is truth-bias. Truth bias
means that in scenarios in which the voter has no way to manipulate via an insincere
vote, in order to improve the result, the voter prefers to stick to its actual preferences
and vote truthfully. Such a behavior indeed eliminates many nonsensical equilibria, and
generally reduces the number of equilibria in voting games [17].
Contribution: While truth-bias has been analyzed and explored for plurality, it has yet
to be extended to other voting rules, and this paper advances our understanding of the
effect of truth-bias on other rules. It is not clear a priori that the same structural prop-
erties that were identified for plurality under truth bias will hold for different rules (in
fact, as we show, they generally do not). Consequently, we embark on handling the vot-
ing rules most closely related to plurality—the veto rule and the more general family
of k-approval voting. These rules, together with plurality, are those that contain only
two possible values that voters can give to candidates (approve or disapprove, veto or
not veto). We focus on analyzing the pure Nash equilibria under truth bias and we ex-
amine and identify a variety of their key properties. One of the crucial features in these
schemes is the performance of winners and runner-up candidates at non-truthful equi-
libria, i.e., their score compared against the score of the winner under truthful voting.
These scores can vary in different ways, resulting in different equilibrium configura-
tions in each rule. Such comparisons with the existing work on plurality [17,14] are
summarized in Table 2 of Section 4.

We begin by focusing on the veto voting rule, where each voter chooses a sin-
gle candidate from whom to withhold a point. We first characterize its truth-biased
equilibria. We then further our results to describe an algorithm that—using max-flow
considerations—is able to discern, under certain conditions, whether there exists an
equilibrium or not.1 Moreover, we are able to show that our result is tight to an extent,
as removing even one of the identified conditions results in an NP-complete problem.

Following that, we consider the k-approval rule, where we examine the same set
of questions; we demonstrate that the landscape is more complex for k-approval. Our
results move us towards a better understanding of the effects of truth bias on each of
these voting rules. As we show, we obtain quite different properties under each rule,
and we elaborate more on this in Section 5.

1.1 Related Work

There have been many modeling approaches towards eliminating the multitude of Nash
equilibria in voting games. Some are based on introducing uncertainty, either regarding
the support of each candidate [13], or about the reliability of counting procedures [12].
Other research suggests changing the temporal structure of the game; for example, Xia

1 Unlike regular, non-truth-biased voting games, with truth-bias there are scenarios where there
is no Nash equilibrium at all. This has also been shown for plurality.



and Conitzer [18] and Desmedt and Elkind [2] consider the case where agents vote
publicly and one-at-a-time, and study subgame-perfect equilibria of these extensive-
form games. A different approach is the notion of lazy voting [2], where the utility
function is changed so that non-pivotal voters have a slight preference to abstain.

Another way to refine the equilibria set is to stick to the basic game theoretic
models, but study NEs that are reachable by iterative voting procedures. The itera-
tive voting model was introduced by Meir et al. [11] and later expanded by Lev and
Rosenschein [10] and Branzei et al. [1]; this work followed the research into iterative
and dynamic mechanisms, chiefly summarised by Laffont [8]. Interestingly, Branzei et
al. [1] show that under plurality, the reachable equilibria of this process are of relatively
“good” quality.

We focus on a different model than the approaches above for refining the set of
equilibria in a voting game, that of truth bias. The notion of adding a truth bias has been
introduced into multiple game theoretic models before, albeit for specialised cases. E.g.
by Dutta and Sen [4] for a mechanism design model, and by Laslier and Weibull [9]
and by Dutta and Laslier [3] for limited voting scenarios. A more robust model was
suggested by Thompson et al. [17], which introduced the general framework, and con-
tained various empirical results for the plurality rule in truth-biased games. The theo-
retical side of that work was enhanced by Obraztsova et al. [14]. More recent work has
also attempted to relate this line of work to iterative voting [15], but this again is solely
with respect to plurality.

2 Definitions and Notation
We consider a set of m candidates C = {c1, . . . , cm} and a set of n voters V =
{1, . . . , n}. Each voter i has a preference order (i.e., a ranking) over C, which we
denote by ai. For notational convenience in comparing candidates, we will often use�i

instead of ai. When ck �i cj for some ck, cj ∈ C, we say that voter i prefers ck to cj .
At an election, each voter submits a preference order bi, which does not necessarily

coincide with ai. We refer to bi as the vote or ballot of voter i. The vector of submitted
ballots b = (b1, ..., bn) is called a preference profile. At a profile b, voter i has voted
truthfully if bi = ai. Any other vote from i will be referred to as a non-truthful vote.
Similarly the vector a = (a1, . . . , an) is the truthful preference profile, whereas any
other profile is a non-truthful one.

A voting rule F is a mapping that, given a preference profile b over C, outputs
a candidate c ∈ C, the election’s winner; we write c = F(b). In this paper we will
consider the veto rule, as well as the more general family of k-approval rules. This is
a family of voting rules that let each voter divide candidates into two groups: the first
one is the approved group, of size k (the top k candidates ranked by the voter), and
each candidate within the group gets a point from this voter. The rest of the candidates
compose the second group, and receive no points. The ranking within each group in
the submitted ballot does not matter. The candidate with the most points is the winner
of the election, and we resolve ties using lexicographic tie-breaking. The veto rule, in
which all candidates but one are given a point is an extreme member of this family. The
other extreme is plurality, for which many of the issues dealt with in this paper have
been resolved by Obraztsova et al. [14]. We denote by sc(c,b) the score of candidate
c ∈ C in a voting profile b.



In this work, we view elections as a non-cooperative game, in which a utility func-
tion ui is associated with every voter i, that is consistent with its true preference order.
That is, we require that ui(ck) 6= ui(cj) for every i ∈ V , cj , ck ∈ C, and also that
ui(ck) > ui(cj), if and only if ck �i cj . We let pi(ai,b,F) denote the utility of
voter i, when ai is its true preference ranking, b is the submitted profile by all vot-
ers, and F is the voting rule under consideration, and the utility function of voter i
can be constructed from its pi function. In the common model of election, this means
pi(ai,b,F) = ui(F(b)). A Nash equilibrium in these games is a profile bNE , where
no voter has an incentive to unilaterally deviate, i.e., for every i and for every vote b′i,
we have pi(ai,bNE ,F) ≥ pi(ai, (b′i,bNE

−i ),F), where bNE
−i is the vector bNE without

player i’s vote.
However, such a model is known to result in multiple equilibria, including nonsen-

sical ones. Assume, for example, that all voters have the same preferences, which coin-
cide with the tie-breaking order; then the profile where all of them veto their favourite
candidate is an equilibrium. We can construct many other undesirable equilibria. Hence,
we instead focus on the more promising truth-biased model [17]. In this model, we sup-
pose that voters have a slight preference for voting truthfully when they cannot unilat-
erally affect the outcome of the election. This bias is captured by inserting a small extra
payoff when the voter votes truthfully. This extra gain is small enough so that voters
may still prefer to be non-truthful in cases where they can affect the outcome. If a is
the real profile, b is the submitted one, and ε a very small value, the payoff function of
voter i is given by:

pi(ai,b,F) =

{
ui(F(b)), if ai 6= bi,
ui(F(b)) + ε, if ai = bi.

As already described in Section 1.1, this model has recently gained popularity, since it
achieves a significant refinement of the set of Nash equilibria, and it has been analyzed
in previous work under the plurality voting rule.

Now, the following two equilibrium-related problem classes are of interest. The first
deals with determining the existence of equilibria in such a voting game, whereas the
second asks about the existence of equilibria with a given candidate as a winner.

Definition 1 (∃NE). An instance of the ∃NE problem is determined by a preference
profile a, and will be denoted by ∃NE(a). The profile a indicates the true preferences
of the voters. Given a, ∃NE(a) is a “yes” instance ⇐⇒ the corresponding election
game, with truth-biased voters, admits at least one Nash equilibrium.

Definition 2 (WinNE). An instance of the WinNE problem is determined by a pref-
erence profile a, and a candidate w ∈ C, denoted by WinNE(w,a). It is a “yes”
instance ⇐⇒ the corresponding election game, with truth-biased voters, admits at
least one Nash equilibrium with w as the winner.

3 Truth-bias under the Veto Voting Rule

In this section we provide an analysis of pure Nash equilibria, under the assumption
that voters are truth-biased and use the veto voting rule. Our main focus is on how non-
truthful equilibrium profiles b 6= a can arise. Whether the truthful profile itself is a Nash
equilibrium can be decided easily. Some proofs are omitted due to space limitations.



3.1 Properties of Nash Equilibria under Truth-bias

We begin by defining a class of candidates, which will become useful further on:

Definition 3. In a profile b, where the winner is F(b), a runner-up candidate is a
candidate c ∈ C, for which one of the following conditions hold:

– sc(c,b) = sc(F(b),b), and F(b) � c in the tie-breaking rule,
– sc(c,b) = sc(F(b),b)− 1, and c � F(b) in the tie-breaking rule.

Essentially, a runner-up candidate is a candidate that could become a winner by gain-
ing one extra point. We will denote the set of runner-up candidates that satisfy the first
(respectively, second) condition of the definition above by R1 (respectively, R2). Sim-
ilarly to the analysis of the truth-biased plurality rule in [14], we define here a notion
of a threshold candidate. Our definition, however, is different, and tailored to our veto
rule analysis. Intuitively, the threshold candidate is the candidate that would become
a winner if the current winner, F(b), lost a point, as can be seen from the definition
below.

Definition 4. Given a voting profile b, a threshold candidate c is a runner-up candidate
for which one of the following holds:

– c is the maximal element of R1 w.r.t. the tie-breaking order, if R1 6= ∅,
– c is the maximal element of R2 w.r.t. the tie-breaking order, if R1 = ∅.

The next important lemma considers the score of a winner at an equilibrium.

Lemma 1. Let bNE 6= a be a non-truthful Nash equilibrium, with w = F(bNE).
The score of the winner, w, in bNE , is the same as its score at the truthful profile, i.e.,
sc(w,a) = sc(w,bNE).

Proof. Suppose sc(w,bNE) > sc(w,a). This means that there is a voter i ∈ V , that
gives w a point which it would not give under the truthful profile. That is, it is giving a
point to its least-favorite candidate. Such a voter can certainly gain by switching back
to its truthful vote. In that case, either a new winner emerges, which would be above w
in the preference ranking of i, or w remains the winner, but i gets a higher utility by ε,
due to voting truthfully.

Now suppose sc(w,bNE) < sc(w,a), i.e., a voter i ∈ V is vetoing w in bNE , but
not in the truthful a. Yet, returning to its truthful vote, ai, w will still remain the winner,
and this will increase player i’s utility by ε, due to the truth-bias. ut

In fact, we can further show that not only the winner’s score does not change at a
non-truthful equilibrium, but the set of voters which support the winner are the same as
in the truthful profile. Hence, we obtain the following:

Corollary 1. Let bNE 6= a be a non-truthful Nash equilibrium, with w = F(bNE).
The set of voters that veto w in a is the same set that vetoes w in bNE .

The next properties that we identify are simple to prove but crucial in understanding
what equilibria look like under the veto rule.



Lemma 2. For any non-truthful equilibrium profile bNE 6= a, there always exists a
threshold candidate in bNE .

Proof. It suffices to show that there always exist runner-up candidates; hence, there is
a threshold runner-up as well. Let bNE 6= a be an equilibrium with w = F(bNE).
Suppose we have a non-truthful equilibrium and that there is no runner-up candidate.
Consider a voter i that voted non-truthfully. By Corollary 1, the non-truthful voters in
bNE do not veto w (and they do not veto w in a either). Hence i has vetoed some other
candidate. By switching back to its truthful vote, the outcome is not going to change,
since there is no runner-up candidate and since w is not going to lose any points. Hence
i is better off by ε to vote truthfully, a contradiction. Thus there are always runner-up
candidates at a non-truthful equilibrium. ut

Observation 1 All voters that do not veto the winner or the runner-ups in an equilib-
rium profile prefer the winner over the threshold candidate (otherwise, they could just
veto the winner and make the threshold candidate win).

Example 1. There are cases where the threshold candidate in an equilibrium may have
fewer points than in the truthful state (note that this is not true for plurality, as shown in
Lemma 2 of Obraztsova et al. [14]); we show it here with an example of 4 candidates.
Suppose the tie-breaking rule is c � b � d � w, and the truthful profile is:
• 3 voters with ranking: w � b � c � d • 2 voters with ranking: w � d � c � b
• 1 voter with ranking: w � b � d � c • 1 voter with ranking: b � c � d � w

Then c is the winner of the truthful profile. In turn, in the following profile, w is
the winner and the threshold candidate is c, which has fewer points than in the truthful
state. Notice that the profile is an equilibrium, and just one voter has moved from the
first group to the 3rd one:
• 2 voters with: w � b � c � d • 2 voters with: w � d � c � b
• 2 voter with: w � b � d � c • 1 voter with: b � c � d � w

Finally, to facilitate our discussion in the next subsections, we define the concept of
“voting against” a candidate, and a simple companion lemma.

Definition 5. We will say that a voter j votes against candidate ci in a profile b, if
bj 6= aj and ci is vetoed in bj .

Lemma 3. In every non-truthful NE, all non-truthful voters vote against some runner-
up candidate in the NE (not necessarily the same one).

3.2 Existence of Nash Equilibria

Having identified the properties above, we are now ready to prove our first set of results
regarding the complexity of the problems WinNE and ∃NE, as defined in Section 2.
We start with the following negative result.

Theorem 1. Under the veto rule and with truth-biased voters the problem WinNE is
NP-complete.



Proof. While membership in NP is trivial, completeness requires several steps. We will
construct a reduction from exact-cover by 3-sets (X3C).

Definition 6. Exact cover by 3 sets (X3C) is a problem in which we have a set of 3m
elements U = {u1, . . . , u3m} and a set of sets S = {S1, . . . , Sn} such that for 1 ≤ i ≤
n: Si ⊆ U , |Si| = 3. We wish to know if there is a set T ⊆ S such that |T | = m and
∪S∈TS = U (NP-completness shown in [6])

Taking an X3C instance, we construct an instance of our problem. Our candi-
dates will be the members of S and U , to which we add two new candidates w and
t. To construct our voters, we introduce some markings to aid us: Si’s elements are
{ui1 , ui2 , ui3}, and we denote by S the members of S ordered as usual — S1 � S2 �
. . . � Sn; similarly we use U for the ordering of U . S̄ marks the opposite direction —
Sn � Sn−1 � . . . � S1, and ditto for Ū . Our tie-breaking rule is w � t � S � U . We
now describe the set of voters, which consists of the two blocks of voters described in
Table 1, along with 3 more blocks described below:

– Block 3: For every ui ∈ U , we have:
• m votes of the form: U \ {ui} � S � w � t � ui;
• n− 2m− 1 votes of the form: S̄ � Ū \ {ui} � w � t � ui.

– Block 4: For every Si ∈ S, we have:
• m votes of the form: S \ {Si} � U � w � t � Si;
• n− 2m− 1 votes of the form: Ū � S̄ \ {Si} � w � t � Si.

– Block 5: n−m votes of the form: t � S � U � w.

Table 1. NP-Completeness proof profiles.

Block 1
S \ {S1}, Ū , ... S \ {Sn}
U , S̄ \ {S2}, ... U
w, w, ... w
S1, S2, ... Sn

t, t ... t

Block 2
... U \ {ui1}, U \ {ui2}, U \ {ui3}, ...
... S \ {Si}, S \ {Si}, S \ {Si}, ...
... w, w, w, ...
... t, t, t, ...
... ui1 , ui2 , ui3 , ...
... Si, Si, Si, ...

In the truthful profile, w is not the winner (u1 is). We claim that there is an equilib-
rium in which w is the winner if and only if there is a solution to the X3C problem.

Lemma 4. Given the constructed truthful profile, if a NE profile bNE exists with w as
a winner, t is the threshold candidate in bNE .

Proof. Consider an equilibrium bNE , and let us assume the opposite: t is not a thresh-
old candidate. Consider the possibility that Si is the threshold candidate of bNE . Let us
take a closer look at a voter from Block 4 of the form S \ {Sj} � U � w � t � Sj , for
some j 6= i so that Sj is not a runner-up. In the equilibrium bNE , this voter can veto
only either Sj or t. Furthermore, since t beats all candidates except w in tie breaking,
if t is not the threshold candidate then it cannot be a runner-up candidate at all. As a
result, the inspected voter cannot veto t, according to Lemma 3. Thus, we have found
a voter that votes truthfully in the NE profile bNE and prefers Si to w, contradicting
Observation 1.



Consider now the case where all Si’s are runner-up candidates. In this case, each Si

has gained two more points relatively to their respective scores in the truthful profile a.
Only voters in Block 2 are capable of deviating to accomplish this (the reasoning in the
paragraph above is why Block 4 votes will not deviate). In particular, for each Si there
are at least two such voters that deviate to veto uil and uik for some l 6= k ∈ {1, 2, 3}.
As a result there are at least 2 additional voters (in comparison to the truthful profile)
that veto candidates from U . The Pigeonhole Principle dictates that there is at least
one uil that has received two more veto votes in comparison to the truthful profile. In
addition, notice that there can be no voter in the NE profile bNE that deviates in favor
of uil . As a result, uil cannot be a runner-up candidate, yet has voters that deviate to
veto it, in contradiction to Lemma 3. Hence, it is impossible for all Si’s to be runner-up
candidates simultaneously.

Similarly, we will obtain a contradiction for the case where we assume that ui is the
threshold candidate, and, therefore, none of the Si’s are runner-ups. ut

We conclude that in a NE profile bNE , t must be the threshold candidate and it will
have (n−m) points. Let us now proceed with the remainder of the proof of Theorem 1.

If there is T = {S′1, . . . , S′m} ⊆ S which is a solution to the X3C problem, we have
an equilibrium in which w is the winner: the voters from Block 1 whose penultimate
candidate is S′i ∈ T will veto S′i. The voters in Block 2 who veto S′i ∈ T instead veto
their penultimate candidates ui1/2/3 . In such a situation all candidates are vetoed by n−
m voters (apart from those in S\T , which are vetoed by n−m+2 voters), and therefore
w is the winner. All voters are vetoing runner-ups which they prefer less than w or t.
Hence, changing their vote will make the candidate they currently veto the winner, and
as they would rather have w win, they do not change their vote. Furthermore, all voters
from Blocks 1 through 4 that do not veto a runner-up candidate, can only deviate so
that t becomes a winner. Since they prefer w to t, none of them will actually have
an incentive to deviate. Finally, none of the voters in Block 5 can change the election
outcome and will remain truthful.

Now, assume that there is no solution to the X3C problem. At least m voters from
Block 1 will veto the Si’s (the only candidates less-preferred thanw). However, in order
for them not to revert to their truthful vote, those Si’s need to be runner-up candidates,
so all votes in Block 2 who would truthfully veto those Si’s, need to veto their respective
ui’s instead. In addition, those ui’s need to be runner-ups as well (or those Block 2 votes
will revert to the truthful vote), and as they are ranked below S in the tie-breaking rule,
they need to have m − n vetoes in order to be runner-ups. This means that each ui is
vetoed only once in Block 2. So we have m (or more) Si’s containing exactly one copy
of each ui; i.e., we found an exact cover of U , contradicting the assumption that X3C
has no solution. ut

The above proof also implies Corollary 2. Furthermore, its variant can also be used
to prove a more general theorem (due to lack of space, the proof is not presented here).

Theorem 2. Consider the veto rule and truth-biased voters. Then the problem ∃NE is
NP-complete.

It is possible to further expand upon the result of Theorem 1. To this end, we identify
two conditions that help us characterize the set of computationally hard instances. In



particular, consider an instance WinNE(w,a), determined by a candidate w ∈ C and
a truthful profile a. We consider the following conditions:

C1: Let t ∈ C be the candidate right below w in the tie-breaking order (i.e., the tie-
breaking order is in the form · · · � w � t � · · · ). Then sc(t,a) ≥ sc(w,a).

C2: Let t be as in C1. Then, for every voter i that does not veto w in the truthful profile
a, it holds that w �i t.

Corollary 2. Under the veto voting rule, the problem WinNE is NP-complete, even
for the family of instances that satisfy condition C2 and do not satisfy condition C1.

In fact, together with Theorem 3, the picture becomes more clear regarding hardness
results: violating either one of the conditions C1, C2 makes the problemWinNE hard.

Theorem 3. Under the veto voting rule, the problem WinNE is NP-complete, even
for the family of instances where C1 holds but C2 does not.

Proof. As with Theorem 1, we will construct a reduction from X3C. We will use the
same notation, where S is the set of sets and U is the set of elements in an instance of
X3C, and convert the members of these sets into distinct candidates. However, unlike
the previous proof, in addition to the candidates from S and U , we will introduce four
special candidates w, t, p1 and p2.

Based on the candidate set defined above, we will construct a set of voters and their
truthful preference profile a, so that a solution toWinNE(w,a) would entail a solution
to the X3C instance.

We will order the candidates to form the following tie-breaking preference order:
w � t � p1 � p2 � S � U , where candidates from S and U appear in their natural
lexicographic order.

We now construct a set of voters, grouped into five distinct blocks, according to
their truthful preference profile. In each block we only explicitly describe the order of
a few least-preferred candidates. All candidates that are not explicitly mentioned in a
profile, appear in an arbitrary order, and are marked by . . . .
• Block 1: A set of n voters, one for each candidate in S, with preference profile of the
form · · · � t � w � Si � p1;
• Block 2: A set of n−m voters with preference profile of the form · · · � t � w � p2
and one additional voter with profile of the form · · · � w � t � p2;
• Block 3: For each {ui1 , ui2 , ui3} = Si ∈ S a set of n −m + 2 voters. Three with
profiles of the form · · · � w � t � uij � Si, where j ∈ {1, 2, 3}, and all others of the
form · · · � w � t � Si;
• Block 4: For each uk ∈ U a set of n − m − 1 voters with profiles of the form
· · · � w � t � uk;
• Block 5: A set of n−m− 1 voters with profiles of the form · · · � w � t
• Block 6: A set of n−m voters with profiles of the form · · · � t � w.

Let us now show why the existence of an equilibrium profile that solvesWinNE(w,a),
where a is as described above, entails a solution to the X3C instance. To this end, con-
sider the voters’ behaviour in a NE profile b, where w is the winner.



According to Lemma 1, sc(w,b) = sc(w,a), yet by our construction sc(t,a) =
sc(w,a) + 1. Hence, for w to become a winner in b, t has to receive at least one
additional veto and will also be the threshold candidate (if t is not a runner-up, it means
several are no longer vetoing it, but as they are vetoing some non-winner instead, they
can revert to being truthful and gain ε utility. Due to its loss tow in tie-breaking, it means
t is the threshold candidate). According to Lemma 3 and the truth bias assumption, none
of those who vetoed t in a would switch to veto another candidate. In fact, there is only
one voter that needs to deviate from its truthful profile and veto t.

Consider the voters of Block 2. (n−m) of them prefer t to w, and would not veto
the former. Yet, if they lie in b, they have to veto a runner up. As a result, none of them
can deviate from their truthful profile in equilibrium. On the other hand, the last voter
of the block can (and should) deviate, and veto t.

Similarly, consider the score of p1 in the truthful profile a and compare it to that of
sc(w,a). For w to be the winner of the equilibrium profile b, m voters from Block 1
need to deviate in the equilibrium and stop vetoing p1. These newly vetoed candidates
have to be less preferred than w by the deviating voters. For voters of Block 1, this
means vetoing a candidate from the set S. As a result, there are m candidates Si ∈ S
that are being vetoed by the voters from Block 1 in the equilibrium profile b.

These chosen Si’s, however, need to be runner-up candidates. To achieve that, ex-
actly 3 candidates that veto Si’s in Block 3 must deviate in the equilibrium profile b.
These can only be the voters with preference profiles of the form · · · � w � t � uij �
Si, where j ∈ {1, 2, 3}.

Since no voter in Block 4 can deviate, those voters from Block 3 that deviate to veto
uij s can only do so consistently with Lemma 3, if the total number of times that uij
is being vetoed is equal to (n − m). This can happen only if each uij ∈ U is vetoed
exactly once by voters from Block 3.

As a result, the sub-set Si’s that are vetoed by voters in Block 1 constitutes a solution
to the given X3C instance. The opposite direction, that is, constructing a NE profile
given a solution to the X3C instance, is trivial. ut

The results of this subsection show that there are critical properties of the truthful
profile a that make the existence of an equilibrium with a given winner a hard prob-
lem. However, as we show in the next subsection, combining these properties, namely
condition C1 and C2, creates a polynomial-time decidable sub-class.

3.3 A Polynomially Solvable Subclass

In the previous subsection, we demonstrated two conditions on a candidate and the
truthful profile that, if violated, make WinNE, under truth-biased voters, NP-hard. In
this subsection, we complete our treatment on this categorization of profiles by con-
sidering the subset where both aforementioned conditions hold. In fact, we provide a
constructive proof, via a reduction to a max-flow problem, showing that in this sub-class
of truthful profiles, WinNE(w,a) can be decided in polynomial time.

Theorem 4. Consider a candidate w ∈ C and a truthful profile a for which conditions
C1 and C2 hold. Then WinNE(w,a), i.e., the existence of a NE profile bNE , where
F(bNE) = w, is decidable in polynomial time.



The statement of the above theorem is tight, given Theorems 1 and 3. Namely,
should either one of the conditions C1 or C2 be violated, determining the existence of
a NE with w as the winner becomes NP-hard. The conditions C1 and C2 ensure that we
can focus on a particular threshold candidate (namely candidate t) for constructing a
Nash equilibrium profile. While C1 ensures some manipulation will be necessary (and
the preference order ensures it will be a threshold), it is C2 that ensures that t can be a
valid threshold candidate, since without it, as Observation 1 noted, this is not possible.

Proof. Consider an instance of the problem specified by a potential winner w ∈ C and
the real profile a. Let t also be the candidate right next to w, as specified by conditions
C1 and C2. The proof is based on a polynomial reduction to the max-flow problem in
a graph. We will construct a graph (and later correct the flow) in such a way that the
set of flow-saturated edges will indicate the feasibility of obtaining a Nash equilibrium.
Furthermore, positive flow at certain nodes in the graph will indicate a switch in the
voters’ equilibrium ballots from their truthful profile.

Given a truthful voting profile a, we will construct the graph as follows. Vertices
will be associated with each candidate and each voter; we also add a source and a sink
node. The set of graph vertices will therefore be {source, sink} ∪ C ∪ V .

The set of edges, E, in the graph will consist of three subsets.
• Potential deviators. Edges that link voters and potentially vetoed candidates.
For a voter i where the last candidate in its real preference order is some r ∈ C, i.e.,

the preference order is in the form . . . � w � c1 � . . . � cl � r, add the following
directed edges with unit flow capacity: (r, vi), (vi, c1), . . . , (vi, cl).

The resulting palm-leaf sub-structure is depicted in Figure 1. It essentially captures
the ability of the voter to change its veto in a manner that will benefit w without deteri-
orating the voter’s utility (note, of course, that there are multiple such sub-graphs in the
graph, and vertices may be part of several such structures).
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Fig. 1. Polytime special veto subclass. Palm sub-structure for Theorem 4.

• Sustainable deviations. Edges from the source node. These edges and capacities
reflect the number of additional points a candidate may absorb until it becomes a runner-
up candidate w.r.t. w. Hence (recall that t is the candidate next to w in the tie-breaking
order, as specified by conditions C1 and C2):
For each candidate c so that t � c in tie-breaking and sc(w,a)−sc(c,a) > 0, a directed
edge (source, c) is added with capacity sc(w,a)− sc(c,a).
For each candidate c so that c � w in tie-breaking and sc(w,a) − sc(c,a) > 1, a
directed edge (source, c) is added with capacity sc(w, ,a)− sc(c,a)− 1.



• Necessary deviations. Edges to the sink node. These edges and capacities reflect
the number of additional veto votes a candidate needs to sustain to make its score less
than that of w. Otherwise, w would not be able to become the winner.
For each candidate c so that t � c in tie-breaking and sc(w,a)−sc(c,a) < 0, a directed
edge (c, sink) is added with capacity sc(c,a)− sc(w,a).
For each candidate c so that c � w in tie-breaking and sc(w,a) − sc(c,a) < 1, a di-
rected edge (c, sink) is added with capacity 1− (sc(w,a)− sc(c,a)).

Given Corollary 1, the non-truthful votes at an equilibrium profile come from voters
that were not vetoing w in a, and they now lie by vetoing some candidate other than
their truthful vetoed candidate, which is less-preferred than w. From the construction of
the graph, it is easy to see that if the maximal flow through the above graph is less than
the sum of all incoming capacities to the sink node, then there can be no equilibrium
profile that makes w a winner. To see this, observe that only candidate vertices connect
directly to the sink, and these are precisely candidates that have higher scores than w.
Total capacity of all these edges equals the number of voters that necessarily have to
change their vote. Furthermore, the flow has to go through voter vertices, connected to
candidates that are less-preferred to w (and hence indicate a switch from the truthful
vote to a non-truthful one). Finally, if all edges to the sink are saturated in a maximum
flow, we will show that a Nash equilibrium profile bNE , with F(bNE) = w, can be
recovered from the flow. In what follows we will demonstrate this formally.

Let f : E → R be a maximal acyclic, integer flow through the constructed graph.
Such a flow can be obtained in time polynomial in the number of voters and candidates.
Furthermore, all edges from a candidate node to a voter node that have positive flow on
them will be saturated (as their capacity is 1).

We will now modify the flow, while maintaining its total capacity, to maximize the
flow through the source outgoing edges, and minimize the flow through voter nodes.
Since we will later associate a flow through a voter node with the voter deviating from
the truthful vote, minimizing the flow through voter nodes will reflect and ensure that
the voting profile recovered from it will be truth biased (i.e., no unnecessary lying takes
place, otherwise some voter would have an incentive to switch back to the truthful vote).

Let D = {c| ∃e = (source, c) ∈ E} be the set of all nodes directly connected to
the source. Notice thatD is a subset of candidate nodes. Let q ∈ D be a node for which:
i) there is a voter v so that (v, q) ∈ E; ii) f((v, q)) > 0; and iii) the edge (source, q)
is not saturated. We will repeat the following flow modification until no such q exists.

Consider a flow path to q through voter nodes. In particular, let π = (source =
n0, n1, . . ., nl = q) be an acyclic path from the source to q, so that ek = (nk−1, nk) ∈
E for all k ∈ [l] and f(ek) > 0. Notice that since f is an integer flow and all edges
between candidate nodes and voter nodes have unit capacity, all the edges of the path
have a unit flow apart from the initial edge from the source to n1. We will modify
the flow f and construct an augmented flow f̂ by canceling the flow through π, and
replacing it with an additional unit flow from the source to q. More formally, let f̂ = f .
We then set f̂(ek) = 0 for all k ∈ [1 : l − 1], f̂((source, n1)) = f((source, n1)) − 1

and f̂((source, q)) = f((source, q))+1. We then repeat the modification procedure, if



necessary, for f̂ . Notice that the flow modification procedure does not change the total
flow from the source to the sink node.

Assume now that the flow is such that for all nodes q ∈ D, either the edge (source, q)
is saturated, or q has no positive incoming flow from the voter nodes. Then for every
voter vi ∈ V , if there is an edge (vi, cj) for some cj ∈ C, so that f(vi, cj) > 0, i.e.,
saturated, we let vi change its vote to veto cj . Otherwise, vi votes truthfully. Let bNE

be the resulting strategy profile. It is easy to see that bNE is indeed an equilibrium.
Notice that the equilibrium profile, bNE , was constructed in poly-time. Recall, the

steps consisted of: a) constructing the graph, which takes time polynomial in the number
of candidates, m, and voters, n; b) finding a maximal acyclic integer flow (poly-time
algorithms exist, and any one is suitable); c) a set of flow modifications. Finding the
path π necessary for the flow modification takes polynomial time in m and n, e.g.,
by following the flow f back through the saturated edges. Furthermore, the number of
repetitions of the flow modification process is polynomial in the number of candidates
and voters as well. This is because the flow through any candidate node from voter
nodes is bounded from above by the number of voters, and is reduced by one in every
modification. As a result, the running time of the whole algorithm is polynomial. ut

Note that we cannot have an analogous separation for the problem ∃NE, since
the conditions C1 and C2 depend on the winner under consideration. Hence, we can
clearly have a polynomial time algorithm for ∃NE, if C1 and C2 hold for every w ∈
C (running the algorithm for WinNE(w,a) for every w), but we cannot conclude
anything if these conditions do not hold across all candidates.

4 Truth-bias Under k-approval

The veto rule and the plurality rule are two extreme points of the general family of k-
approval voting. For k-approval with k ≥ 1, voters “approve” of the first k candidates
in their submitted ballot, hence each such candidate receives one point from that voter.
In this section, we briefly show that we cannot hope to have analogous results as in
Section 3. Clearly the NP-hardness results continue to hold, since veto is included in
k-approval, but the rest of the properties that we identified in the previous section do
not hold for the more general class of k-approval rules.

For the analysis, we will adopt the general terminology of Section 3. In more detail,
we will use the same definition of a runner-up candidate (as well as the definitions
for the sets R1, R2, and for threshold candidates), as the ones used for the veto case.
Additionally, we will denote the set of approved candidates in a profile ai (respectively,
bi) by Ai (respectively, Bi). Finally we will use the terms “votes in favor” and “votes
against” in the sense of the following definition.

Definition 7. Let a be the truthful profile, and let b be the submitted profile. A voter i
votes in favor of a candidate cj , if cj /∈ Ai and cj ∈ Bi. Similarly, i votes against cj ,
if cj ∈ Ai and cj /∈ Bi.

Lemma 5. Given a Nash equilibrium profile bNE 6= a, for every non-truhful voter,
exactly one, but never both, of the following conditions hold: a) the voter votes in favor
of the winner, b) the voter votes against some r ∈ R1 ∪R2.



The lemma above already shows some differentiation from what holds for veto.
Now, note that for veto, it is always case (b) from Lemma 5 that holds, and never case
(a). For plurality, on the contrary, it was established in [14] that it is case (a) that holds,
and never case (b). For k-approval, with arbitrary k, it can be either of the two cases.

Next, we establish that a threshold candidate always exists as in the previous section.

Proposition 1. For every equilibrium bNE 6= a, a threshold candidate always exists.

Unlike the case of veto or plurality, in the k-approval case, it is possible that in a
non-truthful equilibrium, neither the winner nor the threshold candidate will maintain
the same score as in the truthful profile. This is demonstrated in the following examples.

Example 2. Consider the following two profiles using 2-approval, with the tie-breaking
order given by the sequence a � b � c � d � e. The truthful profile (of 7 voters) is:

• a � b � c � d � e • 2 voters with preference d � b � a � c � e
• e � d � a � c � b • 2 voters with preference a � d � b � c � e
• e � c � a � b � d

The equilibrium profile changes the last but one voter (i.e., one out of the two iden-
tical voters with preference a � d � b � c � e), as well as the other one of that type
and the last voter to a � e � b � c � d and e � a � c � b � d

In this example, the score of the winning candidate (more specifically, candidate a)
in the equilibrium profile is higher than in the truthful profile. On the other hand, the
score of the threshold candidate in the equilibrium (in this example d) decreases in the
equilibrium compared to the truthful profile score.

Example 3. The score of the threshold candidate does not necessarily decrease at an
equilibrium. A further example demonstrates that its score can also become larger in an
equilibrium than it is in the truthful profile. Using again 2-approval, and the tie-breaking
order d � a � b � c, this example consists of the following true preferences:

a � b � c � d a � c � b � d
c � d � a � b d � b � a � c

a � d � b � c
A NE can be constructed by making only one change — the last voter changes to

a � b � d � c. The threshold candidate score in the equilibrium (here of candidate b)
increases.

Finally, regarding the winner’s score in a Nash equilibrium, we prove that it cannot
fluctuate and go up or down as the score of the threshold candidate, but instead it is
bounded, according to the following proposition.

Proposition 2. Let w = F(bNE) for a NE bNE 6= a. Then sc(w,bNE) ≥ sc(w,a).

Our results along with a comparison to the plurality rule are summarised in Table 2.
One of the main conclusions drawn from Table 2 is the following: the analysis of the
plurality rule by Obraztsova et al. [14] established that the score of the threshold can-
didate in a non-truthful equilibrium remains the same as in the truthful profile. This
property was exploited in that work for characterising the set of equilibria. Regarding



the veto rule, the score of the threshold candidate may change, but the score of the
winner remains unchanged among equilibria. This is a property that we exploited in
Section 3 in our positive result. In contrast, when it comes to the general family of k-
approval, the examples in this section show that the score of both the winner and the
threshold candidate may change. The threshold candidate in particular is far less con-
strained, and can either lose or gain points in the equilibrium compared to the truthful
profile. Hence, equilibrium profiles are not as well-structured in this case, and there-
fore we cannot hope to use the ideas from Section 3 or from the plurality analysis of
Obraztsova et al. [14] to come up with more positive algorithmic results. Our analysis
suggests that one may have to look at special cases of k-approval to obtain structural
properties that can yield characterizations, or can be exploited algorithmically.

Table 2. Summary of our complexity results and other properties.

Conditions Veto Plurality k-approval
¬C1 and C2 C1 and ¬C2 C1 and C2

WinNE(w, a) NP-hard P NP-hard NP-hard
Winner score may grow in NE No Yes Yes
Winner score may drop in NE No No No

Runner-up score may grow in NE Yes No Yes
Runner-up score may drop in NE Yes No Yes

5 Discussion and Future Work

In this paper we initiated the investigation of truth-biased voters in voting systems that
do not use plurality. We focused on the spectrum of voting rules ranging from plurality
to veto, encompassing all scoring rules that allow only two values. In these cases, we
have seen that plurality, veto, and k-approval have their own distinct properties. For ex-
ample, both plurality and k-approval share the property that the score of an equilibrium
winner might be higher than the truthful score of that candidate (which cannot hap-
pen in veto). However, in k-approval, unlike plurality, equilibria exist where runner-up
candidates also change their scores.

While the problems we studied are NP-complete for both veto and k-approval, we
showed a tight subset of cases for veto where there is a polynomial time algorithm for
knowing (and finding, as the algorithm is constructive) if there is a Nash equilibrium
with a winner of our choice.

There are several further research areas to pursue. First, we can combine this re-
search with other voting approaches. For example, while there has been research on
iterative voting with truth-bias, it has only focused on plurality.

A different approach remains strictly within the framework of truth-bias, and tries
to further enhance our understanding of truth-biased voters, and expand the research of
it to more voting rules (most interesting, to non-scoring rules, such as maximin), allow-
ing us to further understand the effects of truth-bias. However, this approach presents
unique challenges, as while truth-bias in binary scoring effectively eliminates the most
egregious of nonsensical equilibria, expanding it to other voting rules requires a wider
net, in a sense, to eliminate such equilibria.
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