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ABSTRACT
We introduce Weakest Link Games (WLGs), a cooperative
game modeling domains where a team’s value is determined
by its weakest member. The game is represented as an edge-
weighted graph with designated source and target vertices,
where agents are the edges. The quality of a path between
the source vertex and target vertex is the minimal edge
weight along the path; the value of a coalition of edges is
the quality of the best path contained in the coalition, and
zero if the coalition contains no such path. WLGs model
joint projects where the overall achievement depends on the
weakest component, such as multiple-option package deals,
or transport domains where each road has a different allow-
able maximum load.

We provide methods for computing revenue sharing solu-
tions in WLGs, including polynomial algorithms for calcu-
lating the value of a coalition, the core, and the least-core.
We also examine optimal team formation in WLGs. Though
we show that finding the optimal coalition structure is NP-
hard, we provide an O(logn)-approximation. Finally, we
examine the agents’ resistance to cooperation through the
Cost of Stability.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

Keywords
Cooperative Games; the Core; Optimal Coalition Structure
Generation

1. INTRODUCTION
Consider a travel agency preparing to offer a fixed-price

travel deal. The deal must include a flight to a travel des-
tination, and a hotel stay. People who decide whether to
take the deal or not would examine the hotel that is being
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offered, and are only likely to take the package if the hotel’s
quality is sufficient for their taste. Similarly, if the airline’s
quality is not high enough, people are likely to reject the
deal. A potential buyer would reject the package when ei-
ther the hotel or the airline do not have the required quality.
Thus the total number of buyers, and the agency’s revenue,
is determined by the weakest part of the package.

Alternatively, consider a truck driver who wants to deliver
as much cargo as possible from New York to Los Angeles.
Even if the truck can carry all available cargo, any path
from the source to the target involves using toll roads with
bridges and tunnels, each limiting the weight or height of
vehicles going through them. Any road that is used places
a restriction on the load the truck could carry when passing
through it. Any possible path between the source and target
consists of several such roads, and is limited by its weakest
link (i.e., the road with the most stringent restrictions along
the path). The optimal path is the one with the best weakest
link, as it allows the highest feasible amount of cargo to be
transferred.

Less geographically oriented, one could consider a manu-
facturing process that takes various materials, and applies
multiple transformations to produce a desired product. A
complex manufacturing process may have several stages, and
there may be several alternative methods that lead to the
same final product. Each manufacturing stage has a certain
environmental impact (for example, pollution with a nega-
tive impact on the environment or resulting in a perimeter of
a certain distance from the factory that needs to be cleared
of people), and we seek to find a manufacturing process that
has the minimal negative impact, and to incentivize firms to
use it over alternative, more harmful, methods.

In the above examples, the package’s value depends on its
weakest component. However, individual components can
be composed into various packages, in ways captured by a
graph structure. If these components are controlled by self-
motivated agents, how are the agents likely to share the
package’s total value? For example, which travel packages
are likely to form? How would the toll road owners, or the
hotel and airline providers, share the obtained revenues?

Many domains where self-motivated agents interact have
been studied in the algorithmic game theory literature. The
past decade has seen increased exploration of cooperative
game theory, which studies domains where self-motivated
agents must collaborate with one another, and emphasizes



negotiation among agents. In such domains, having enforce-
able contracts among the agents has an important impact on
the equilibrium outcome that emerges. The need for compu-
tationally tractable game-theoretic concepts is highlighted
by the applicability of a “weakest-link” model in common
tasks such as crowdsourcing and large projects, which are
typically comprised of several parts, while the overall qual-
ity may depend primarily on the lowest-quality part.

Our contribution: we propose a new class of coopera-
tive games, called cooperative Weakest Link Games (WLGs),
which capture domains (such as the examples above) where
the value a coalition can achieve is determined by its weakest
member. Our WLG model makes use of an edge-weighted
graph with designated source and target vertices, where the
agents are the edges of the graph. The quality of a path from
the source to the target is the minimal edge weight along the
path; the value of an agent coalition is the maximal quality
of all the paths contained in the coalition (i.e., all the paths
that are comprised of edges that are all in the coalition).

We provide a polynomial algorithm for computing the
value of a coalition in a WLG. We then study agent agree-
ments in WLGs using cooperative game theory, providing
polynomial algorithms for computing solutions based on team
stability: the core [28], ε-core, and least-core [38].

While we provide polynomial algorithms for quantifying
the stability level of a game, using the Cost of Stability [7]
which measures the minimal external subsidy required to
allow stable payoff allocations to exist, we also explore (in
Section 4) an easier, linear algorithm to easily calculate the
CoS in common graphs. Finally, we explore the problem of
finding the best partitioning of the agents to teams, known
as optimal coalition structure generation [40, 37, 32, 36].
Though we show the problem is NP-hard, we provide a poly-
nomial O(logn) approximation for it.

Our WLG model is quite expressive. Many complex prob-
lems where the outcome a team achieves depends on its
“weakest link”, but where several alternative teams exist,
can be modeled as WLGs.

Sub-additive games: The WLG model may have in-
stances that are sub-additive games.1 One characteristic of
such games is that breaking up the grand coalition into sep-
arate coalitions may increase the overall value of the game
(see Section 3). This does not negate the need to explore
classic cooperative game-theoretic concepts (such as core
and cost of stability) which are appropriate for certain set-
tings, e.g., in our environmental impact example, where we
wish to discourage using the environmentally harmful pro-
duction methods. We explore such issues in Section 2.1.

1.1 Preliminaries
A coalitional game is comprised of a set of n agents, I =
{1, 2, . . . , n}, and a characteristic function mapping agent
subsets (coalitions) to a rational value v : 2I → Q, indicating
the total utility these agents achieve together. We assume
v(∅) = 0. An imputation (p1, . . . , pn) divides the gains of
the grand coalition I (i.e., the coalition consisting of all the

1These are games in which the characteristic function v,
reflecting the value of coalitions, is not “synergistic”, so
for some two disjoint coalitions A,B we have v(A ∪ B) <
v(A) + v(B). This family of games includes many cooper-
ative games, from weighted voting games (with a threshold
below 0.5), through coalitional skill games, to MC-nets (see
this paper’s Related Work section).

agents) among the agents, where pi ∈ Q, such that
n∑
i=1

pi =

v(I). We call pi the payoff of agent i, and denote the payoff
of a coalition C as p(C) =

∑
i∈C

pi.

The Core and Least-Core: A basic requirement for a
good imputation is individual rationality, stating that for all
agents i ∈ C, we have pi ≥ v({i}) — otherwise some agent is
incentivized to work alone. Similarly, a coalitionB blocks the
payoff vector (p1, . . . , pn) if p(B) < v(B), since B’s members
can split from the original coalition, derive the gains of v(B)
in the game, and give each member i ∈ B its previous gains
pi and still each member can get additional utility. Under a
blocked payoff vector, the coalition is unstable. A solution
based on this is the core [28].

Definition 1. The core of a game is the set of all impu-
tations (p1, . . . , pn) that are not blocked by any coalition, so
that for any coalition C ⊆ I, we have: p(C) ≥ v(C).

In some games, every imputation is blocked by some coali-
tion, so the core can be empty. As the core is too restrictive,
one possible alternative is to use relaxed stability require-
ments. One model is based on the assumption that coali-
tions that have only a small incentive to drop-out from the
grand coalition will not do so — the ε-core [38].

Definition 2. The ε-core, for ε > 0, is the set of all
imputations (p1, . . . , pn) such that for any coalition C ⊆ I,
p(C) ≥ v(C)− ε.

Unlike the core, the ε-core always exists for a large-enough
ε. For the value ε = max

C⊆I
p(C) − v(C) the ε-core is always

non-empty. The set {ε|ε-core is non-empty} is compact, and
thus has a minimal element. The minimal value ε∗ for which
the ε-core is non-empty is called the least-core value of the
game, and the ε∗-core is called the least-core (LC).

The Cost of Stability: When the core is empty, an ex-
ternal party interested in having the agents cooperate may
offer a subsidy if the grand coalition is formed. This in-
creases the total payoff, but does not change the core con-
straints, so when a large-enough subsidy is given, the per-
turbed game has a non-empty core. The minimal subsidy
required to achieve a non-empty core can measure the de-
gree of instability or the agents’ resistance to cooperation,
and is called the Cost of Stability [7].

Definition 3. A game’s Cost of Stability (CoS) is the
minimal external subsidy that allows the game to have a
non-empty core. Formally, given a game with character-
istic function v : 2I → Q, the modified game v∆ is the
game with the characteristic function v′ : 2I → Q where
v′(I) = v(I) + ∆ and for every C ( I we have v′(C) = v(C)
(v′ is a super-imputation, which is an imputation in which
as v′(I) ≥ v(I)). The CoS is the minimal ∆ such that v∆

has a non-empty core.

Coalition Structures: In certain domains several dis-
joint agent coalitions may emerge, each working indepen-
dently, creating a structure of coalitions [20]. When the
same characteristic function v : 2I → Q determines the util-
ity obtained by each such coalition, we may seek the optimal
partition of the agents maximizing the total value obtained.
This problem is called the optimal coalition structure gen-
eration problem [37, 32].



Definition 4. A coalition structure is a partition CS of
the agents (I) into several disjoint sets (CS1, . . . , CSk). The
total value of a partition is the sum of the values of the parts,

so v(CS) =
k∑
i=1

v(CSi). The optimal coalition structure is

the partition with the maximal value: arg maxCS v(CS).

2. WEAKEST-LINK GAMES
Weakest Link Games (WLGs) model domains such as the

examples in Section 1, using an underlying graph structure.
A Weakest Link Domain (WLD) consists of a graph G =

(V,E) with designated source and target vertices s, t ∈ V ,
and an edge weight function w : E → Q+ mapping any
edge to the “restriction” applied on it (the set W includes
all different weights in the graph).

We denote the set of all paths between s and t as R(s,t).
The strength of a path r = (e1, . . . , em) ∈ R(s,t) (where
(e1, . . . , em) are the edges along the path) is the minimal
edge weight along this path: q(r) = minej∈r w(ej).

2 Given
an edge subset C ⊆ E, we denote the set of s-t paths that
consist only of edges in C as RC(s,t) = {r = (e1, . . . , em) ∈
R(s,t)|{ej}mj=0 ⊆ C}.

Our game is defined over a WLD (G = (V,E), s, t, w),
where the agents I are the edges in the graph, so I = E,
and we denote |I| = |E| = n. The characteristic function
v : 2I → Q maps a coalition C ⊆ I to the strength of the
best (strongest) path that consists solely of coalition edges.

Definition 5. A Weakest Link Game (WLG) is defined
over a domain (G = (V,E), s, t, w) where agents are edges
I = E, and using the following characteristic function:

v(C) = max
r∈RC

(s,t)

q(r) = max
p∈RC

(s,t)

min
ej∈p

w(ej)

By convention, if for a coalition C ⊆ E no such path exists
(i.e., RC(s,t) = ∅) we set v(C) = 0.

Intuitively, the value of coalition C is the highest threshold
τ such that there exists a path between s and t using only
edges in C with weight at least τ .

Example 6. In Figure 1 the value of the grand coalition
is 3, as that is the value of the weakest link in the path s-A-C-
F-H-t (the edge (F,H) is the weakest link). The imputation
that gives 1 to the edge (A,C), 2 to the edge (C,F), and 0 to
all the other edges is in the core.

Example 7. In Figure 2 the value of the grand coalition
is 2 — the path s-B-D-G-H-t (due to the edge (B,D)). How-
ever, the core is empty, as any imputation needs to have the
value 2 on the path s-B-D-G-H-t and the value 1 on the path
s-A-C-E-F-t, which shares no edges with the previous path,
and therefore needs added value in the (super-)imputation.
The CoS is 1, as the super-imputation giving 2 to the edge
(G,H) and 1 to the edge (C,E) is stable.

2.1 The Core and Least-Core
We now study how agents in a WLG are likely to share

the gains, focusing on payoff allocations that guarantee sta-

2In other words, a chain of edges forming a path is only as
strong as its weakest link.
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Figure 1: A WLG with a nonempty core
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Figure 2: A WLG with an empty core

bility of the formed team, providing polynomial algorithms
for computing core, ε-core and least-core solutions.3

By definition, a coalition’s value is the weight of the light-
est edge in a certain path (weakest link of maximal weight),
so v(C) is the weight of one of the edges in the graph, and
can take at most |W | ≤ |E| different values.

Observation 8. The value v(C) of any coalition C in
a WLG over the graph G(V,E) is the weight of one of the
edges in the graph, so v(C) ∈W = {w(e)|e ∈ E}.

Theorem 9. Computing the value v(C) of a coalition C
in a WLG can be done in polynomial time.

Proof. Due to Observation 8, v(C) takes one of the val-
ues in W . For each of the possible edge weights τ ∈ W ,
we can test whether there exists an s-t path that is com-
prised solely of the edges in C whose weight is at least τ ,
as follows. Let Cτ be the set of edges in C with weight at
least τ . Denote by G′(V,Cτ ) the subgraph with vertex set
V and edge set Cτ . The graph G′(V,Cτ ) can easily be com-
puted in polynomial time, by iterating through the edges
and eliminating those that have a weight lower than τ .

Given G′(V,Cτ ) we can check whether there exists any
path connecting s and t in it using a depth-first search
(DFS), which again requires polynomial time. If such a path
exists we say the test was positive for τ , which indicates that
v(C) ≥ τ , and if such a path does not exist we say the test
was negative, indicating that v(C) < τ .

After iterating over all possible values τ ∈ W we return
the maximal τ for which the test was positive. Since |W | ≤
|E| the entire procedure requires polynomial time.

3While for some WLG scenarios there is no need for stability,
settings such as our environmental damage one (described
in the introduction) are cases of WLGs where we specifically
wish to discourage use of the other paths; hence, we require
a stable imputation.



Theorem 10. Testing whether an imputation
p = (p1, . . . , pn) is in the core of a WLG can be done in
polynomial time.

Proof. We provide a polynomial time algorithm that
takes a WLG over a graph G(V,E) and an imputation p =
(p1, p2, . . . , pn) and either finds a coalition B that blocks the
imputation or verifies that no such blocking coalition exists,
so p is in the core. To check if there exists a coalition B with
v(B) > p(B), we iterate over all possible values that v(B)
can take. By Observation 8 it suffices to use a procedure that
searches for blocking coalitions with value exactly τ , and run
it for all possible values τ ∈ W . If no blocking coalition is
found whose value is exactly τ for any τ in the set W , no
blocking coalition exists. If a coalition B has value τ , it must
contain a path P connecting s and t consisting solely of edges
with weight at least τ . The value of path P as a coalition is
also v(P ) = τ . Thus if B is a blocking coalition, P is also
a blocking coalition. Therefore, to find a blocking coalition
B where v(B) = τ it suffices to examine all the paths P
where v(P ) = τ . If there are several such paths P where
v(P ) = τ , it suffices to examine the path Q with minimal
payoff p(Q) =

∑
i∈Q pi: if p(Q) < v(Q) = τ then we have a

blocking coalition Q, and if p(Q) ≥ v(Q) = τ then for any
path Q′ where v(Q′) = τ we have p(Q′) ≥ p(Q) ≥ v(Q) = τ
so Q′ cannot be a blocking coalition.

Therefore, to seek a blocking coalition B where v(B) = τ
it suffices to examine only the minimal payoff path P where
v(P ) = τ (i.e., an s-t path Q where v(Q) = τ that minimizes
p(Q) =

∑
i∈Q pi of all such paths with value τ). If this path

does not constitute a blocking coalition then there are no
blocking coalitions with value τ .

To search for such a path, we construct a weighted graph
Gτ with the same vertices as G, while dropping all edges
where w(e) < τ , retaining only edges with weight of τ or
more. However, we change the weights of the retained edges
— we replace the weight of an edge e ∈ E with its payoff
under the imputation, so w′(e) = pe (by w′(e) we denote
the new weight). In the generated graph Gτ we can find
the “shortest” s-t path Sτ , under the new weights, using
Dijkstra’s algorithm. The payoff of Sτ under the imputation
p is its total length in Gτ , under the new weights. If p(Sτ ) <
τ then Sτ is a blocking coalition with value at least τ , and
if p(Sτ ) < τ then no blocking coalition with value τ exists.4

Since the above procedure takes polynomial time, and is
repeated |W | < |E| times (for each possible value of τ), the
entire algorithm has a polynomial running time.

The algorithm in Theorem 10 tests whether an imputation
is in the core of a WLG. We now show that relaxed solution
concepts can also be computed in polynomial time, using
this algorithm as a building block.

We note that it is possible to construct a linear program
(LP) with n variables, whose set of solutions are all the ε-
core imputations. This LP, shown in Table 1, has a variable
pi for each of the agents, which represents its payoff in an
imputation. The LP has 2n constraints, one per possible

4Note that decreasing weights of some edges potentially re-
duces the values of some coalitions; thus the procedure might
“miss” a blocking coalition, when the true value of the coali-
tion under the new weights is lower than under the true
weights. However, this is not a coalition whose value is τ ,
but rather one whose value is τ ′ > τ . This would be found
later, when examining the value τ ′.

coalition. The ε-core is the solution to the LP, and the core
is recovered when setting ε = 0.

min ε s.t.:
∀C ⊂ I :

∑
i∈C

pi ≥ v(C)− ε;∑
i∈I

pi = v(I)

Table 1: LP 1: Linear program for the core and ε-core

Similarly, the CoS is characterized by the LP given in Ta-
ble 2, using the additional variable ∆ designating the exter-
nal subsidy which perturbs the value of the grand coalition.

min ∆ s.t.:
∀C ⊂ I :

∑
i∈C

pi ≥ v(C);∑
i∈N

pi = v(I) + ∆

Table 2: LP 2: Linear program for the CoS

Although it is possible to solve these LPs using the Ellip-
soid method in time polynomial in the size of the LP, we note
that the size of the above LP formulations are exponential
in the number of players.

Our solution to this problem uses a separation oracle, a
method that takes a possible LP solution as an input and
either finds a violating constraint or verifies that no such
violating constraint exists. Since the Ellipsoid algorithm can
run using only a separation oracle, without explicitly writing
the entire LP, finding a polynomial separation oracle for an
LP enables solving it in polynomial time.

Theorem 11. Testing core emptiness, finding an ε-core
imputation and finding the least core value are in P for
WLGs.

Proof. The algorithm of Theorem 10 can serve as a sep-
aration oracle for the core LP 1. It takes a proposed imputa-
tion p = (p1, . . . , pn) and either returns a blocking coalition
yielding a violating constraint, or verifies that no such coali-
tion exists, in which case all LP constraints are satisfied.
Thus it is possible to solve the core LP 1 in polynomial
time, and either find a core imputation or verify that the
core is empty.

We note that it is easy to adapt the algorithm in Theo-
rem 10 to serve as a separation oracle for the ε-core LP 1.
Rather than checking whether a path forms a blocking coali-
tion for a given value of τ , we can perform a relaxed test:
checking whether it is blocking by a margin of at least ε by
constructing Gτ as in Theorem 10, finding the shortest path
Sτ , and checking if τ = v(Sτ ) < p(Sτ ) − ε. Since we have
a separation oracle for the ε-core LP 1, it can be solved in
polynomial time, allowing us to either find an ε-core impu-
tation or verify that the ε-core is empty.

Corollary 12. Calculating the CoS of a WLG can be
done in polynomial time.5

5In Section 4 we propose a linear time algorithm for com-
puting the CoS of WLGs for the restricted case where the
underlying graph is a series-parallel graph.



Proof. Solving LP 2 allows finding the CoS. Again, we
use the algorithm of Theorem 10 as a separation oracle, but
make the appropriate changes so as to solve LP 2 (of Table 2)
rather than LP 1. When testing whether an imputation is
stable we use the constraint

∑n
i=1 pi = v(I). To switch from

LP 1 to LP 2, we replace this constraint with the constraint∑n
i=1 pi = v(I)+∆, which tests whether there exists a stable

∆ super-imputation (i.e., a payoff vector allocating a total
of v(I) + ∆). Changing the target function to be min ∆
(rather than just the feasibility goal of LP 1) results in the
CoS formulation LP 2, which we solve in polynomial time
using the same separation oracle.

3. OPTIMAL COALITION STRUCTURES
The optimal coalition structure is a partition of the agents

into disjoint sets that maximizes the sum of the values of
the parts. Each such part has a non-zero value only if it
contains some s-t path. If a single part of the partition
contains more than one s-t path, it could be broken down
into two sub-parts, each containing a path, which results
in a higher value. Thus it seems that finding the optimal
coalition structure is somewhat related to a decomposition
of the agent set into sets of disjoint paths. Indeed, we first
show that finding the optimal coalition structure is NP-hard
using a reduction from the Disjoint Paths Problem (DPP).

Theorem 13. It is NP-hard to determine whether the
value of the optimal coalition structure exceeds an input k.

Proof. We use a reduction from the Disjoint Paths Prob-
lem (DPP), shown by Karp to be NP-Hard [31]. In the
DPP problem we are given an undirected graph G(V,E)
and k pairs of source-target vertex pairs {(si, ti)}ki=1, and
are asked whether there are k edge-disjoint paths in G such
that the i’th path connects si and ti.

We reduce a DPP to finding the optimal coalition struc-
ture in a WLG. We take the original graph G(V,E) and add
two special vertices: a meta-source s and a meta-target t.
We add k edges from s to the k sources {si}ki=1 with weight
1−εi for an arbitrary set of k distinct values {εi}ki=1 in range
(0, 1) (by distinct we mean that εi 6= εj for any i 6= j). Sim-
ilarly we add an edge from each ti to t with weight 1− εi for
any 1 ≤ i ≤ k. We set the weights of all edges in G to be 1.

In the optimal coalition structure problem we search for
disjoint paths between s and t maximizing the sum of the
values of the paths. At best, for each 1 ≤ i ≤ k, there
is a path from si to ti, and one can use the edges (s, si)
and (ti, t), each with weight 1− εi, to complete it to an s-t

path. Thus
∑k
i=1(1− εi) is an upper bound for the optimal

coalition structure’s value in the reduced instance.
This upper bound is achieved only if the weights of the two

end-edges of our s, t paths match: if one of our paths starts
with weight 1−εi and ends with weight 1−εj for some i 6= j,
there is no way to complete this solution with total value∑k
i=1 1−εi. In this case, we only get min{w((s, si)), w((tj , t))}

for this part of the partition, failing to achieve a total value
of

∑k
i=1(1− εi).

Therefore, the generated instance of the WLG optimal
coalition structure input allows a solution of total value of∑k
i=1(1 − εi) if and only if the DPP instance is a positive

instance (i.e., if there are k edge-disjoint paths connecting
the pairs {si, ti}ki=1).

We propose a polynomial approximation for this problem.

Theorem 14. A polynomial time O(logn)-approximation
exists for the optimal coalition structure problem in WLGs.

Proof. We first consider the following problem: given a
weighted graph G(V,E) with designated source vertex s ∈ V
and target t ∈ V and threshold τ , find the maximal number
of edge-disjoint s-t paths that only use edges whose weight
is at least τ . We present a polynomial time algorithm to
solve this problem.

First, remove all edges that weigh below the threshold τ ,
and set the weights of the remaining edges to be 1 (unit
weight), to obtain the graph Gτ . Note that every path in G
that only uses edges whose weight is at least τ is equivalent
to a path is Gτ .

Thus, it suffices to find the maximal number of edge-
disjoint s-t paths in Gτ , which can be done by finding the
maximal flow between s-t (for example by using the Edmonds-
Karp maximal-flow algorithm).

The value of this flow is the maximal number of edge-
disjoint s-t paths in Gτ , since due to unit capacity no edge
is used twice (a partition into paths can be obtained by
keeping track of augmenting paths found during the run).

Let w′ be the value of the coalition of all agents, i.e., v(I).
Define ni to be the maximum number of disjoint s-t paths

in G that only use the edges with weight at least w′

2i . The
value of the optimal coalition structure is upper-bounded

by
∑∞
i=1 ni

w′

2i−1 . Because the number of coalitions in the

optimal solution with value in the range [w
′

2i ,
w′

2i−1 ] does not

exceed ni, and for each of them we get value at most w′

2i−1 .
To find an O(log(n)) approximation of the optimal coali-

tion structure, we perform the following procedure. For all
possible thresholds τ in the set W , we find the maximum
number of disjoint paths in Gτ . We then find the value
τ = τ∗ that maximizes the product of τ and the number of
disjoint paths in Gτ . We claim that these disjoint paths in
Gτ∗ form an O(log(n)) approximation solution.

The analysis is similar to the log(n)-competitive algo-
rithms for the matroid secretary problem [5]. We prove that

in the sum
∑∞
i=1 ni

w′

2i−1 , the sum of terms for i > 2 log(n)

is not more than 2w′/n which is at most 2/n fraction of the
whole sum.

We know that ni is at most n, the number of agents, for
every i. Thus the sum of those terms is not more than

nw′
∑∞
i=2 log(n)+1

1
2i−1 = n w′

22 log(n)−1 = 2w
′

n
. We conclude

that more than 1− 2
n

fraction of the sum is concentrated in
the first 2 log(n) terms, and consequently there exists an i

for which ni
w′

2i−1 is at least 1−2/n
2 log(n)

fraction of the sum.

By the definition of τ∗, we know the solution we get has

value of at least ni
w′

2i , which proves that our solution has at
least Ω(log(n)) fraction of the above sum, and therefore it
is an O(log(n)) approximation.

4. COOPERATION AND SERIES AND PAR-
ALLEL COMPOSITIONS

Having examined the general case, we provide results on
how a graph’s composition affects the stability of the game
in our model, which rely on series-parallel graphs [24, 41].6

6Requiring a high quality in two tasks is a “min-type” oper-
ator, and can be captured by a series composition. Allowing



A two terminal graph (TTG) is a graph with a distin-
guished source vertex and a distinguished target vertex. A
base graph is a TTG that consists of a source vertex and
target vertex connected directly by a single edge (i.e., the
graph K2). The parallel composition P (G1, G2) of TTGs
G1 and G2 is the TTG generated from the disjoint union of
G1, G2 by merging the sources of G1, G2 and merging their
targets (Figure 3a). The series composition S(G1, G2) of
TTGs G1 and G2 is the TTG generated from the disjoint
union of G1, G2 by merging the target of G1 with the source
of G2 (Figure 3b).

Definition 15. A Series Parallel Graph (SPG) is a TTG
formed by applying a sequence of parallel and series compo-
sitions starting from set of base graphs (i.e., a graph built re-
cursively by the two composition operations over base graphs).

 





 

 

 



  

(a) Parallel composition

 





 

 

 








(b) Serial composition

Figure 3: Series And Parallel Compositions Of Graphs

In WLGs, two disjoint s-t paths (i.e., parallel s-t paths)
are substitutes, as either path may be used to reach the
target from the source. In contrast, two disjoint edge subsets
of a single simple s-t path, such as two sub-paths that are
joined serially to form a full s-t path, are complements, as
both parts are required.

Intuitively, we expect complement agents to find it eas-
ier to cooperate, as they need each other to achieve a high
value, whereas substitute agents resist cooperation as each
group can achieve value on its own. We formalize and quan-
tify this intuition using SPGs, where complementarity and
substitution are easily captured by the graph’s structure.

Though WLGs are defined for any graph, the restricted
case of SPGs captures very natural structures: a series com-
position in a WLG indicates that a project has two parts
and its overall success depends on the weaker component; a
parallel composition indicates that either part can be used
to complete the project. The travel packages example in
Section 1.1 is a direct example of an SPG domain.

We show how the resistance to cooperation, measured by
the CoS, is affected by series and parallel composition. In a
WLG setting, when joining graphs {Gi}, the characteristic
function of the newly-formed SPG (v) can be expressed in

a choice between solutions is a“max-type”operator, and can
be captured by a parallel composition.

terms of the characteristic functions of the joined graphs
{vi}: for every C ⊆ G, v(C ∩Gi) = vi(C ∩Gi).

Theorem 16. If graph G is a parallel composition of graphs

Gi, the CoS of G is (
∑
Gi

CoS(Gi) + vi(Gi))−max
Gi

(vi(Gi)).

Proof. First, we show the CoS is not larger than the the-
orem’s value. Since this is a WLG, the value of the grand
coalition of the composition cannot be greater than the one
of the maximal Gi, and as this is a parallel composition,
it must be equal to the maximal Gi. Examine the super-
imputation with the minimal sum of each Gi when it is con-
sidered on its own. For each graph, the sum of this super-
imputation is CoS(Gi) + vi(Gi), which, when summed over
and subtracting the value of the grand coalition, the CoS is

(
∑
Gi

CoS(Gi) + vi(Gi))−max
Gi

(vi(Gi)), as we wanted.

Now, suppose there is a blocking coalition C, for which

v(C) >
∑
j∈C

pj . As there are no edges connecting the sepa-

rate Gis, every route between s and t passes through only a

single Gi, so there is an i for which v(C ∩Gi) >
∑

j∈C∩Gi

pj .

However, since p∩Gi is a super-imputation over Gi, that is
impossible.

A CoS smaller than our lower bound state above is not
possible either. Suppose there is a super-imputation with a

smaller sum, so there is a Gi for which
∑
j∈Gi

pj < vi(Gi) +

CoS(Gi). This contradicts the very definition of the CoS.

Theorem 17. If G is a series composition of the graphs

Gi, the CoS of G is min
i
CoS(G

minj 6=i(v(Gj))

i ), where G
minj 6=i(v(Gj))

i

is Gi in which all edges with weight above min
j 6=i

(v(Gj)) are

lowered to that value.

Proof. We first show the CoS cannot be larger. Note
that every path from s to t has a maximal value of min

j
(v(Gj)),

so no path from si to ti can have a larger value.

A valid super-imputation is a super-imputation ofG
minj 6=i(v(Gj))

i ,
giving 0 to everyone else. As all routes from s to t pass
through Gi (with the capacity limit), the super-imputation
does not induce any coalitions which do not receive their
value — if there is such a coalition, it is particularly also a
coalition from si to ti with the same value, and that is what

the super-imputation of G
minj 6=i(v(Gj))

i deals with.
Now, we prove a smaller CoS is not possible by induc-

tion. Given graphs G1 and G2, suppose the CoS is smaller

than CoS(G
v(G2)
1 ) and CoS(G

v(G1)
2 ). Then construct a path

made of a single path from s1 to t1 with value of v(G1) and

from t1, all of G2. This is actually G
v(G1)
2 (due to the con-

straints of the first path), and we know that the smaller im-
putation does not satisfy it, i.e., there is a coalition of edges
from s2 to t2 which have an incentive to leave the grand
coalition (with the single path from s1 to t1, of course).

For any n graphs, we look at the first n−1 graphs as a sin-

gle graphG′, hence CoS(G) = min(CoS(G′v(Gn)), CoS(G
v(G′)
n )).

Since v(G′) = min
i6=n

vi(Gi) and from the induction defini-

tion CoS(G′v(Gn)) = min
i 6=n

(G
min(v(Gn),minj 6=i,j 6=n(v(Gj))

i )) =

min
i 6=n

(Gminj 6=i(v(Gj))), as required.



The above theorems yield a polynomial method to com-
pute the CoS in SPGs by recursively applying formulas on
the graph’s structure (CoS of a base graph is 0).7

5. RELATED WORK
The Weakest Link Game (WLG) is a class of cooperative

game (see [34, 20] for a survey of cooperative games). Simi-
larly to other classes such as [39, 30, 23] or cooperative game
languages such as [17, 4, 27, 6, 16, 13, 3, 19, 22, 21], it is
based on a graph representation, where agents control parts
of the graph. However, the value function of WLGs differs
from all of these other forms. In flow games [30] a coali-
tion’s value is the maximal flow it allows between source
and target, so a coalition always gains by adding another
path. In contrast, in WLGs a coalition’s value is deter-
mined by a single path, so it gains nothing from adding a
path unless it is better than even the best path in it. In
graph games [23] the agents are vertices, and the coalition’s
value is the sum of the edges occurring between coalition
members, as opposed to WLGs where we examine paths
between two specific vertices. WLGs are somewhat reminis-
cent of Connectivity Games [14], where agents are vertices
and a coalition wins if it contains a path from the source to
the target. WLGs are also based on paths from a source to
a target, but the agents in them are the edges. Further, in
WLGs the graph is weighted, and the value of a coalition de-
pends on these weights through a max-min structure. Other
forms also have different network goals from WLGs: finding
an optimal project or matching [39, 2], spanning a set of
vertices [4], or interdicting paths [13].

Sub-additive games: WLGs are an instance of sub-
additive games, which have been widely explored in the lit-
erature [20]. These include weighted voting games [26, 12,
25], skill games [15, 11], and MC-nets [20]. All have been
explored both with respect to their cores and CoS, as well
as with respect to finding optimal coalition structures for
them.

The solutions we focus on are the core [28], ε-core and
least-core [38]. The core was proposed as a characterization
of payoff allocations where no agent subset is incentivized to
deviate from the grand coalition and work on its own [28].
One limitation of the core is that it can be too restrictive, as
in some games no imputation fulfills its requirements. Such
games can be solved by the more relaxed solutions of the
ε-core and least-core. Cost of Stability (CoS), the minimal
subsidy that allows stable agreements, was proposed in [7,
33] to model domains where an external party wishes to
increase cooperation by offering a subsidy.

One key area in algorithmic game theory is team forma-
tion, and the problem of optimal coalition structure gener-
ation was widely studied [40, 37, 35, 1, 9] along with its ap-
plications, ranging from vehicle-routing tasks to sensor net-
works, as well as its relation to other solutions [29]. Though
even restricted versions of the problem are hard [42, 37],
exponential algorithms and tractable approximations have
been proposed [40] and studied empirically [32]. Arguably,
the state of the art method for general games [35] has a
reasonable runtime on average cases, but has a worst case
runtime of O(nn). Many such algorithms use an oracle for
computing the value of a coalition, in contrast to our ap-

7The value of a coalition in a WLG can be computed in
polynomial time, and CoS of any base graph is zero.

Problem Complexity

Computing a coalition’s value (v(C)) P

Testing core membership and emptiness P

Finding an ε-core / least-core imputation P

Coalition structure generation NP-Hard

(polynomial O(logn)

approximation)

Table 3: Complexity of problems in WLGs

proximation which relies on the restricted WLG represen-
tation. Another method [11] relies on a different represen-
tation called coalitional skill games [15], which is based on
set-cover domains.

6. DISCUSSION AND CONCLUSIONS
We introduced a new family of cooperative games, WLGs,

that models domains where an endeavor can be achieved by
various agent combinations, and where the quality of any
combination depends on its weakest part. WLGs capture
such domains using a weighted graph and a maximin value
function (min along the path, and max among paths). Our
model encompasses the cases where players strive for some
sort of consensus and wish to find an option with the highest
Maximin value; cases where there is a “bottleneck” situation
so the overall achievement depends on the weakest compo-
nent; and projects that can be divided into critical parts, the
quality of each being crucial for its success. We proposed ef-
ficient algorithms to compute a coalition’s value, find stable
payoff allocations through the core and ε-core, and quantify
the resistance to cooperation through the CoS, examining
how the stability level changes as sub-games are composed.
Although we showed that finding the optimal coalition struc-
ture is hard for WLGs, we proposed a polynomial O(logn)
approximation. Our results are summarized in Table 3.

Several questions remain open for future research. Are
there efficient algorithms for computing other solution con-
cepts in WLGs, such as the nucleolus or the Shapley value?
Can the coalition structure generation problem be solved
exactly for restricted classes of graphs? Finally, how can
we handle agent failures [10, 8, 18] or uncertainty regarding
agent performance in WLGs?
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