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Abstract

Following recent studies of iterative voting and its effects
on plurality vote outcomes, we provide characterisations and
complexity results for three models of iterative voting under
the plurality rule. Our focus is on providing a better under-
standing regarding the set of equilibria attainable by iterative
voting processes. We start with the basic model of plurality
voting. We first establish some useful properties of equilibria,
reachable by iterative voting, which enable us to show that
deciding whether a given profile is an iteratively reachable
equilibrium is NP-complete. We then proceed to combine it-
erative voting with the concept of truth bias, a model where
voters prefer to be truthful when they cannot affect the out-
come. We fully characterise the set of attainable truth-biased
equilibria, and show that it is possible to determine all such
equilibria in polynomial time. Finally, we also examine the
model of lazy voters, in which a voter may choose to abstain
from the election. We establish convergence of the iterative
process, albeit not necessarily to a Nash equilibrium. As in
the case with truth bias, we also provide a polynomial time
algorithm to find all the attainable equilibria.

1 Introduction
There are many aspects to coordination in multiagent sys-
tems that have engaged researchers in recent years, includ-
ing questions related to the aggregation of multiple agents’
preferences into a single system-wide choice. Researchers
looking at group decision-making have explored the proper-
ties of voting schemes, which provide well-founded prefer-
ence aggregation techniques; at times, voting can also pro-
vide intuitive and efficient prescriptive algorithms for re-
solving disagreements among participants.

Alas, as the Gibbard-Satterthwaite theorem (Gibbard
1973; Satterthwaite 1975) famously states, voting rules are
susceptible to manipulation. Given this negative result, there
has been a solid body of research over the last two decades
that has focused on the complexity of manipulation, as a po-
tential barrier to the Gibbard-Satterthwaite theorem. In a dif-
ferent direction, and given the impossibility of having strate-
gyproof voting rules, another body of research has emerged
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on game-theoretic analysis of voting, initiated by Farquhar-
son (1969). Viewing voters as strategic agents, it is then nat-
ural to examine the Nash equilibria (NE) of the underlying
voting games, as a potential solution concept for preference
aggregation scenarios.

However, Nash equilibria in this context, and without any
further refinement, end up being a poor tool to predict vot-
ing behaviour. For example, even if all voters rank the same
candidate last, it is still a Nash equilibrium (in most common
voting rules) that all voters vote for this disliked candidate.
More generally, there can be a very large number of equilib-
ria in most voting games, and many of them are irrelevant
to the effective analysis of the voting rule. Several methods
have been proposed to handle this multitude of equilibria,
and in this work, we focus on the following three:

• Iterative voting: Instead of examining all Nash equi-
libria, one can consider only equilibria that are “reach-
able” from certain initial voting profiles; that is, we can
study sequences of improvement moves, where during
each move one of the players who is dissatisfied with the
current result can change its vote to achieve a better out-
come. This process is reminiscent of a group of friends
trying to find a movie that they would all like to see,
or a restaurant they would all want to go to; dissatisfied
with the current result, they change their declared pref-
erence seeking to modify the outcome (see, e.g., Meir et
al. 2010). Several online services, such as Doodle, enable
this kind of iterative preference aggregation.

• Truth bias: Another approach for filtering out equilibria
is to add a small utility gain for voters who vote truth-
fully. This extra “bonus” should be small enough so that
agents would still prefer to manipulate the election in
cases where they can affect the outcome for their own
benefit. The rationale of the model is that agents who
are not pivotal tend to simply declare their true prefer-
ences. Introducing this bias in the model dramatically re-
duces the number of equilibria by several orders of mag-
nitude (Thompson et al. 2013).

• Voting with abstentions: A different way to simulate
real-world incentives is to add a small utility gain to vot-
ers who choose to abstain. The rationale is that coming to



the election may incur a cost in time, effort, etc. Hence
the abstention avoids this cost, but just as in truth bias, the
agents would still have an incentive to manipulate if they
can affect the outcome. Such voters are also referred to as
lazy voters (Desmedt and Elkind 2010).

Contribution: Our main goal is to study in more depth
the above three techniques and their relationship, separately
and combined, to Nash equilibria. We first examine itera-
tive voting in a simple form, namely plurality voting with
agents playing a best-response strategy. After first estab-
lishing some useful properties, we find that even in this
straightforward model (which is known to eventually con-
verge (Meir et al. 2010)), checking whether a given profile
is a reachable Nash equilibrium is NP-hard.

We then turn to the truth-bias approach, and combine it
with iterative voting. In this model, iterative voting con-
verges to equilibria that are arguably more natural; truth bias
reflects intuitive voter leanings, and eliminates many unde-
sirable equilibria. We give a characterisation of the reachable
equilibrium profiles, and detail a polynomial-time algorithm
for finding all such equilibria of a game.

Finally, we examine the lazy-voter approach, combined
with iterative voting. We study two versions of the iterative
process, depending on whether a voter that decides to abstain
at some step is allowed to come back to the election at a later
step. We mostly focus on the more intuitive version where
abstention is interpreted as not being able to come back at
later steps. Convergence is guaranteed under this model, al-
beit not necessarily to a Nash equilibrium. However, we are
still able to fully characterise the Nash equilibria that can be
reached by this process and obtain a polynomial algorithm.

This work enhances our understanding of the effects of
truth-bias and lazy-bias, which have only recently been in-
troduced in the literature. It also serves as a means to com-
pare and select the relevant voting model, on the basis of
properties satisfied by the equilibria of each model.

Related Work
There have been many attempts to escape the multitude
of Nash equilibria in voting games, and we focus on the
three that have been at the forefront of recent research
in the AI community and outside it. The iterative voting
model we utilise is based on the one introduced by Meir et
al. (2010) and expanded by additional researchers (Lev and
Rosenschein 2012; Branzei et al. 2013; Kukushkin 2011;
Reyhani and Wilson 2012). That model followed previous
research into iterative and dynamic mechanisms, much of it
summarised by (Laffont 1987).

Another line of work studies restricted dynamics in iter-
ative processes, i.e., limitations on the allowed moves by
the voters (Reijngoud and Endriss 2012; Grandi et al. 2013;
Obraztsova et al. 2014; Meir, Lev, and Rosenschein 2014).
However, these papers concentrate on convergence, while
we study the set of equilibria obtainable in this manner.

The notion of adding a truth bias to games was introduced
(for a specific case) by Laslier and Weibull (2013), and was
proposed for a specific voting rule (with limited results) by
Dutta and Laslier (2010). A more robust model was sug-

gested by Thompson et al. (2013), which introduced a more
general framework, and contained various empirical results
when using plurality in truth-biased games. The theoretical
side of that work was recently enhanced by Obraztsova et
al. (2013). The notion of lazy voting was studied by Desmedt
and Elkind (2010), as another way of eliminating some of
the undesirable Nash equilibria.

The rest of the paper is organised as follows. Definitions
and notation are in Section 2. Section 3 presents our first
results, on equilibrium characterisation of iterative plural-
ity voting, including our NP-completeness result for a pro-
file reachability decision. This is contrasted by the results
of Section 4, which describe the properties of truth-biased
iterative plurality voting, leading to a polynomial-time algo-
rithm for equilibrium computation. Turning our attention to
lazy voters, we study in Section 5 analogous questions for
two iterative versions of this principle. We conclude in Sec-
tion 6 with some final remarks. While omitting many of the
proofs due to space limitations, we provide key proofs and
proof outlines.

2 Definitions and Notation
We consider a set of m candidates C = {c1, . . . , cm} and
a set of n voters V = {1, . . . , n}. Each voter i has a strict
linear preference order (i.e., a ranking) over C, which we
denote by ai. For notational convenience in comparing can-
didates, we will sometimes use �i instead of ai. When
ck �i cj for some ck, cj ∈ C, we say that voter i prefers
ck to cj .

At an election, each voter submits a preference order bi,
which does not necessarily coincide with ai. We refer to bi as
the vote or ballot of voter i. The vector of submitted ballots
b = (b1, ..., bn) is called a preference profile. At a profile b,
voter i has voted truthfully if bi = ai. Any other vote from i
will be referred to as a non-truthful vote. Similarly the vector
a = (a1, . . . , an) is the truthful preference profile, whereas
any other profile is a non-truthful one.

Given a voter i ∈ V , and its vote bi under a profile b, we
denote by top(bi) the top choice of the vote. A voting rule F
is a mapping that, given a preference profile b, outputs a can-
didate c ∈ C; we write c = F(b). In this paper we will con-
sider only Plurality1 under lexicographic tie-breaking. This
is one of the most well-studied and widely-used rules. Un-
der Plurality, each candidate is assigned a score equal to the
number of ballots where it has appeared as the top choice.
The winner of the election is then the candidate with the
maximum score. That is, the winner of the election is the
candidate who appears as the top choice in the maximum
number of votes. In case of ties, we assume that tie-breaking
is resolved by the linear order c1 � c2 � ... � cm.

Given b, let s be the maximum score achieved by a can-
didate. We denote by W (b) the set of tied candidates with
score equal to s, i.e., all the potential winners before tie-
breaking is applied. Also, let H(b) be the set of candidates

1For the Plurality rule, it is enough for a voter to submit its
top choice, and not a whole linear order. However, here we provide
general definitions so that our models are applicable to other voting
rules.



that receive s − 1 votes in b, but would win a tie-break
against any candidate in W (b) (these are candidates who
would need one extra vote to become a winner). These two
sets play an important role in our analysis, as they, together,
define the “runner-ups” — the candidates that can win with
an additional point. Finally, we denote by sc(c,b) the score
of candidate c in b.

Game theoretic considerations
In this work, we view elections as non-cooperative games.
The standard way to do this is to associate a utility function
ui with every voter i, which is consistent with its true pref-
erence order. That is, we require that ui(ck) 6= ui(cj) for
every i ∈ V , cj , ck ∈ C, and also that ui(ck) > ui(cj), if
and only if ck �i cj .

We study and compare three game-theoretic models. We
refer to the first one as the basic model (following Meir et
al. 2010) since it is the most standard approach. Under the
basic model, the strategy space of each voter is the set of all
linear orders, and the payoff function of voter i when its real
preference is ai is:

pi(ai,b,F) = ui(cj), if cj = F(b),
where b is the submitted profile.

The second model is a variation of the first one, and we
refer to it as the truth-biased model, following Thompson et
al. 2013. In this model, we suppose that voters have a slight
preference for voting truthfully when they cannot unilater-
ally affect the outcome of the election. This bias is captured
by inserting a small extra payoff, when the voter votes truth-
fully. This extra gain is small enough so that voters may still
prefer to be non-truthful in cases where they can affect the
outcome. If a is the real profile and b is the submitted one,
then the payoff function of voter i is given by:

pi(ai,b,F) =
{
ui(cj), if cj = F(b) ∧ ai 6= bi,
ui(cj) + ε, if cj = F(b) ∧ ai = bi.

(1)

The value of ε should not effect the preference between can-
didates. Hence, 0 < ε < min

i∈V
min

c,c′∈C
|ui(c)−ui(c′)|. We note

also that the exact numbers for the utilities ui(·) do not mat-
ter in the analysis that follows, as long as ε lies within the
specified range.

The third model in this paper is also a variation of the first
one. We refer to it as the model with lazy voters, following
Desmedt and Elkind 2010. In this model, it is assumed that
voters have a slight preference for not coming to the elec-
tion if they are not pivotal. The ability to abstain from the
election is captured by introducing a special ballot, which F
simply omits from its calculations. However, the bias itself
is captured similarly to the truth bias in the previously de-
scribed model variation. Let ⊥ denote the abstention ballot.
If a is the real profile and b is the submitted one, then the
payoff function of voter i is given by:

pi(ai,b,F) =
{
ui(cj), if cj = F(b) ∧ bi 6= ⊥,
ui(cj) + ε, if cj = F(b) ∧ bi = ⊥. (2)

In the pathological case that the submitted profile is the vec-
tor (⊥, ...,⊥), we assume that no candidate is elected and
each voter has a payoff of ε. This clearly cannot be realised
as a stable state.

A Nash equilibrium in these games is a profile b,
where no voter can unilaterally improve its payoff, i.e.,

for every i and every b′i, we have pi(ai,b,F) ≥
pi(ai, (b

′
i,b−i),F) (b−i being the vector b without player

i’s vote). In addition, for a general non-truthful profile
b we will define the best response set of player i as:
BR(i,b) = {b′i|∀b pi(ai, (b,b−i),F) ≤ pi(ai, (b′i,b−i),F)}

Improvement Step Dynamics
Consider an election game, either in the basic or in the truth-
biased model. We focus on an iterative process, where, start-
ing from the truthful preference profile, voters can change
their strategy by making improvement steps. An improve-
ment step for a voter i at a profile b is a switch to another
strategy (i.e., vote) b′i, leading to the profile (b′i,b−i), in
which the payoff for i is strictly higher than before. A best
response improvement step is one in which the voter chang-
ing its strategy achieves its currently best possible payoff.

We focus on best response dynamics, allowing only best
response improvement steps. In particular, we will refer to
a best response improvement path (for simplicity, improve-
ment path), as any sequence (b0 → b1 → · · · ) of voting
profiles satisfying that for every k ≥ 1, there exists a unique
agent, say voter i, such that bk = (b′i,b

k−1
−i ), where b′i is a

best response for voter i, and b′i 6= bk−1i . We do not make
any restrictions on the order in which the agents apply their
improvement moves. We only assume that they start from
the truthful profile, i.e., b0 = a (a natural starting point for
such a process, as also argued by Branzei et al 2013), and
then make their best response updates in an arbitrary order.

The process in general can lead to different outcomes, or
may not even converge. We are interested in studying the
Nash equilibria of the election games defined before, that
can be reached by best response improvement paths. Notice,
we do not study the equilibria of the overall dynamic setup
or the effects of changing the dynamics, as, for instance,
the work of Brafman-Tennenholtz 2004 or Obraztsova et
al. 2014 would suggest.

3 Basic model analysis
We begin by analysing the properties of Nash equilibria that
are reachable under iterative voting in the basic model. First,
we recall the following property of best response improve-
ment paths.
Lemma 1. [Quoted from Lemma 4 in (Branzei et al. 2013)]
An improvement step can only take a vote for a non-winning
candidate and transfer it to the winner of the newly formed
voting profile.

We can now consider the implications of voting iterations
on Nash equilibrium profiles.
Definition 1. Given a profile b, we denote by CS(b) (and
refer to it as the chasing set of b), the set: CS(b) =
(W (b) ∪ H(b)) \ {F(b)}, i.e., the candidates who could
become a winner if they were to receive one additional vote.

The following fact which we use repeatedly in the sequel
follows from the analysis in (Branzei et al. 2013).
Fact 1. Let b be an equilibrium profile obtained by a se-
quence of improvement steps from the truthful profile a. Then
F(b) ∈W (a) ∪H(a).



Lemma 2. Let b be an equilibrium profile, obtained by
a sequence of improvement steps from a. Then CS(b) ⊆
W (a) ∪H(a), and if b 6= a, then CS(b) 6= ∅.

The properties identified in the previous lemmas help us
formulate the following necessary conditions for reachable
equilibria.

Theorem 1. Let b be an equilibrium profile obtained by a
sequence of improvement steps from the truthful profile a.
Then the following holds.

1. For every voter i, F(b) �i c, ∀c ∈ CS(b) \ {top(bi)}.
2. For every voter i such that top(bi) ∈ CS(b), top(bi) �i

c, ∀c ∈ CS(b) \ {top(bi)}.
We can now proceed to the algorithmic question of

whether a given profile can be reached by a sequence of im-
provement steps. We obtain the following negative result for
the basic model.

Theorem 2. Given a truthful profile a and a profile b, dis-
tinct from a, it is NP-complete to decide if b is reachable by
iterative best-response updates, starting from a.

Proof Sketch. To show that the problem is in NP, it is enough
to provide as a certificate the sequence of best-response up-
dates that leads from profile a to profile b. It is important to
note here that this is indeed a polynomial length certificate.

To prove NP-hardness, we provide a reduction from the
Hitting Set (HS) problem, which is the following: we are
given a set of ground elements G = {g1, ..., gn}, and a fam-
ily of subsets of G, W = {w1, ..., wm}, wi ⊆ G, |wi| = li.
We are also given a number k ≤ n. The decision problem is
to ascertain that there is a hitting setU ⊂ G, so that |U | ≤ k,
and ∀i ∈ [m], U ∩ wi 6= ∅.

We assume that we are given an instance that satisfies: 1)
|w1| ≥ |wi|, ∀i ∈ [m], 2) |w1| ≥ 3, and 3) m ≥ n (we can
always pad an instance by replicating a set to satisfy this).
These three assumptions do not impact the complexity of
the HS problem.

Given such an instance of the HS problem, we construct
an instance of our problem, i.e., a truthful profile a, and a
matching (non-truthful) profile b, so that a sequence of iter-
ative best-response updates going from a to b exists if and
only if the HS instance has a solution.

4 Truth-Biased Iterative Voting
Having fully characterised the Nash equilibria in the itera-
tive voting scheme under plurality, and in light of the nega-
tive result of Theorem 2, we now introduce the assumption
of truth bias as described in Section 2. For the remainder of
this section we will consider only truth-biased agents and in-
vestigate how this property affects the outcome of iterative
voting. Once again, we begin our analysis by recalling some
basic and already established properties of equilibrium pro-
files under truth bias, namely, the following lemma, which
is proved in (Obraztsova et al 2013).

Lemma 3. Suppose that b 6= a is a non-truthful, Nash equi-
librium profile. Let c = F(b). Then all non-truthful votes in
b have c as the top candidate.

Let s = sc(F(a),a). The following lemma is an easy
corollary of Lemma 2 by Obraztsova et al. 2013.
Lemma 4. Suppose that b 6= a is a non-truthful, Nash equi-
librium profile. Let c = F(b). Then sc(c,b) ≤ s+ 1.

We let W�c denote the set of all candidates cj ∈ W (a)
such that cj � c. H�c is defined similarly. It is easy to see
that Fact 1 continues to hold in this model, too. Hence, the
winner at an equilibrium b 6= a, belongs to the set W (a) ∪
H(a). The next lemmas shed more light on each of the two
possible cases (that F(b) ∈ W (a) or F(b) ∈ H(a)) and
they also highlight some important differences between the
basic model and the truth-biased one.
Lemma 5. Suppose that b 6= a is an equilibrium profile,
and that c ∈W (a) ∪H(a) is the winner in b. Then
• there is only one voter (say i) who submits a non-truthful

vote in b;
• for every cj ∈W (a) ∪H(a) \ {top(ai)}, c �i cj;
• If c ∈ W (a), for every voter k and every cj ∈ W�c \
{top(ak)}, c �k cj . If c ∈ H(a), for every voter k and
every cj ∈W (a) ∪H�c \ {top(ak)}, c �k cj .
These properties yield as direct corollaries the following:

Corollary 1. If there exists a sequence of improvement steps
that leads to the Nash equilibrium b 6= a with c = F(b),
then there exists such a chain consisting of only 1 step.

As a consequence of Corollary 1 we can obtain an al-
gorithm that finds all reachable Nash equilibria in time
O(m2n2). Using the following characterisation, which gives
a more accurate description of attainable equilibria, we can
construct an algorithm with even better running time.
Corollary 2. Let b 6= a be a Nash equilibrium with winner
c ∈ W (a). There exists a chain of improvement steps that
leads to b from a if and only if the following conditions hold:

1. There is at most one candidate cj 6= F(a) ∈ W�c for
which there exists at least one voter i, with cj �i c and
cj 6= top(ai).

2. If no such candidate cj , as described above exists, then
there exists a voter i such that c �i ck for every ck ∈
W (a) ∪ H(a) \ {top(ai)} and top(ai) = F(a). Other-
wise, there exists a voter i with top(ai) = cj and c �i ck
for every ck ∈W (a) ∪H(a) \ {cj}.

Corollary 3. Let b 6= a be a Nash equilibrium with winner
c ∈ H(a). There exists a chain of improvement steps that
leads to b from a if and only if the following conditions hold:

1. There exists at most one candidate cj 6= F(a) ∈W (a) ∪
H�c such that there exists at least one voter i with cj �i c
and cj 6= top(ai).

2. if no such candidate cj , as described above exists, then
there exists a voter i such that c �i ck for every ck ∈
W (a) ∪ H(a) \ {top(ai)} and top(ai) = F(a). Other-
wise, there exists a voter i with top(ai) = cj and c �i ck
for every ck ∈W (a) ∪H(a) \ {cj}.
The above characterisations entail the following.

Theorem 3. There exists anO(mn) algorithm that finds all
reachable Nash equilibria under truth-bias.



5 Lazy-biased iterative voting
We now turn to consider the lazy voters model under iter-
ative voting. We first consider a direct composition of the
two concepts, where at each game stage all voting options
(including abstaining) are available to a voter. Then, noting
that the spirit of lazy voting would imply leaving the vot-
ing process entirely, we also investigate a different iterative
process with limited voting dynamics, where abstention, if
chosen, is permanent, i.e., voters cannot return to the elec-
tion if they choose to abstain.

Note that NE do not always exist in the one-shot game
with lazy voters (Desmedt and Elkind 2010). Nonetheless, it
is possible to characterise those that do exist. In particular,
for lexicographic tie-breaking, (Elkind et al. 2014) provides
the following characterisation:

Theorem 4 (after (Elkind et al. 2014)). Let b be a NE under
the lazy model. Then, i) b consists of the truthful vote of
exactly 1 voter, and abstention by all other voters; ii) if c is
the top choice of the active voter in b, it is ranked higher in
the tie-breaking rule than all other candidates who are more
preferable than c by any other voter.

Interestingly, using Theorem 4, we can show that all NE
can be reached by a sequence of improvement steps. Hence,
our main finding for this model is summarised as follows:

Theorem 5. If a game with lazy voters has a NE, then there
is a sequence of improvement steps that converges to it.

The proof of Theorem 5 is based on similar arguments as
Theorem 6 below and we omit it. Since we know that not all
such games possess a NE, there is no general guarantee that
all sequences of improvement steps would converge.

Restricting the dynamics
We now consider an alternative version of iterative voting
with lazy voters, which, as we will show, exhibits a differ-
ent behaviour regarding convergence to stable states. Specif-
ically, we follow the intuition that abstention expresses the
fact that a voter has lost interest in the election. Hence, we
feel it is more natural to study the following dynamics in the
remainder of this section: if at some point in the sequence
of best responses a voter decides to abstain, then he never
comes back to the election.

More formally, the restriction we impose is that in any
move b → b′ along the best response improvement path, it
holds that for every i, if bi = ⊥, then b′i = ⊥.

Under this restriction, we can in fact guarantee conver-
gence, albeit not necessarily to a NE of the one-shot game,
but to a state as defined below:

Definition 2. Let At be the set of active voters after t steps
of the iterative process, i.e., the set of voters who have not
chosen to abstain. ObviouslyAt ⊆ At−1, for every t. We say
that a profile b is a stable state at time t, if no voter from At

has an incentive to change its current vote.

Theorem 6. Under the restricted dynamics for lazy voting,
every sequence of improvement steps converges, and the fi-
nal state is a stable state.

Proof. Clearly if we have convergence, then the final state
has to be a stable state. To prove convergence, we will utilise
arguments from the work of Meir et al. 2010.

Consider an improvement path. We will first show that no
cycles can occur within a segment of the path, located be-
tween 2 abstentions. To see this, note that Meir et al. 2010
showed that in the basic model of plurality, every sequence
of best-response steps, beginning from any profile, always
converges. This is shown for a restricted type of best re-
sponse, where any improvement step has to give a point to
the new winner. Coming back to our model, observe that
under lazy-bias, any improvement step that is not an absten-
tion gives a point to the new winner. Otherwise, the voter
may gain additional utility by abstaining. Hence, after every
abstention, our process evolves just like the restricted best
response process in the basic model, with the remaining set
of active voters. Since Meir et al. 2010 show convergence
from any arbitrary profile, we cannot have cycles between
any two abstentions.

Finally, since there are at most n−1 abstentions, there will
be a final segment in the path where by the same argument as
above, the active voters will converge to a stable state.

Observation 1. Since we have guaranteed convergence to
stable states, obviously not all stable states are Nash equilib-
ria, as Nash equilibria do not always exist in the lazy model.
Furthermore, as in the truth-biased model, there are Nash
equilibria which are not reachable using a sequence of im-
provement steps.
The following example demonstrates Observation 1.
Example 1. Figure 1 shows a game where no improvement
path can lead to a Nash equilibrium. The tie-breaking rule is
c1 � c2 � c3, and we can see that the profile where voter
1 votes his true preference, and the other two voters abstain
is the only NE. Yet, from the truthful profile of Figure 1, the
only available improvement move is for voter 1 to deviate
to ⊥ and leave the election. Afterwards, voter 2 or 3 will
also leave the election, and since we are in the model where
voters that leave do not return to the election, the process
converges to electing c2, which is not a NE.

1 2 3
c1 c2 c2
c3 c3 c3
c2 c1 c1

Figure 1: A game without convergence to a NE.

Similarly to Theorem 4, the following holds regarding the
reachable stable states.
Lemma 6. If a profile b is a stable state reachable by a se-
quence of improvement steps, then it consists of the truthful
vote of exactly 1 voter, and an abstention by all other voters.

Comparing the two versions of dynamics we have stud-
ied, we see that the unrestricted best response dynamics with
lazy voters do not generally converge, but all NE can be
reached. On the other hand, the restricted dynamics manage
to achieve stability, at the cost of making only a subset of



all NE reachable. Nevertheless, one more advantage in the
model of restricted dynamics is that this subset of NE can
be fully computed in polynomial time. This is achieved by
Algorithm 1, presented below. A closer look at Algorithm 1
also shows that only under strong restrictions on the truthful
profile a, can a NE become unreachable. In fact, we would
conjecture that the set of such profiles is small, and leave
this as a question for future research.
Theorem 7. There exists a polynomial algorithm that finds
all reachable Nash equilibria from the truthful state with
lazy voters with O(m2n2) complexity.

To prove Theorem 7, we need to run Algorithm 1 over
all voters. This algorithm is given a truthful profile a and a
truthful voter v whose top choice is z and returns “yes” if
there exists a path of best-response moves to a Nash equi-
librium terminating in this truthful voter voting for z (ac-
cording to Lemma 6, all others abstain). The algorithm ba-
sically goes over all options of reaching a NE, as long as
the requirements of Theorem 4 are satisfied, first checking
whether a, the initial state, is a Nash equilibrium in the usual
sense (without abstentions) or not (lines 1-5), and finding the
players that would enable the voter v to have a shot at being
the only participant left in the game.

6 Conclusions and Future Work
Voting schemes have been challenged by the manipulability
issue, which in turn paves the way for game-theoretic ap-
proaches. Thus arises a natural research direction: the study
of Nash equilibria as a solution concept for preference ag-
gregation over strategic agents. This leads to the need for
characterising and computing the resulting set of equilibria.

In this paper, we investigated these issues for iterative vot-
ing under the plurality rule. Though it has been previously
shown that iterative plurality voting converges to an equilib-
rium, the set of equilibria has not been further analysed or
characterised. Our work addresses this by considering three
different models of iterative voting—the basic model, along
with two recently proposed tweaks, namely truth-bias and
lazy-bias. We studied the properties of reachable Nash equi-
libria under these models and obtained characterisation re-
sults. Furthermore, we considered the algorithmic question
of identifying reachable profiles. In the basic model, decid-
ing on the reachability of a specific NE profile is NP-hard,
but we obtained polynomial time algorithms for computing
all reachable equilibria in the other models.

This work enhances our understanding of the effects of
truth-bias and lazy-bias on plurality voting. It also serves as
a means to compare and select the relevant voting model,
on the basis of properties satisfied by the equilibria of each
model.
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Algorithm 1 Checking reachability of NE under lazy voting
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1: if z cannot be a winning candidate in a NE according to
the conditions of Theorem 4 then

return No
2: end if
3: if a is a NE in the (no-abstention) basic model then
4: if z is a winner of a then

return Yes
5: end if
6: if ∃c̃ 6= z, v′ ∈ V s.t. c̃ �v′ z ∧ z �v′ F(a) then

return Yes
7: end if . At this point, every voter whose top choice

is not z, prefers F(a) to z.
8: C′ ← {c ∈ C \ {z,F(a)} s. t. sc(c,a) ≥ 2 or

sc(c,a) = 1 and c � F(a) in tie-breaking. } .
Potential NE winners.

9: if there is a voter z � . . . � c � . . . � F(a) � . . .
for some c ∈ C′ then

return Yes
10: end if
11: if there is c̃ 6= z, and c ∈ C′ such that there exists a

vote in the form c̃ � . . . � c � . . . � F(a) � . . . then
return Yes

12: end if
return No

13: end if
. From now we can assume a is not a NE

14: if z is not the winner nor a runner-up in a then
return Yes

15: end if
16: if z is a runner-up in a then
17: if For a runner up b 6= z there is a voter 6= v with

preference . . . b � . . . � F(a) then
return Yes

18: end if
19: if |V | ≥ 4 then Goto Line 6
20: else return No
21: end if
22: end if

. We can now assume z = F(a)
23: b← Voter profile after running iterative plurality (with-

out abstentions) while preventing v from deviating .
from Meir et al. 2010 this is polynomial

24: if z = F(b) then
return Yes

25: end if
26: if z in not a runner-up in b then

return Yes
27: else Goto Line 19 using b instead of a. . z a runner-up

in b
28: end if
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