
Evaluating	Web	Table	Annotation	Methods:	From	Entity	Lookups	to	
Entity	Embeddings	(ISWC	2017	Paper)	-	Supplementary	Material	

Data Citation (or feel free to cite the ISWC paper):

• Efthymiou, Vasilis; Hassanzadeh, Oktie; Rodríguez-Muro, Mariano; Christophides,
Vassilis (2017): Evaluating Web Table Annotation Methods: From Entity Lookups to
Entity Embeddings. figshare. https://doi.org/10.6084/m9.figshare.5229847

This document describes implementation details of our paper entitled "Matching Web Tables
with Knowledge Base Entities: From Entity Lookups to Entity Embeddings".
This is our best effort to describe implementation details and make our results reproducible
while we work on making portions of our code base open-source or available via limited APIs
for public use. Please feel free to contact us if you have any questions.

Datasets can be found at: http://www.cs.toronto.edu/~oktie/webtables/ or
https://doi.org/10.6084/m9.figshare.5229847
Refer to the README file for details: http://www.cs.toronto.edu/~oktie/webtables/README.txt
and please feel free to contact the authors if you have any issues with the data sets.
NEW: The embeddings model binary file can also be found at
http://www.cs.toronto.edu/~oktie/webtables/embeddings-model/

FactBase	Lookup	Details	

Summary of implementation details

• Our FactBase index is actually an integration of Wikidata, DBpedia, Freebase, and
YAGO, solely based on the Wikipedia URLs, and only keeping those URIs that are
associated with an English Wikipedia page. We have a "FactBase Unified" index which
is only the basic facts (label, description, types) that are derived from Wikidata, and a
"FactBase Full Facts" index that contains all the facts from all the ingested knowledge
bases. Examples of the JSON objects stored in these indices are shown in Appendix 1.

• For the experiments in our paper, we used the "FactBase Unified" index (i.e., Wikidata
basic facts and types). Wikidata version used in the API used in the experiments is:

o Downloaded on: April 11, 2016
o Last modified date on server: February 1, 2016
o Download link: http://tools.wmflabs.org/wikidata-exports/rdf/exports/20160201/

• For the type lookups performed in the refined FactBase lookup method described in the
paper, we get all the types in the unified index (i.e., Wikidata types) with the exception of
"Wikimedia disambiguation page" & "Wikimedia category".

• We keep the top-5 most frequent types, and only look at the direct types, i.e., we do NOT
use subclass hierarchy in our implementation. We considered doing so but as you can see
in the Wikidata examples below, the direct types were useful as-is. Our algorithm can be
modified to use subclass hierarchy if needed, although there needs to be a proper stop
criteria to avoid identifying top-level classes such as owl:Thing as the common type.

• Regarding the number of agreements for the identified relation in FactBase lookup, the
number that we found to work well in all cases was 5, i.e., when 5 verified lookup results
contain the same relation between the entity described in a row and an entity mentioned
in a specific column of the same row, we consider that this relation expresses the
semantic relation between all the entities described in the rows of this table and the
entities described in this specific column.

Backend	Details	

• Our index uses Riak https://en.wikipedia.org/wiki/Riak which is a key-value store with
embedded search. We have various key-value indices in Riak, e.g. to lookup facts given a
URI (NTriple statements that their subject is the URI), and JSON objects to facilitate
search. Appendix 1 shows examples of such JSON objects.

• Riak comes with embedded Solr search http://lucene.apache.org/solr/ so we can query for
labels and other facts, as needed for our refined FactBase lookup implementation.

• The Riak index is populated in parallel (in MapReduce, using BigInsights) using RDF
data dumps (e.g., Wikidata dump mentioned above)

Embeddings	Method	Details	

Summary of method. The core algorithm is described in Sections 4 and 5 in [Zwicklbauer et al.,
2016]. Note, we only use the RDF-KB method for entity embeddings (for the reasons described
in the answer to Reviewer #4).

The embeddings model binary file can also be found at
http://www.cs.toronto.edu/~oktie/webtables/embeddings-model/

Summary of corpus and embeddings generation details (off-line):

• Alpha = 0.1 (probability of random jump through the graph)

• Model used: skip-gram, 300 dimensions, default word2vec parameters (original
implementation found here: https://github.com/dav/word2vec) (Skip-gram: the input to
the model is a word wi and Word2Vec predicts the surrounding context words
wi−2,wi−1,wi+1,wi+ 2.)

• Similarity computation: cosine

Summary of candidate index generation (off-line):

• Candidate generation from rdf:label(s) and lexvo:label (from DBpedias Lexicalizations
dataset http://oldwiki.dbpedia.org/Datasets/NLP) :

• Other processing: stemming, stopword removal, trigram similarity > 0.82

Summary of disambiguation implementation details (on-line):

• Random walk strategy: PageRank

• Edge weights are similarities (cosine similarity) of the embeddings for the two entities
(normalized to [-1,1]) and represents likelihood to walk from a node to the adjacent

• Random walk (50 PageRank iterations) gives node relevance: average amount of visits.

• If 2 nodes have same label, the most commonly referenced node is preferred (but this is
just one factor, similarity is the most important one)

As per a question from our paper's reviewers, there are alternative models can be used that are
based only Wikipedia text:

• https://github.com/idio/wiki2vec/

• https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models

Note that our model differs from the above in that it does not rely on a rich textual source
like Wikipedia and so can be generalized by using other RDF & Linked Data sources and even
enterprise databases.

Blocking	for	Ontology	Matching	Based	Method	Details	

Summary of method. The blocking method used for Ontology Matching is Token Blocking
[Papadakis et al., 2011] applied to all DBpedia entities: Each word (aka token) in a DBpedia
entity description defines a block (an index position), and each description having this token is
placed in this block. Those blocks are stored in a distributed NoSQL key-value database
(http://basho.com/products/riak-kv/), in which keys are tokens and values are lists of all the
DBpedia URIs having a specific token.

After creating the index, we can search for all the entries (DBpedia URIs) that correspond to a
specific key (token). We apply this search service for all the tokens in the label column of a Web
table to retrieve candidate annotation results.

We are currently considering more advanced blocking methods, such as the ones described in
[Christophides et al., 2015].

References	
Stefan Zwicklbauer, Christin Seifert, Michael Granitzer: DoSeR - A Knowledge-Base-Agnostic
Framework for Entity Disambiguation Using Semantic Embeddings. ESWC 2016: 182-198
[link]

George Papadakis, Ekaterini Ioannou, Claudia Niederée, Peter Fankhauser: Efficient entity
resolution for large heterogeneous information spaces. WSDM 2011: 535-544 [link]

Vassilis Christophides, Vasilis Efthymiou, Kostas Stefanidis: Entity Resolution in the Web of
Data. Synthesis Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool
Publishers 2015 [link]

Appendix	1	-	FactBase	API	Examples	

FactBase Unified Index JSON Object Example for "Barack Obama"

FactBase Full Fact Index Example JSON Object (partial)

	

