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ABSTRACT
Declarative data quality has been an active research topic. The fun-
damental principle behind a declarative approach to data quality is
the use of declarative statements to realize data quality primitives
on top of any relational data source. A primary advantage of such
an approach is the ease of use and integration with existing appli-
cations. Over the last few years several similarity predicates have
been proposed for common quality primitives (approximate selec-
tions, joins, etc) and have been fully expressed using declarative
SQL statements. In this paper we propose new similarity predi-
cates along with their declarative realization, based on notions of
probabilistic information retrieval. In particular we show how lan-
guage models and hidden Markov models can be utilized as sim-
ilarity predicates for data quality and present their full declarative
instantiation. We also show how other scoring methods from in-
formation retrieval, can be utilized in a similar setting. We then
present full declarative specifications of previously proposed sim-
ilarity predicates in the literature, grouping them into classes ac-
cording to their primary characteristics. Finally, we present a thor-
ough performance and accuracy study comparing a large number
of similarity predicates for data cleaning operations. We quantify
both their runtime performance as well as their accuracy for sev-
eral types of common quality problems encountered in operational
databases.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance

Keywords
Declarative data quality, data cleaning, SQL, performance, accu-
racy
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1. INTRODUCTION
The importance of data cleaning and data quality technologies

for business practices is well recognized. Data cleaning has been
an active research topic in several communities including statistics,
machine learning and data management. The quality of data suf-
fers from typing mistakes, lack of standards for recording database
fields, integrity constraints that are not enforced, inconsistent data
mappings, etc. For years, data quality technology has developed
independently from core data management. Data quality tools be-
came part of Extract Transform Load (ETL) technologies, com-
monly applied during the initial loading phase of data into a ware-
house. Although this might be a viable approach for data analytics,
where the data processed are static, it is far from acceptable for op-
erational databases, which are dynamic and face proliferating qual-
ity problems that degrade common business practices.

Recently, there has been a major focus on tighter integration of
data quality technology with database technology. In particular
there has been research work on the efficient realization of pop-
ular data cleaning algorithms inside database engines as well as
studies for the efficient realization of data quality primitives in a
declarative way. The approaches are complementary, the former
assuring great performance and the latter ease of deployment and
integration with existing applications without modification of the
underlying database engine. We are concerned with declarative im-
plementations of data quality primitives in this paper. In particular
we study declarative realizations of several similarity predicates
for the popular approximate (flexible) selection operation for data
de-duplication [17]. A similarity predicate ����� is a predicate
that numerically quantifies the “similarity” or “closeness” of two
(string) tuples. Given a relation �, the approximate selection oper-
ation using similarity predicate �����, will report all tuples � � �
such that ������� �� � �, where � is a specified numerical ”sim-
ilarity threshold” and �� is a query tuple. Approximate selections
are special cases of the approximate join (record linkage, similarity
join) operation [17]. Several efficient declarative implementations
of this operation for specific similarity predicates have been pro-
posed [17] both for approximate selections and joins.

In this paper, we conduct a thorough study of declarative real-
izations of similarity predicates for approximate selections. We in-
troduce and adapt novel predicates, realize them declaratively and
compare them with existing ones for accuracy and performance. In
particular we make the following contributions:

� Inspired by the success of tf-idf cosine similarity from in-
formation retrieval [24] as a similarity predicate for approxi-
mate selections, we introduce declarative realizations of other
successful predicates from information retrieval and in par-
ticular the popular BM25 measure.
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� We introduce declarative realizations of probabilistic similar-
ity predicates inspired by Language Models from informa-
tion retrieval [20] and Hidden Markov Models [19], suitably
adapted for the case of approximate selections.

� We present declarative realizations of previously proposed
similarity predicates for the approximate selection problem
and we propose a categorization of all measures both previ-
ously proposed and new according to their characteristics.

� We present a thorough experimental study comparing all sim-
ilarity predicates for accuracy and performance, under vari-
ous types of quality problems in the underlying data.

The rest of this paper is organized as follows. In Section 2, we
describe related work in the area of data quality and Information
Retrieval. We present our overall framework in Section 3, along
with the similarity predicates considered and their classification.
Declarative realizations of the predicates in each class are discussed
in Section 4, where we also provide SQL expressions required for
the different predicates. Finally, we experimentally evaluate the
performance of each of the similarity predicates and compare their
accuracy in Section 5.

2. RELATED WORK
Data quality has been an active research topic for many years. A

collection of statistical techniques have been introduced initially for
the record linkage problem [9, 8]. The bulk of early work on data
quality was geared towards correcting problems in census files [27].
A number of similarity predicates were developed taking into ac-
count the specific application domain (i.e., census files) for assess-
ing closeness between person names (e.g., Jaro [15], Jaro-Winkler
[27], etc).

An initial work geared towards database tuples was the
merge/purge technique [14]. The work of Cohen [6] introduced
the use of primitives from information retrieval (namely cosine
similarity, utilizing tf-idf[24]) to identify flexible matches among
database tuples. A performance/accuracy study conducted by Co-
hen et al. [7] demonstrated that such techniques outperform com-
mon predicates introduced for specific domains (e.g., Jaro, Jaro-
Winkler, etc).

Several predicates to quantify approximate match between strings
have been utilized for dealing with quality problems, including edit
distance and its variants [13]. Hybrid predicates combining notions
of edit distance and cosine similarity have also been introduced [4,
1]. Recently, [5, 2] presented SSJOIN, a primitive operator for
efficient set similarity joins. Utilizing ideas from [26], such an op-
erator can be used for approximate matching based on a number
of similarity functions, including hamming distance, edit-distance
and Jaccard similarity. However, the choice of the similarity pred-
icate in this approach is limited [2]. The bulk of the techniques
and predicates however have been introduced without a declarative
framework in mind. Thus, integrating them with applications uti-
lizing databases in order to enable approximate selections is not
very easy.

Gravano et al. [11] and Galhardas et al. [10], introduced a declar-
ative methodology for realizing approximate joins and selections
for edit distance. Subsequently a declarative framework for realiz-
ing tf-idf cosine similarity was introduced [12, 16, 17].

There has been a great deal of research in the information re-
trieval literature on weighting schemes beyond cosine similarity
with tf-idf weighting. Recent IR research has shown BM25 to be
the most effective among the known weighting schemes [23]. This
weighting scheme models the distribution of within-document term

frequency, document length and query term frequency very accu-
rately. Moreover, in the information retrieval literature, language
modeling has been a very active research topic as an alternative
scheme to weight documents for their relevance to user queries.
Starting with Ponte and Croft [20], language models for informa-
tion retrieval have been widely studied.

Hidden Markov Models (HMM) have been very successful in
machine learning and they have been utilized for a variety of learn-
ing tasks such as named entity recognition and voice recognition [21].
They have been utilized for information retrieval as well [19]. An
experimental study on TREC data demonstrated that an extremely
simple realization of HMM outperforms standard tf-idf for infor-
mation retrieval [19]. Finally, researchers (e.g., [22]) have also
tried to formally reason about the relative goodness of information
retrieval weighting schemes.

3. FRAMEWORK
Let � be a query string and 	 a string tuple from a base re-

lation � � �	� � � � � � 
�. We denote by �, � the set
of tokens in � and 	 respectively. We refer to substrings of a
string as tokens in a generic sense. Such tokens can be words or
q-grams (sequence of � consecutive characters of a string) for ex-
ample. For �=‘db lab’, �=�‘db’, ‘lab’� for word-based tokeniza-
tion and�=�‘db ’ ,‘b l’,‘ la’, ‘lab’� for tokenization using 3-grams.
We refer to tokens throughout the paper when referring to words or
q-grams. We make the choice specific (word or q-gram) for tech-
niques we present, when absolutely required. In certain cases, we
may associate a weight with each token. Several weighting mech-
anisms exist. We present our techniques referring to weights of
tokens, making the choice of the weighting scheme concrete when
required. In Section 5 we realize our techniques for specific choice
of tokens and specific weighting mechanisms.

Our goal is to calculate a similarity score between � and 	 us-
ing a similarity predicate. We group similarity predicates into five
classes based on their characteristics, namely:

� Overlap predicates: These are predicates that assess simi-
larity based on the overlap of tokens in ���.

� Aggregate Weighted Predicates: Predicates that assess sim-
ilarity by manipulating weights (scores) assigned to elements
of ���.

� Language Modeling Predicates: Predicates that are based
on probabilistic models imposed on elements of ���.

� Edit Based Predicates: Predicates based on a set of edit
operations applied between � and 	.

� Combination Predicates: Predicates combining features from
the classes above.

The classes were defined by studying the properties of previously
proposed similarity predicates as well as ones newly proposed herein.
Within each class we discuss declarative realizations of predicates.

3.1 Overlap Predicates
Suppose � is the set of tokens in the query string� and � is the

set of tokens in the string tuple 	. The IntersectSize predicate [26]
is simply the number of common tokens between � and	, i.e.:

���������������	� � 	� 
 �	 (1)

Jaccard similarity [26] is the fraction of tokens in � and � that are
present in both, namely:

���	
��
�����	� �
	� 
 �	

	� � �	
(2)
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If we assign a weight
���1 to each token �, we can define weighted
versions of the above predicates. WeightedMatch [26] is the to-
tal weight of common tokens in � and �, i.e.,

�
����� 
���.

Similarly, WeightedJaccard is the sum of the weights of tokens in
	� 
 �	 divided by the sum of the weights of tokens in 	� � �	.

3.2 Aggregate Weighted Predicates
The predicates in this class encompass predicates widely adopted

from information retrieval (IR). A basic task in IR is, given a query,
identifying relevant documents to that query. In our context, we
would like to identify the tuples in a relation that are similar to a
query string.

Given a query string � and a string tuple	, the similarity score
of � and 	 in this class of predicates is of the form ������	� ��

����� 
���� ��
����	�, where 
���� �� is the query-based
weight of the token � in string � and 
����	� is the tuple-based
weight of the token � in string	.

3.2.1 Tf-idf Cosine Similarity
The tf-idf cosine similarity [24] between a query string � and a

string tuple	 is defined as follows:

������������	� �
�

�����


���� ��
����	� (3)

where 
������� 
����	� are the normalized tf-idf weights [24].
The normalized tf-idf for a token � and a string �, 
��� �� is given
by:


��� �� �

���� ����
���� 


����� ���
� 
���� �� � ����� ���������

The ��� term makes the weight of a token inversely proportional
to its frequency in the database; the �� term makes it proportional
to its frequency in �. Intuitively, this assigns low scores to fre-
quent tokens in the database and high scores to rare tokens in the
database. More discussion is available elsewhere [6, 12].

3.2.2 BM25 Predicate
The���� similarity score between a query string� and a tuple

	, is given as:

���
������	� �
�

�����


���� ��
����	� (4)

where


���� �� �
��� � �� � ����� ��

�� � ����� ��


����	� � 
������ ��
��� � �� � �����	�

��	� � �����	�


��� is a modified form of Robertson-Sparck Jones weight:


�������� � ���

�

 
 �� � 	��

�� � 	��

�
(5)

��	� � ��

�
��
 �� � �

			

�����

�

and
 is the number of tuples in the base relation�, �� is the num-
ber of tuples in � containing the token �, �����	� is the frequency
of occurrence of the token � within tuple 	, 			 is the number of
tokens of tuple	, ����� is the average number of tokens per tuple,

1Discussion of ways to assign such weights to tokens follows in
subsequent sections.

i.e.
�
��� ���

�
and ��, ��, and � are independent parameters. For

TREC-4 experiments [23], �� � 
�� ��, �� � � and � � 
	�
� 	����.

3.3 Language Modeling Predicates
A language model is a form of a probabilistic model. To real-

ize things concretely, we base our discussion on a specific model
introduced by Ponte and Croft [20]. Given a collection of docu-
ments, a language model is inferred for each; then the probability
of generating a given query according to each of these models is
estimated and documents are ranked according to these probabili-
ties. Considering an approximate selection query, each tuple in the
database is considered as a document; a model is inferred for each
tuple and the probability of generating the query given the model is
the similarity between the query and the tuple.

3.3.1 Language Modeling
The similarity score between query � and tuple	 is defined as:

����� ���	� � ����	��� �
�
���

����	����
�
����

��
����	����

(6)
where ����	��� is the probability of token � occurring in tuple 	
and is given as follows:

����	��� �

�
�������	������

������ � ��
�����
����� if ������� � 	

���
��

otherwise
(7)

�������	� is the maximum likelihood estimate of the probability
of the token � under the token distribution for tuple 	 and is equal

to
�������

���
where ������� is raw term frequency and ��� is the total

number of tokens in tuple 	. ��
����� is the mean probability of
token � in documents containing it, i.e.,

��
����� �
�
�

������
������	����

���
(8)

where ��� is the document frequency of token �. This term is used
since we only have a tuple sized sample from the distribution of
�� , thus the maximum likelihood estimate is not reliable enough;
we need an estimate from a larger amount of data. The term �����
is used to model the risk for a term � in a document 	 using a
geometric distribution:

����� �

�
��	

���	 � ������

�
�

� �����

���	 � ������

������
(9)

����� is the expected term count for token � in tuple 	 if the token
occurred at the average rate, i.e., �
����� � ���. The intuition
behind this formula is that as the �� gets further away from the
normalized mean, the mean probability becomes riskier to use as an
estimate. Finally, ��� is the raw count of token � in the collection,
i.e.
�

��� �����	� and �� is the raw collection size or the total
number of tokens in the collection, i.e.

�
��� ���. ���

��
is used as

the probability of observing a non-occurring token.

3.3.2 Hidden Markov Models
The query generation process can be modeled by a discrete Hid-

den Markov process. Figure 1 shows a simple yet powerful two-
state HMM for this process. The first state, labeled “String” rep-
resents the choice of a token directly from the string. The second
state, labeled “General English” represents the choice of a token
that is unrelated to the string, but occurs commonly in queries.

Suppose � is the query string and 	 is a string tuple from the
base relation �; the similarity score between � and 	,
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Figure 1: Two State Hidden Markov Model

���������	�, is equal to the probability of generating� given
that 	 is similar, that is:

� ��		 is similar� �
�
���

���� ��	 !� � ��� ��		�� (10)

where:

� ��		� �
number of times � appears in	

length of 	
(11)

� ��	 !� �

�
��� number of times � appears in	�

��� length of 	
(12)

and �� and �� � � 
 �� are transition probabilities of the HMM.
The values for these parameters can be optimized to maximize ac-
curacy given training data.

3.4 Edit-based Predicates
An important and widely used class of string matching predi-

cates is the class of edit-based predicates. In this class, the similar-
ity between � and 	 is the transformation cost of string � to 	,
�����	�. More specifically �����	� is defined as the minimum
cost sequence of edit operations that converts � to 	. Edit opera-
tions include copy, insert, substitute and delete characters in� and
	 [13]. Algorithms exist to compute �����	� in polynomial time
[13] but complexity is sensitive to the nature of operations and their
operands (individual characters, blocks of consecutive characters,
etc). The edit similarity is therefore defined as:

����������	� � �

�����	�

����	�	� 			�
(13)

Edit operations have an associated cost. In the Levenstein edit-
distance [13] which we will refer to as edit-distance, the cost of
copy operation is zero and all other operations have unit cost. Other
cost models are also possible [13].

3.5 Combination Predicates
We present a general similarity predicate and refer to it as gen-

eralized edit similarity (GES) (following [5]). Consider two strings
� and 	 that are tokenized into word tokens and a weight func-
tion 
��� that assigns a weight to each word token �. The trans-
formation cost of string � to 	, �����	� is the minimum cost of
transforming� to	 by a sequence of the following transformation
operations:

� token replacement: Replacing word token �� in � by word
token �� in	 with cost 
�
 ����������� ���� � 
����, where
����������� ��� is the edit similarity score between �� and ��.

� token insertion: Inserting a word token � into � with cost
���� � 
��� where ����, is a constant token insertion factor,
with values between 0 and 1.

� token deletion: Deleting a word token � from � with cost

���.

Suppose 
���� is the sum of weights of all word tokens in the
string �. We define the generalized edit similarity predicate be-
tween a query string � and a tuple 	 as follows:

���������	� � �
���

�
�����	�


����
� ��	

�
(14)

A related predicate is the SoftTFIDF predicate [7]. In Soft-
TFIDF, normalized tf-idf weights of word tokens are used along
with cosine similarity and any other similarity function ������ "�
to find the similarity between word tokens. Therefore the similarity
score, �������� !� ���	�, is equal to:

�
��"�#���$�%���

���� �����������
���

������� ���� 	�����
���

������� ���

(15)
where 
������ 
���	� are the normalized tf-idf weights and
#$%�!��� ��	� is the set of words � � � such that there ex-
ists some � � � such that ������ �� � �.

4. DECLARATIVE FRAMEWORK
We now describe declarative realizations of predicates in each

class. For all predicates, there is a preprocessing phase responsible
for tokenizing strings in the base relation,�, and calculating as well
as storing related weight values which are subsequently utilized at
query time. Tokenization of relation � (BASE TABLE) creates the
table BASE TOKENS (tid, token), where ��� is a unique tu-
ple identifier for each tuple of BASE TABLE and token an associ-
ated token (from the set of tokens corresponding to the tuple with
identifier ��� in BASE TABLE). The query string is also tokenized
on the fly (at query time) creating the table
QUERY TOKENS(token).

In the rest of this section, we present SQL expressions required
for preprocessing and query time approximate selections for the
different predicates. In some cases, we re-write formulas to make
them amenable to more efficient declarative realization. Due to
space limitations, discussion and presentation of SQL is abridged.

4.1 Overlap Predicates
The IntersectSize predicate requires token generation to be com-

pleted in a preprocessing step. SQL statements to conduct such
a tokenization, which is common to all predicates we discuss, are
omitted due to space limitations. The SQL statement for approxi-
mate selections with the IntersectSize predicate is shown in Figure
2. The Jaccard coefficient predicate can be efficiently computed by
storing the number of tokens for each tuple of the BASE TABLE
during the preprocessing step. For this reason we create a table
BASE DDL(tid, token, len) where len is the number of
tokens in tuple with tuple-id tid. The SQL statement for conduct-
ing approximate selections with the Jaccard predicate is presented
in Figure 3.

The weighted overlap predicates require calculation and storage
of the related weights for tokens of the base relation during pre-
processing. For the WeightedMatch predicate, we store during the
preprocessing step the weight of each token redundantly with each
tid, token pair in a table BASE TOKENS WEIGHTS(tid,
token, weight) in order to avoid an extra join with a table
BASE WEIGHT(token, weight) at query time. In order to
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INSERT INTO INTERSECT SCORES (tid, score)
SELECT R1.tid, COUNT(*)
FROM BASE TOKENS R1, QUERY TOKENS R2
WHERE R1.token = R2.token
GROUP BY R1.tid

Figure 2: SQL Code for IntersectSize

INSERT INTO JACCARD SCORES (tid, score)
SELECT S1.tid, COUNT(*)/(S1.len+S2.len-COUNT(*))
FROM BASE DDL S1, QUERY TOKENS R2,

(SELECT COUNT(*) AS len
FROM QUERY TOKENS) S2

WHERE S1.token = R2.token
GROUP BY S1.tid, S1.len, S2.len

Figure 3: SQL Code for Jaccard Coefficient

calculate the similarity score at query time, we use SQL statements
similar to that used for the IntersectSize predicate (shown in Figure
2) but replace table BASE TOKENS by BASE TOKENS WEIGHTS
and COUNT(*), by SUM(R1.weight).

For the WeightedJaccard predicate, we create during preprocess-
ing a table BASE DDL(tid, token, weight, len)
where weight is the weight of token and len is the sum of
weights of tokens in the tuple with tuple-id tid. The SQL state-
ment for approximate selections using this predicate is the same as
the one shown in Figure 3 but COUNT(*) is replaced by
SUM(S1.weight).

4.2 Aggregate Weighted Predicates

4.2.1 Tf-idf Cosine Similarity
The SQL implementation of the tf-idf cosine similarity predicate

has been presented in [12]. During preprocessing, we store normal-
ized tf-idf weights for the base relation in relation
BASE WEIGHTS(tid, token, weight). A normalized weight
table QUERY WEIGHTS(token, weight) for the query string
is created on the fly at query time. The SQL statements in Figure 4
will calculate the similarity score for each tuple of the base table.

4.2.2 BM25
Realization of BM25 in SQL involves generation of the table

BASE WEIGHTS(tid, token, weight) storing the weights
for tokens in each tuple of the base relation. These weights (
����	�)
consist of two parts that could be considered as modified versions
of tf and idf. The query weights table QUERY WEIGHTS(token,
weight) can be created on the fly using the following subquery:
(SELECT TF.token, TF.tf*(
�+1)/(
�+TF.tf) AS weight
FROM ( SELECT T.token, COUNT(*) AS tf

FROM QUERY TOKENS T
GROUP BY T.token ) TF)

The SQL statement shown in Figure 4 will calculate BM25 sim-
ilarity scores.

4.3 Language Modeling Predicates

INSERT INTO SIM SCORES (tid, score)
SELECT R1W.tid, SUM(R1W.weight*R2W.weight)
FROM BASE WEIGHTS R1W, QUERY WEIGHTS R2W
WHERE R1W.token = R2W.token
GROUP BY R1W.tid

Figure 4: SQL Code for Aggregate Weighted Predicates

4.3.1 Language Modeling
In order to calculate language modeling scores efficiently, we

rewrite the formulas and finally drop some terms that would not
affect the overall accuracy of the metric. Calculating the values
in equations (8) and (9) is easy. We build the following relations
during preprocessing:
BASE TF(tid,token,tf) where tf� ����&������.
BASE DL(tid,dl) where dl� �����.
BASE PML(tid,token,pml)where pml� ���� �

���������	

���	


.
BASE PAVG(token,pavg) where pavg� ��
������&��.
BASE FREQ(tid,token,freq) where freq� ����&������.
BASE RISK(tid,token,risk) where risk� ����&������.

We omit detailed SQL statements due to space constraints but
they mainly involve joins and group by operations. In order to im-
prove the performance of the associated SQL queries, we rewrite
the final score formula of equation (6), as follows:

����	��� �

��
���

����	���

	
�

�
	�

��
 ����	����

�
���

��
 ����	����
(16)

We slightly change (16) to the following:

����	��� �

��
���

����	���

	
�

�
	���

��
 ����	����

�
�����

��
 ����	����

(17)
This change results in a large performance gain, since the com-

putation is restricted to the tokens of the query and the tokens of a
tuple (as opposed to the entire set of tokens present in the base re-
lation). Experiments demonstrate that accuracy is not significantly
affected.

In equation (7), we only materialize the first part (i.e., values of
tokens that are present in the tuple 	) in the relation BASE PM
during preprocessing (storing the second part would result in un-
necessary waste of space). We therefore have to divide all formulas
that use ����	��� into two parts: one for tokens present in the tuple
under consideration and one for all other tokens. So we rewrite the
first term in equation (17) as follows:

�
���

�������� 	
�

�����

���������
�

�����

��������

	
�

�����

���������
�

�����


��


�

	
�

�����

���������

�
���

���
���

�����
���
��

(18)

The term


���

���
��

in the above formula is constant for any spe-
cific query string, so it can be dropped, since the goal is to find
most similar tuples by ranking them based on the similarity scores.
Therefore, equation (17) can be written as follows:

����	��� �

�
�����

����	���

�
�����

���
��

�

�
	���

��
 ����	����

�
�����

��
 ����	����

(19)
This transformation allows us to efficiently compute similar tu-

ples by just storing ����	��� and ���
��

for each pair of � and 	.
Thus, we create table BASE PM(tid, token, pm, cfcs)
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INSERT INTO LM SCORES (tid, score)
SELECT B1.tid2, EXP(B1.score + B2.sumcompm)
FROM (SELECT P1.tid AS tid1, T2.tid AS tid2,

SUM(LOG(P1.pm)) - SUM(LOG(1.0-P1.pm))
- SUM(LOG(P1.cfcs)) AS score

FROM BASE PM P1, QUERY TOKENS T2
WHERE P1.token = T2.token
GROUP BY P1.tid, T2.tid) B1,
BASE SUMCOMPBASE B2

WHERE B1.tid1=B2.tid

Figure 5: SQL Code for Language Modeling

where pm � ������&�	����� and cfcs � �������
��

as the final re-
sult of the preprocessing step. We also calculate and store the term

	����� 
 ����	���� during preprocessing in relation

BASE SUMCOMPBASE(tid, sumcompm).
The query-time SQL statement to calculate similarity scores is

shown in Figure 5. The subquery in the statement computes the
three terms in equation 19 that include intersection of query and tu-
ple tokens and therefore needs a join between the two token tables.
The fourth term in the equation is read from the table stored during
the preprocessing as described above.

4.3.2 Hidden Markov Models
We rewrite equation (10) as follows:

� ���	 is similar� 	
�
���

���� ������ 
 ��� ���	��

	
�
���

��� �������

�
��
���

�� 

��� ���	�

��� ������
�

�
�

(20)
For a specific query, the term



��� ��� ��	 !� in the above for-

mula is constant for all tuples in the base relation and therefore can
be dropped since our goal is to order tuples based on similarity to a
specific query string. So the modified similarity score will be:

���������	� �
�
���

�� �
��� ��		�

��� ��	 !�
�

�
�

�����

�� �
��� ��		�

��� ��	 !�
� (21)

In Equation 21, � � � changes to � � �
� because � ��		� � 	

for all � '� �. Thus we can calculate the term �� � 
�' �����


�' ������
�

for all tid, token pairs during preprocessing and store them as
weight in relation BASE WEIGHTS(tid, token, weight).
Notice that the term � ��		� is equal to �������	� in language mod-
eling; we use a relation BASE PML(tid, token, pml) for it.
Calculating � ��	 !� and storing it in relation
BASE PTGE(token, ptge) is also fairly simple. The final
SQL query for preprocessing and the SQL statements for calcu-
lating similarity scores, are shown in Figure 6.

4.4 Edit-based Predicates
We use the same declarative framework proposed in [11] for ap-

proximate matching based on edit-distance. The idea is to use prop-
erties of q-grams created from the strings to generate a candidate
set in a way that no false negatives are guaranteed to exist but the
set may contain false positives. The set is subsequently filtered by
computing the exact edit similarity score between the query and
the strings in the candidate set. Computing the edit similarity score
is performed using a UDF. The SQL statements for candidate set
generation and score calculation are available in [11].

Preprocessing
INSERT INTO BASE WEIGHTS(tid,token,weight)
SELECT M2.tid, M2.token,

(1 + (a1*M2.pml) / (a0*P2.ptge))
FROM BASE PTGE P2, BASE PML M2
WHERE P2.token = M2.token

Query
INSERT INTO HMM SCORES (tid, score)
SELECT W1.tid, EXP(SUM(LOG(W1.weight)))
FROM BASE WEIGHTS W1, QUERY TOKENS T2
WHERE W1.token = T2.token
GROUP BY W1.tid

Figure 6: SQL Code for HMM

4.5 Combination Predicates
Since the calculation of the score function for  !� (Equation

14) between a query string and all tuples in a relation could be very
expensive, we can first identify a candidate set of tuples similar
to the methodology used for edit-distance and then use a UDF to
compute exact scores between the query string and the strings in
the candidate set. The elements of the candidate set are selected
using a threshold � and the following score formula which ignores
the ordering between word tokens. This formula over-estimates
���������	� [4]:

���	
��
��
��� ���	� 	

�

�����

�
���

��������
���

�
�

�
���	
��
����� ��
���

(22)
where 
���� is the sum of weights of all word tokens in �, 
���
is the ��� weight for word token �, � is a positive integer indicat-
ing the q-gram length extracted from words in order to calculate
���	
��
����� "� and �� � �� 
 �'�� is an adjustment term. In
order to enhance the performance of the operation, we can employ
min-wise independent permutations [3] to approximate
���	
��
������ ��� in Equation 22. Description of min-wise in-
dependent permutations is beyond the scope of this paper. This
would result in substituting ���	
��
�� with the min-hash similar-
ity ����(���� ���, which is a provable approximation. The result-
ing metric,  !�
)*, is shown to be an upper-bound for  !� in
expectation [4]:

���
)*
������	� �

�


����

�
���


��� ����
���

�
�

�
����(��� "� � ���

(23)
In order to implement the above predicates, we need to prepro-

cess the relation using the following methodology:

� Tokenization in two levels, first tokenizing into words and
then tokenizing each word into q-grams. Word tokens are
stored in relation BASE TOKENS(tid, token) and q-
grams are stored in BASE QGRAMS(tid, token, qgram).

� Storing ��� weights of word tokens in relation BASE IDF
(token,idf) as well as the average of ��� weights in the
base relation to be used as ��� weights of unseen tokens.

� Calculating weights related to the similarity employed to com-
pare tokens, i.e., ������ "�. For GES	
��
�� employing the
Jaccard predicate, this includes storing the number of q-grams
for each word token in relation BASE TOKENSIZE (tid,
token, len). For GES
)*, we have to calculate minhash
signatures (required by min-wise independent permutations).
SQL statements for generating min-hash signatures and min-
hash similarity scores, ����(��� "�, are omitted due to space
constraints.
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INSERT INTO GESAPX RESULTS(tid, score)
SELECT MS.tid, 1.0/SI.sumidf *

SUM(I.idf*(((2.0/�)*MS.maxsim)+(1-1/�)))
FROM MAXSIM MS, QUERY IDF I, SUM IDF SI
WHERE MS.token = I.token
GROUP BY MS.tid, SI.sumidf

Figure 7: SQL Code for GES
)*, GES	
��
��

In order to make the presented statements more readable, we as-
sume that the following auxiliary relations are available to us; in
practice, they are calculated on-the-fly as subqueries:

� QUERY IDF(token, idf) stores ��� weights for each
token in the query. Weights are retrieved from the base weights
relation and the average ��� value over all tokens in the base
relation is used as the weight of query tokens not present in
the base relation. SUM IDF(token, sumidf) will store
sum of idf weights for query tokens.

� MAXSIM(tid, token, maxsim) stores the maximum
of the similarity scores between the tokens in tuple tid and
each token in the query.

The tables above do not have to be computed beforehand, they
are rather computed on the fly at query execution time. Assuming
however they are available, the SQL statements for computing the
scores for GES
)*, GES	
��
�� are shown in Figure 7.

SoftTFIDF can also be implemented similar to GES approxima-
tion predicates. During preprocessing, we need to first tokenize the
string into word tokens and store them in BASE TOKENS(tid,
token). Depending on the function used for similarity score be-
tween word tokens, we may need to tokenize each word token into
qgrams as well. We then need to store normalized tf-idf weights of
tokens in the tuples in the base relation in BASE WEIGHTS(tid,
token, weight).

Here again, at query time, we assess the final score formula of
equation (15), in a single SQL statement. For presentation pur-
poses, assume that the following relations have been materialized:

� QUERY WEIGHTS(token, weight) stores normalized
tf-idf weights for each token in the query table.

� CLOSE SIM SCORES(tid, token1, token2, sim)
stores the similarity score of each token in the query (token2)
with each token of each tuple in the base relation, where the
score is greater than a threshold � (� specified at query time).
Such a score could have been computed using a declarative
realization of some other similarity predicate or a UDF to
compute similarity using a string distance scheme (e.g., Jaro-
Winkler [27]).

� MAXSIM(tid, token, maxsim) stores the maximum
of the sim score for each query token among all tids in
CLOSE SIM SCORES relation. MAXTOKEN(tid, token1,
token2, maxsim) stores ��������tid��������&��� "��
as well, i.e., the token in each tuple in the base relation that
has the maximum similarity with a query token token2 in
#$%�!��� ��	�

Figure 8 shows the SQL statement for MAXTOKEN table and the
final similarity score for SoftTFIDF.

INSERT INTO MAXTOKEN(tid,token1,token2,maxsim)
SELECT CS.tid, CS.token1,

CS.token2, MS.maxsim
FROM MAXSIM MS, CLOSE SIM SCORES CS
WHERE CS.tid=MS.tid AND

CS.token2=MS.token2 AND MS.maxsim=CS.sim

INSERT INTO SoftTFIDF RESULTS (tid, score)
SELECT TM.tid, SUM(I.weight*WB.weight*TM.maxsim)
FROM MAXTOKEN TM,

QUERY WEIGHTS I, BASE WEIGHTS WB
WHERE TM.token2 = I.token AND TM.tid = WB.tid

AND TM.token1 = WB.token
GROUP BY TM.tid

Figure 8: SQL Code for SoftTFIDF - Query time

5. EVALUATION
We experimentally evaluate the performance of each of the simi-

larity predicates presented thus far and compare their accuracy. The
choice of the best similarity predicate in terms of accuracy highly
depends on the type of datasets and errors present in them. The
choice in terms of performance depends on the characteristics of
specific predicates. We therefore evaluate the (a) accuracy of pred-
icates using different datasets with different error characteristics
and the (b) performance by dividing the preprocessing and query
execution time into various phases to obtain detailed understand-
ing of the relative benefits and limitations. All our experiments are
performed on a desktop PC running MySQL server 5.0.16 database
system over Windows XP SP2 with Pentium D 3.2GHz CPU and
2GBs of RAM.

5.1 Benchmark
In the absence of a common benchmark for data cleaning, we re-

sort to the definition of our own data generation scheme with con-
trolled error. In order to generate datasets for our experiments, we
modify and significantly enhance the UIS database generator which
has effectively been used in the past to evaluate duplicate detection
algorithms [14]. We use the data generator to inject different types
and percentages of errors to a clean database of string attributes.
We keep track of the source tuple from which the erroneous tuples
have been generated in order to determine precision and recall re-
quired to quantify the accuracy of different predicates. The genera-
tor allows to create data sets of varying sizes and error types, thus is
a very flexible tool for our evaluation. The data generator accepts
clean tuples and generates erroneous duplicates based on a set of
parameters. Our data generator provides the following parameters
to control the error injected in the data:

� the size of the dataset to be generated.

� the fraction of clean tuples to be utilized to generate erro-
neous duplicates.

� distribution of duplicates: the number of duplicates gener-
ated for a clean tuple can follow a uniform, Zipfian or Pois-
son distribution.

� percentage of erroneous duplicates: the fraction of duplicate
tuples in which errors are injected by the data generator.

� extent of error in each erroneous tuple: the percentage of
characters that will be selected for injecting character edit
error (character insertion, deletion, replacement or swap) in
each tuple selected for error injection.
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dataset #tuples Avg. tuple length #words/tuple
Company Names 2139 21.03 2.92

DBLP Titles 10425 33.55 4.53

Table 1: Statistics of Clean Datasets

parameter range
size of dataset 5k - 100k
# clean tuples 500 - 10000

duplicate distribution uniform, Zipfian
erroneous duplicates 10% - 90%

extent of error per tuple 5% - 30%
token swap error 10% - 50%

Table 2: Range of Parameters Used For Erroneous Datasets

� token swap error: the percentage of word pairs that will be
swapped in each tuple that is selected for error injection.

We use two different sources of data: a data set consisting of
company names and a data set consisting of DBLP Titles. Statistical
details for the two datasets are shown in Table 1. For the company
names dataset, we also inject domain specific abbreviation errors,
e.g., replacing Inc. with Incorporated and vice versa.

For both datasets, we generate different erroneous datasets by
varying the parameters of the data generator as shown in Table 2.

Due to space constraints, we show accuracy results for 8 differ-
ent erroneous datasets generated from a data set of company names,
each containing 5000 tuples generated from 500 clean records, with
uniform distribution. We choose to limit the size of the data sets to
facilitate experiments and data collection since each experiment is
run multiple times to obtain statistical significance. We conducted
experiments with data sets of increasing size and we observed that
the overall accuracy trend presented remains the same. We consider
the results presented highly representative across erroneous data
sets (generated according to our methodology) of varying sizes,
and duplicate distributions. We classify these 8 datasets into dirty,
medium and low error datasets based on the parameters of data gen-
eration. We have also generated 5 datasets, each having only one
specific type of error, in order to evaluate the effect of specific error
types. Table 3 provides more details on the datasets. Table 4 shows
a sample of duplicates generated by the data generator from #(�
and #(�.

5.2 Evaluating Accuracy

Percentage of
Class Name erroneous errors in token Abbr.

duplicates duplicates swap error
Dirty CU1 90 30 20 50
Dirty CU2 50 30 20 50

Medium CU3 30 30 20 50
Medium CU4 10 30 20 50
Medium CU5 90 10 20 50
Medium CU6 50 10 20 50

Low CU7 30 10 20 50
Low CU8 10 10 20 50

- F1 50 0 0 50
- F2 50 0 20 0
- F3 50 10 0 0
- F4 50 20 0 0
- F5 50 30 0 0

Table 3: Classification of Datasets

CU1
��� Stsalney Morgan cncorporsated Group
��� jMorgank Stanlwey Grouio Inc.
��� Morgan Stanley Group Inc.
��	 Sanlne Morganj Inocrorpated Group
��� Sgalet Morgan Icnorporated Group

CU5
��� Morgan Stanle Grop Incorporated
��� Stalney Morgan Group Inc.
��� Morgan Stanley Group In.
��	 Stanley Moragn Grou Inc.
��� Morgan Stanley Group Inc.

Table 4: Sample Tuples from CU1 & CU5 Datasets

We measure the accuracy of predicates, utilizing known meth-
ods from the information retrieval literature in accordance to com-
mon practice in IR [25]. We compute the Mean Average Pre-
cision (MAP) and Mean Maximum F� scores of the rankings of
each dataset imposed by approximate selection queries utilizing our
predicates. Average Precision(AP), is the average of the precision
after each similar record is retrieved, i.e.,��

�
�
� �"�� "&��"��

number of relevant records
(24)

where 
 is the total number of records returned, " is the rank of
the record, i.e., the position of the record in the result list sorted
by decreasing similarity score, � �"� is the precision at rank ", i.e.,
the ratio of the number of relevant records having rank � " to
the total number of records having rank � ", and "&��"� is 1 if
the record at rank " is relevant to the query and 0 otherwise. This
measure emphasizes returning more similar strings earlier. MAP is
the mean AP value over a set of queries. Maximum F� measure is
the maximum F� score (the harmonic mean of precision and recall)
over the ranking of records, i.e.,

���
�



�� �"�"���&�"�

�"�"� ��&�"�
� (25)

where �"�"� and �&�"� are precision and recall values for rank
". �"�"� is as defined above. �&�"� is the ratio of the number
of relevant records having rank � " to the total number of rele-
vant records. Again, we compute mean maximum F� over a set of
queries.

Our data generation methodology allows to associate easily a
clean tuple with all erroneous versions of the tuple generated using
our data generator. A clean tuple and its erroneous duplicates are
assigned the same cluster id. Essentially each time we pick a tuple
from a cluster, using its string attribute as a query we consider all
the tuples in the same cluster (tuples with the same cluster id) as
relevant to this query. For each query and a specific predicate, we
return a list of tuples sorted in the order of decreasing similarity
scores. Thus, it is easy to identify relevant and irrelevant records
among the results returned for a specific query and similarity predi-
cate. In order to maintain our evaluation independent of any thresh-
old constants (specified in approximate selection predicates) we do
not prune this list utilizing thresholds. For each dataset, we com-
pute the mean average precision and mean maximum F� measure
over 500 randomly selected queries taken from that data set (notice
that our query workload contains both clean as well as erroneous
tuples). Thus, our accuracy results represent the expected behavior
of the predicates over queries and thresholds. We report the values
for MAP only since the results were consistently similar for max
)� measure in all our experiments.
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5.3 Settings

5.3.1 Choice of Weights for Weighted Overlap Pred-
icates

Both WeightedMatch (WM) and WeightedJaccard (WJ) predicates
require a weighting scheme to assign weights to the tokens. It is de-
sirable to use a weighting scheme which captures the importance of
tokens. We experimented with ��� and the Robertson-Spark Jones
(��) weighting scheme given in Equation 5 and found that ��
weights lead to better accuracy. So in the following discussion, we
use �� weights for weighted overlap predicates.

5.3.2 Parameter Settings for Predicates
For all predicates proposed previously in the literature we set any

parameter values they require for tuning as suggested in the respec-
tive papers. For the predicates presented herein for data cleaning
tasks, for the case of BM25, we set ��=1.5, ��=8 and �=0.675; for
HMM, we set �� to 0.2, although our experiments show that the
accuracy results are not very sensitive to the value of �� as long as
a reasonable value is chosen (i.e., a value not close to 0 or 1).

The SoftTFIDF predicate requires a similarity predicate over the
word tokens. We experimented with various similarity predicates
like Jaccard, IntersectSize, edit distance, Jaro-Winkler, etc. and
choose Jaro-Winkler since SoftTFIDF with Jaro-Winkler (STfIdf
w/JW) performs the best. This was also observed in [7]. Two words
are similar in SoftTFIDF if their similarity score exceeds a given
threshold �. SoftTFIDF with Jaro-Winkler performed the best with
�=0.8. Finally, we set ���� for GES predicate to 0.5 as proposed
in [4]. For calculating accuracy, we use the exact GES as shown
in Equation 14. We remark that we do not prune the results based
on any threshold in order to keep the evaluation independent of the
threshold values.

5.3.3 Q-gram Generation
Qgram generation is a common preprocessing step for all pred-

icates. We use an SQL statement similar to that presented in [11]
to generate q-grams, with a slightly different approach. We first
insert � 
 � special symbols (e.g. �) in place of all whitespaces in
each string, as well as at the beginning and end of the strings. In
this way we can fully capture all errors caused by different orders
of words, e.g., “Department of Computer Science” and “Computer
Science Department”. For qgram generation we also need to have
an optimal value of qgram size (�). A lower value of � ignores the
ordering of characters in the string while a higher value can not
capture the edit errors. So an optimum value is required to capture
the edit errors taking in account the ordering of characters in the
string. The table below shows the accuracy comparison of differ-
ent qgram based predicates (Jaccard, tf-idf (Cosine), HMM and
BM25) in the dirty cluster of our data sets:

� Jaccard Cosine HMM BM25
2 0.736 0.783 0.835 0.840
3 0.671 0.769 0.807 0.805

The trend is similar for other predicates and the accuracy further
drops for higher values of �. Thus, we set �=2 as it achieves the
best accuracy results.

5.4 Accuracy Results
In this section we present a detailed comparison of the effective-

ness of the similarity predicates in capturing the different types of
error introduced in the data.

Abbreviation error: Due to abbreviation errors, a tuple AT&T
Incorporated gets converted to AT&T Inc. Note that

Predicate group F3 F4 F5
GES 1.0 .99 .97

BM25, HMM, LM, STfIdf w/JW 1.0 .97 .91
edit distance .99 .97 .90

WM , WJ, Cosine .99 .93 .85
Jaccard (Jac.), IntersectSize (Xect) .99 .91 .81

Table 6: Accuracy: Only Edit Errors

Incorporated and Inc are frequent words in the company names
database. For the query AT&T Incorporated, the unweighted
overlap predicates Jaccard (Jac.) and IntersectSize (Xect) will
assign to the tuple IBM Incorporated greater similarity score
than to the tuple AT&T Inc since they just try to match tuples
on the basis of common qgrams. Edit distance (ED) will behave
similarly since it is cheaper to convert AT&T Incorporated
to IBM Incorporated than to AT&T Inc. The weight based
predicates are robust to abbreviation errors since they assign high
weights to tokens corresponding to rare (important) words e.g. AT&T.
Table 5 presents the accuracy of the predicates for the case of a
data set with only abbreviation error (dataset F1). All other pred-
icates WeightedMatch(WM), WeightedJaccrd(WJ), tf-idf(Cosine),
BM25, HMM, Language Modeling(LM) and SoftTFIDF(STfIdf
w/JW) had near perfect accuracy. Similar behavior is observed
when the percentage of duplicates and abbreviation error is varied.

Token swap errors: Due to token swap errors, a tuple Beijing
Hotel gets converted to Hotel Beijing. Suppose there is a
tuple Beijing Labs present in the database, where Labs and
Hotel are equally important tokens but more frequent than
Beijing. For a query Beijing Hotel, edit distance and GES
will claim Beijing Labsmore similar to the query than Hotel
Beijing. We remark that for accuracy calculation, we use exact
GES as shown in Equation 14. All other predicates ignore the or-
der of words, and hence will perform well for token swap errors.
Table 5 shows the accuracy of the predicates for a data set with
only token swap errors (dataset F2). All other predicates had near
perfect accuracy. Similar trend is observed when the percentage of
duplicates and token swap error is varied.

Edit errors: Edit errors involve character insertion/ deletion/ re-
placement and character swap. The number of positions of a string
at which edit error has occurred defines the extent of the edit er-
ror. All the predicates discussed above are robust towards low edit
errors but their accuracy degrades as the extent of edit error in-
creases. Table 6 shows the accuracy result for various predicates
for increasing edit error in the data (datasets F3, F4 and F5). The
predicates giving near equal accuracy are grouped together. GES is
most resilient to edit errors. Edit distance, designed to capture edit
errors has average performance. BM25, STfIdf w/JW, and prob-
abilistic predicates (LM and HMM) are competitive in catching edit
errors and perform slightly better than edit distance. The weighted
overlap predicates (WM and WJ) with �� weights perform equiva-
lent to tf-idf (Cosine) but not as good as edit distance. Finally the
unweighted overlap predicates Jaccard and IntersectSize perform
the worst as they ignore the importance of tokens. Similar trend is
observed when the percentage of erroneous duplicates is varied.

5.4.1 Comparison of predicates
Figure 9 shows MAP values for different predicates for the 3

classes of erroneous datasets described in Table 3. For the low error
datasets, all the predicates perform well except edit distance, GES,
IntersectSize and Jaccard. GES performs a little worse due to the
presence of token swap errors, IntersectSize and Jaccard perform
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Type of Error Xect Jac. WM WJ Cosine, BM25, LM, HMM ED GES S TfIdf w/JW
abbr. error (F1) 0.94 0.96 0.98 1.0 1.0 0.89 1.0 1.0

token swap error (F2) 1.0 1.0 1.0 1.0 1.0 0.77 0.94 1.0

Table 5: Accuracy: Abbr. and Token Swap Errors

(a) Low Error Datasets (b) Medium Error Datasets (c) Dirty Datasets

Figure 9: MAP values for different predicates on different datasets

worse because of abbreviation errors and edit distance is the worst
because of both factors.

When the error increases, the three types of errors occur in com-
bination and edit based predicates experience large accuracy degra-
dation. The edit based predicates are already not good at handling
token swap errors and the presence of edit errors deteriorates their
effectiveness since the word token weights are no longer valid. This
is not the case for the qgram based predicates since edit errors
affect only a small fraction of qgrams and the remaining qgram
weights are still valid. Consider a query �=Morgan Stanley
Group Inc. over dataset #(�, where we expect to fetch the
tuples shown in Table 4. The qgram based predicates are able to
return all the tuples at the top 5 positions in the list according to
similarity values. GES is not able to capture the token swap and it
ranks ��� and ��	 at position 27 and 28 respectively. The edit distance
predicate performs worse; both ��� and ��	 are absent from the list of
top 40 similar tuples. Both edit based predicates give high similar-
ity score to tuples like Silicon Valley Group, Inc. for
query � primarily because of low edit distance between Stanley
and Valley.

The unweighted overlap predicates ignore the importance of qgrams
and hence perform worse than the predicates that incorporate weights.
It is interesting to note that the weighted overlap predicates perform
better than the tf-idf (cosine) predicate. This is due to the ��
weighting scheme (Equation 5) for weight assignment of tokens
which has been shown to be more accurate than the ��� weighting
scheme. The former captures importance of tokens more accurately
than the latter. The language modeling predicates (HMM and LM),
and BM25 are always the best in all the three datasets. The suc-
cess of the SoftTFIDF is attributed to the underlying Jaro-Winkler
word level similarity predicate which can match the words accu-
rately even in the presence of high errors.

We also experimented with GES	
��
�� and GES
)*. Both pred-
icates make use of a threshold � to prune irrelevant records without
calculating the exact scores. Depending on the value of �, relevant
records might also be pruned leading to a drop in accuracy. Table
7 shows the variation in accuracy for GES	
��
�� and GES
)* for
threshold values (�) 0.7, 0.8 and 0.9 for dataset #(� for which
GES (with no threshold) has 69.7% accuracy. For GES
)* we used
5 min hash signatures in order to approximate the GES	
��
��. We
observe that increasing the number of min-hash signatures takes
more time without having a significant impact on accuracy (pretty

Predicate � 	0.7 � 	0.8 � 	0.9
GES	
��
�� 0.692 0.683 0.603

GES
)* 0.678 0.665 0.608

Table 7: Accuracy of GES Predicates for Different Thresholds

soon it demonstrates diminishing returns). A small number of min
hash signatures results in significant accuracy loss.

Experimental results show that for suitable thresholds GES	
��
��

performs as good as GES and the accuracy drops as the threshold
increases. GES
)*, being an approximation for GES	
��
��, per-
forms slightly worse than GES	
��
��. Similar results were ob-
served for other datasets.

5.5 Performance Results
In this section, we compare different predicates based on prepro-

cessing time, query time and how well they scale when the size of
the base table grows. As expected, the performance depends pri-
marily on the size of the base table. Performance observations and
trends remain relatively independent from the error rate of the un-
derlying data sets. Thus, we present the experiments on the DBLP
datasets with increasing size and medium amount of errors: 70%
of erroneous duplicates, 20% extent of error, 20% token swap error
and no abbreviation error.

5.5.1 Preprocessing
We divide preprocessing time for a data set to make it amenable

for approximate selection queries into two phases. In the first phase,
tokenization is performed. Qgrams are extracted from strings in the
way described in section 5.3.3 and stored in related tables. Aggre-
gate weighted (Cosine and BM25) and language modeling predi-
cates (LM and HMM) are fastest in this phase, followed by overlap
predicates (Xect and Jac.) with a small difference which is due to
storing distinct tokens only. Combination predicates (GES Jac,
GES apx and STfIdf w/JW) are considerably slower in this
phase since they involve an extra level of tokenization into words.

In the next phase, related weights are calculated and assigned to
tokens. In this phase, the fastest predicates are the overlap pred-
icates and edit distance (ED) followed by  !�	
��
�� and Soft-
TFIDF that only require weight calculation for word tokens. Ag-
gregate weighted and language modeling predicates are consider-
ably slower since calculating weights in these predicates involves a
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Figure 10: Preprocessing time of different predicates

lot of computation and creation of many intermediate tables. Lan-
guage modeling (LM) is the slowest predicate among probabilis-
tic predicates since it requires the maximum number of intermedi-
ate tables to be created and stored.  !�
)* requires to compute
min-hash signatures for the tokens separately for a number of hash
functions on top of the two level tokenization and IDF weight cal-
culation, so it is the slowest of all predicates. Figure 10 shows
the preprocessing times for all predicates on a dataset of 10,000
records with an average length of 37 characters.  !�
)* in this
Figure employs min-hash computation utilizing 5 hash functions
(min hash signature size of 5). Preprocessing time for  !�
)*

increases with increasing number of hash functions employed for
min-hash signature calculation.

5.5.2 Query time
Query time for a predicate is the time taken to rank the tuples

from the base table according to decreasing similarity score. Query
time can also be divided into two phases: preprocessing the query
string and computing similarity scores. The preprocessing part can
itself be divided into tokenization and weights computation phases
as done for preprocessing of the base relation. We didn’t experi-
ence large variability in the time for query preprocessing among
all predicates. As described in section 4.3 the score formulas for
Language modeling and HMM are suitably modified by dropping
query dependent terms which do not alter the similarity score order
and hence, the accuracy of the predicates.

Figure 11 shows the average query execution time of different
predicates over 100 queries on a table of 10,000 strings with an av-
erage length of 37 characters. The experimental results are consis-
tent with our analysis. A comparison of the average query time of
the predicates shows that IntersectSize, Jaccard, WeightedMatch,
WeightedJaccard, HMM, BM25 should be among the best since
first, they just involve one join and second, the query token weights
do not depend on ��� and are easy to compute. We expect the
Cosine predicate to follow these predicates as it has the additional
overhead of calculating query weights which depend on ��� of to-
kens. The Language Modeling predicate involves join of 3 tables,
so it is comparatively slow. The GES based predicates are slowest
of all since they involve identification of the best matching token
among the tuples for each query token.  !�
)* has been designed
to efficiently approximate GES	
��
��, so it is expected to be the
fastest of all GES based predicates. Note that the filtering step of
GES	
��
��, GES
)* and edit distance require a suitable thresh-
old �. Lower value of � results in poor filtering and high post-
processing time, while higher value of � leads to loss of similar
results and hence a drop in accuracy. We used �=0.8 for the filter-
ing step in GES	
��
�� and GES
)* and �=0.7 for edit distance,
since these values balance the trade-off between the performance

Figure 11: Query time of different predicates

and precision for these predicates. For  !�
)*, we use 5 hash
functions for min-hash calculation (min hash signature of 5).

5.5.3 Scalability
In order to investigate the scalability of our approach, we run ex-

periments on DBLP datasets with sizes varying from 10k to 100k
records. The variation in query time as the base table size in-
creases is shown in Figure 12. The predicates with nearly equal
query execution times have been grouped together. Group G1 in-
cludes predicates IntersectSize, WeightedMatch and HMM, and the
group G2 includes Jaccard, WeightedJaccard, Cosine and BM25.
For predicates other than combination predicates, the results are
consistent with our analysis of query execution time presented in
Section 5.5.2. The predicates in group G1 can be thought of hav-
ing a weight of 1 for query tokens and they just require a single
join to compute similar tuples. The predicates in group G2 take
slightly more time than predicates in G1 since they have to calcu-
late weights for query tokens. LM requires join of three tables to
get results so it is considerably slower than predicates in G1 and
G2. For the case of combination predicates, query time depends
highly on the value of threshold � used for these predicates and
the number of words in the string. We use the same thresholds we
used in Section 5.5.2 for these predicates. We also limit the size
of the query strings to three words in order to be able to compare
the values among different datasets with other predicates. The re-
sults show that combination predicates are significantly slower than
other predicates since for each query token, we need to determine
the best matching token from the base tuple using an auxiliary sim-
ilarity function such as Jaccard and Jaro-Winkler, apart from the
time needed to calculate related weights for word tokens. GES
)*

is the fastest in this cluster of predicates. Increasing the number of
words in query strings considerably slows down these predicates.
We excluded edit distance from this experiment because of its sig-
nificantly poor accuracy.

5.6 Summary of Evaluation
We presented an exhaustive evaluation of approximate selection

predicates by grouping them into five classes based on their char-
acteristics: overlap predicates, aggregate weighted predicates, edit-
based predicates, combination predicates and language modeling
predicates. We experimentally show how predicates in each of
these classes perform in terms of accuracy, preprocessing and ex-
ecution time. Within our framework, the overlap predicates are
relatively efficient but have low accuracy. Edit based predicates
perform worse in terms of accuracy but are relatively fast due to
the filtering step they employ. The aggregate weighted predicates,
specifically BM25, perform very well both in terms of accuracy and
efficiency. Both the predicates from the language modeling cluster
perform well in terms of accuracy. Moreover, HMM is as fast as
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Figure 12: Query Time: Variation in Base Table Size

simple overlap predicates. The combination predicates are consid-
erably slow due to their two levels of tokenization. Among the
combination predicates, GES based predicates are robust in han-
dling edit errors but fail considerably in capturing token swap er-
rors. SoftTFIDF with Jaro-Winkler performs nearly equal to BM25
and HMM and is among the best in terms of accuracy, although it
is the slowest predicate. This establishes the effectiveness of BM25
and HMM predicates for approximate matching in large databases.

6. CONCLUSIONS
We proposed new similarity predicates for approximate selec-

tions based on probabilistic information retrieval and presented their
declarative instantiation. We presented an in-depth comparison of
accuracy and performance of these new predicates along with ex-
isting predicates, grouping them into classes based on their primary
characteristics. Our experiments show that the new predicates are
both effective as well as efficient for data cleaning applications.
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