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ABSTRACT

We propose a framework and algorithm for annotating un-
bounded text streams with entities of a structured database.
The algorithm allows one to correlate unstructured and dirty
text streams from sources such as emails, chats and blogs,
to entities stored in structured databases. In contrast to
previous work on entity extraction, our emphasis is on per-
forming entity annotation in a completely online fashion.
The algorithm continuously extracts important phrases and
assigns to them top-k relevant entities. Our algorithm does
so with a guarantee of constant time and space complexity
for each additional word in the text stream, thus infinite
text streams can be annotated. Our framework allows the
online annotation algorithm to adapt to changing stream
rate by self-adjusting multiple run-time parameters to re-
duce or improve the quality of annotation for fast or slow
streams, respectively. The framework also allows the online
annotation algorithm to incorporate query feedback to learn
user preferences and personalize the annotation for individ-
ual users.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Performance

1. INTRODUCTION: ADAPTIVE ONLINE

ENTITY ANNOTATION
Information comes in many forms including unstructured

text and structured databases. In recent years, there is a
growing interest in combining these two forms of informa-
tion. For example, the current Web is often considered a
web of (unstructured) documents, and many people have
put forth the vision that it should become a web of struc-
tured data with the semantics this entails. An important
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approach to achieving this vision is to identify linkages be-
tween parts (phrases) of text data with entities in structured
databases [1, 2, 3, 13, 14]. With the popularity of search-
ing information with keyword queries, one may argue that
the volume of textual information is growing much more
rapidly than structured data. Furthermore, with the rising
popularity in real-time collaborative communication tech-
nology (e.g., Google Wave) and text messaging from mobile
devices, much of this unstructured data must be processed
in its original streaming form. This motivates us to investi-
gate the problem of online entity extraction over (potentially
infinite) streams. For an entity extraction algorithm to be
online, it must exhibit constant time and space complexity
to process each new word in the text stream.

Text streams come at different rates. An active blog ac-
count has ≈ 1 blog per day, and each blog may contain
≈ 5000 words. So the text rate is only 0.05 words per sec-
ond. An email account may receive ≈ 100 email messages
per day, and with ≈ 500 words per email, we have a text
rate of 0.5 words per second. In an interactive environment,
a typical user can type at 0.5 to 1 word per second. In these
scenarios, the text rate is slow, so a real-time entity extrac-
tion algorithm should be able to exploit sophisticated text
and entity matching algorithms to achieve high information
retrieval accuracy. On the other hand, if the entity extrac-
tion algorithm is to be deployed at an email server that is
supporting 1000 email accounts, then the algorithm must
deal with streams of email messages at a text rate of 500
words per second. It is desirable for the extraction algorithm
to be able to self-adapt to the high text rate by reducing the
degree of complexity of text-entity matching. So, in addition
to the properties of an online algorithm, such an approach
must be able to automatically adjust the complexity of the
text analysis to accommodate for variable rates of the text
stream.

Finally, the entity extraction algorithm should be adap-
tive to individual user preferences. For email streams, the
discussion of a marketing manager may be highly specific to
database entities that are relevant to marketing rather than
say human resources. Thus, the search algorithm should
learn and incorporate such user preferences.

The main contribution of this paper is an algorithm that
annotates (nondeterministically) a text stream with the rel-
evant entities. The algorithm exhibits the following proper-
ties.

• Complexity of incremental annotation for each addi-
tional text word is constant, in both space and time.
• The annotation algorithm supports fuzzy string match-

ing.
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• The annotation algorithm can be tuned to exploit the
trade-off between precision and performance with a set
of runtime parameters.

• When query feedback is available, the annotation algo-
rithm learns the user preference and uses it to improve
the accuracy of the annotations.

We begin with a discussion of the related work on which
we are building and identify the key new contributions of
our approach. The formal definition of entity annotation
over text streams is given in Section 3. The annotation
algorithm and its important properties are presented in de-
tail in Section 4. Section 5 presents methods of self-tuning
to the run-time environment (text rate) and personalized
search based on learned user preferences. We have tested
our approach using several representative data sets. The
experimental evaluations are presented in Section 6. Future
extensions to this paper are outlined in Section 7.

2. RELATED WORK
Entity extraction or recognition is the problem of iden-

tifying entities from unstructured text. Recently, there has
been an increasing interest in techniques that exploit the ex-
istence of a structured database (or dictionary) of entities to
improve the accuracy and performance of the entity recog-
nition [1, 2, 3, 4, 14]. Some of these approaches, like ours,
assume an accurate database of entities, but accommodate
errors in the unstructured text [2, 14]. However, to the best
of our knowledge, no entity extraction techniques provide an
online solution with constant time and space complexity.

Entity recognition is also closely related to the database
problem of providing keyword search over a structured or
semi-structured database [16]. In such work, an (unstruc-
tured) keyword query is “matched” to entities in a struc-
tured database, or used to identify tuples in multiple tables
that may be relevant to the query. Some approaches assume
clean, unambiguous queries that refer to a single database
entity. Closer to our work are approaches that segment the
query (keywords) to provide better entity matching to mul-
tiple database entities [8]. However, dirty queries containing
spelling errors or syntactic differences are generally not han-
dled well by such approaches. To address this, recent work
has considered the problem of keyword segmentation in the
presence of spelling errors and semantic mis-matches and the
problem of doing incremental segmentation of the (unstruc-
tured) query [12]. Both features are similar to and inspire
our work in that we consider dirty unstructured text and
incremental segmentation. Notably, our approach considers
text that is an infinite stream, not a small keyword query.
Furthermore, we present an adaptive online algorithm that
can adjust to variable text streaming rates and also to user
preferences for certain entities over others.

Work in web search and information retrieval has also ad-
dressed several problems related to segmenting queries or
longer pieces of text. Examples include Query by Document
(QBD) [15], and Yahoo! Term Extraction API which is part
of Yahoo! Search Web Services1. Like our work, Yahoo!
Term Extraction extracts (segments) key phrases from text.
We augment this capability by considering the relevance of
a segmented phrase to the entities in a structure database
and use this information to achieve a better segmentation.
The QBD approach also does segmentation independent of

1http://developer.yahoo.com/search/

the database, but then ranks the segments by querying the
target data (where the end goal is quite different from ours
- to rank related documents). The TASTIER2 [6] and Com-
pleteSearch3 (or ESTER) systems use efficient algorithms
for type-ahead entity matching. Both systems show the
partially matched results of a (partial) keyword query (as
it is being typed) in an online fashion. TASTIER also per-
forms fuzzy string matching to capture spelling errors. Our
approach is complementary as it performs online segmen-
tation in addition to approximate entity matching. Unlike
TASTIER and CompleteSearch, our system finds entities in
the input text that are not necessarily associated with each
other. Furthermore, our system can automatically adapt to
text streams with highly variable rates.

Our work is also related to the active area of semantic an-
notation in knowledge management (KM). Uren et al. [13]
present a survey of existing manual and (semi-)automatic
annotation and entity extraction techniques. As an exam-
ple, KnowItAll [5] performs unsupervised named-entity ex-
traction from the Web, based on specification of patterns
by the user, e.g., extracting city names by finding occur-
rences of the phrase “cities such as . . . ” in web documents.
AktiveDoc4 performs annotation on-the-fly while reading or
editing documents, but, to the best of our knowledge, does
not allow any errors. Within the document-centric knowl-
edge management model presented by Uren et al. [13], our
work can be seen as a novel fully automatic (unsupervised)
and online annotation technique that can be added to exist-
ing KM systems to allow a different type of annotation. This
annotation does not require supervised learning or specifi-
cation of rules or patterns, and can perform annotation on
the fly, even in the presence of syntactic differences (between
the streamed text and database) or spelling errors.

3. MOTIVATION, DEFINITIONS AND

PROBLEM STATEMENT
Consider a user who is engaging in an online chat involving

the following text:

... doctor pepper mint tea watching few good

men with peter allen ...

Let us also imagine that one has access to several databases
of structured information containing among other things in-
formation on food products, movies and actors. It would be
desirable to highlight parts of the text stream with informa-
tion about relevant entities. For instance, we may wish to
augment the stream with the following annotations (in some
graphical interface):

‘doctor pepper’ Soft Drink: 150 Calories,
Introduced in 1885 by Charles Alderton

‘mint tea’ Herbal Drink: 0 Calories
‘few good men’ Movie: “FEW GOOD MEN, A”, 1992
‘peter allen’ Actor: “ALLEN, PETER”

However, this is only one possible set of annotations. More
possibilities arise if we consider approximate string match-
ing. For instance, it may be reasonable to annotate the
phrase ‘peter allen’ with the entity Actor: “ALAN, PE-
TER”. Non-determinism also exists in the way the stream is

2http://tastier.ics.uci.edu/
3http://dblp.mpi-inf.mpg.de/
4http://nlp.shef.ac.uk/wig/aktivedoc.htm
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segmented into phrases. One possibility is to group ‘pep-

per mint’ together as a segment or phrase, and annotate
it as a spice entity, and to group ‘tea’ by itself, and anno-
tate it with various hot beverage entities of different types
of tea. The possible phrases and entity annotations should
be scored to reflect their respective quality and ranked by
these scores. Our objective is to generate a ranked set of
annotated phrases for continuously streamed text. The an-
notation algorithm must exhibit constant time and space
complexity so text streams with unbounded length can be
handled.

We begin with a set of basic definitions. We then formally
define the problem of online entity annotation.

3.1 Basic definitions
A text stream, T , is a (possibly infinite) sequence of words

w0, w1, . . . , wi, . . . . A range, T (i, j), in the stream is a finite
sequence of consecutive words from position i inclusively, to
position j exclusively. When there is no risk of confusion,
we may treat T (i, j) both as a sequence of words, or a single
string obtained by joining words T (i, j) by spaces.

For the purpose of this paper, an entity is characterized
by a tuple e = (xid, xtype, xtext) where xid is the unique
identifier of the entity, xtype is the type or schema of the
entity, and xtext is the text value associated with the entity.
We use the notation type(e) = xtype and text(e) = xtext.
The set of all possible entities is denoted by E.

One can enrich the definition with additional attributes
and data types. However, for the purpose of entity extrac-
tion, we are only interested in the type and text value as-
sociated with the entity as these will be used to match the
entity to the text stream. Additional descriptive information
about an entity can be retrieved from the database using its
entity identifier.

A phrase p is a range T (i, j) in the text stream that may
match an entity. We denote all possible phrases in a text
stream T by Phrase(T ). From this point on, we distinguish
phrases from ranges by using lower case letters i, j, k, . . . to
denote boundaries and indices of phrases, and upper case let-
ters I, J,K, . . . to denote boundaries and indices of ranges.

An entity annotation of a phrase p is an assignment p 7→ e
that maps the phrase p to some entity e. In order to support
approximate matching and top-k search, we generalize entity
annotations to support non-deterministic annotations of a
phrase.

Definition 1 (Scored sets). Let X be a set. A scored
subset of X is some subset Y ⊆ X, together with a scoring
function scoreY : Y → R

+. The collection of all possible
scored subsets of X is denoted by Pscore(X).

Definition 2 (Non-deterministic entity annotation).
Given a phrase p in a text stream T , a non-deterministic
entity annotation of p is a mapping p 7→ E where E ∈
Pscore(E).

A non-deterministic entity annotation p 7→ E implies that
the phrase p corresponds to one of the entities in E. The
score scoreE(e) for e ∈ E indicates the similarity between
the contents of the phrase and the text value (text(e)) of the
entity.

The entity annotation problem involves identifying phrases
in the text stream that can be annotated by entities. A
phrase assignment is a function that identifies interesting
phrases.

Definition 3 (Phrase assignment). Given a text stream,
T , a phrase assignment, P , is a partial function:

P : N→ Phrase(T ) ∪ {⊥}

such that, for all k ∈ N, either P (k) is undefined, or P (k) =
⊥, or P (k) = T (i, j), where i ≤ k < j. Furthermore,

∀k, P (k) = T (i, j) ∈ Phrase(T ) =⇒ ∀k′ ∈ [i, j), P (k′) = P (k)

Given a phrase p ∈ Phrase(T ), we say p ∈ P if ∃k ∈
N, P (k) = p.

A phrase assignment, P , is annotated if there exists a
phrase annotation function h such that p ∈ P =⇒ h(p) ∈
E. The phrase assignment P is non-deterministically anno-
tated if h(p) ∈ Pscore(E) for all p ∈ P .

Intuitively, a phrase assignment labels each word in the
stream with the phrases that it belongs to. Given a word
wk, if P (k) = T (i, j), it implies that the word wk is part
of a phrase T (i, j), and hence the condition of i ≤ k < j.
Since the range T (i, j) is grouped into a phrase, all positions
k ∈ N, such that i ≤ k < j, must be assigned to the phrase
T (i, j). Finally, P (k) = ⊥ indicates that the word wk does
not belong to any phrase. Note that phrase assignments
may be partial functions, so they may only label parts of
the text stream. Note, P (k) being undefined and P (k) = ⊥
are not equivalent. We refer to the number of phrases p
where p ∈ P as the length of P , written length(P ). An
annotated phrase assignment is a phrase assignment whose
phrases are annotated by entities.

Generally, given a range, T (I, J), there are different phrase
assignments that make sense, and for each phrase, there are
many different candidate entities that can be used for anno-
tation. The non-determinism of both the phrase assignment
and the entity annotation over a range T (I, J) is captured
by the notation of a frame over (I, J).

Definition 4 (Frames). A frame M is a collection of
non-deterministically annotated phrase assignments over a
range T (I, J). So each P ∈ M is defined over the domain
(I, J), and their phrases are annotated by scored sets of en-
tities.

We write M(I, J) to indicate that M is a frame over the
range T (I, J). A frame is a subset of the possible segmen-
tations. The rest of the paper discusses the scoring and
generation of frames from a text stream.

Example 1. Consider a range of a text stream from po-
sition 10 to position 13:

... 10 11 12 13 ...

... doctor pepper mint tea ...

The phrase p = T (11, 13) is the range containing the words:
〈‘pepper’, ‘mint’〉. An instance of a non-deterministic en-
tity annotation of p is the mapping h:

p
h
7→

{[

type : FOOD/MISC

text : ‘pepper mint gum’ ,
[

type : FOOD/SNACK

text : ‘pepper mint cookies’

}

We omitted the entity identifiers, as well as the score as-
signed to each entity. A phrase assignment over the range
T (10, 14) is a mapping, P , of each word in the range, such
as the following.

wk doctor pepper mint tea
P (k) ⊥ T (11, 13) T (11, 13) T (13, 14)
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According to the phrase assignment P , ‘pepper’ and ‘mint’

are grouped together into one phrase, ‘tea’ is grouped into
a phrase by itself, and the word ‘doctor’ is not mapped
to any entity. The phrase assignment P together with the
annotation h forms an annotated phrase assignment.

A frame M(10, 14) over the range consists of multiple
phrase assignments. Below is an instance of a phrase as-
signment.

M =

‘doctor’ ‘pepper mint’ ‘tea’

‘doctor pepper’ ‘mint tea’

‘doctor’ ‘pepper mint tea’

‘doctor pepper’ ‘mint’ ‘tea’

Each phrase in the assignments in M is further annotated
by some non-deterministic entity annotation function. Note
that the phrases in an assignment need not be contiguous.

In light of the non-determinism in entity annotation of
phrases and phrase assignments over the same range, we
need to rank the different possibilities by a scoring function.
We use a similarity function Similarity : String×String→
R

+.5

Definition 5 (Scores of phrase and assignment). The
scoring function for phrases is defined as:

score : Phrase(T )→ R
+ : p 7→ max

e∈E

Similarity(p, text(e))

The score for a phrase assignment P is the average score of
all the phrases in P : score(P ) =

∑

p∈P
score(p)/ length(P ).

For p = T (i, j), we write score(T (i, j)) as score(i, j) for
brevity. For the rest of the paper, whenever we talk about
a scored set X of phrases or phrase assignments, scoreX is
assumed to be the scoring function for phrases or phrase
assignments, respectively.

3.2 The Problem

Definition 6 (Admissible phrases). Let c > 0 be
some constant value in R

+. We say that a phrase p is c-
admissible if score(p) ≥ c. Given a range T (I, J), we use
Ac(I, J) to denote all c-admissible phrases in the range. We
say that c is the admissibility threshold, written Cclosed.

The term closed refers to the fact that words in a phrase are
compared to the entity text without the possibility of being
extended further. In contrast, we later define a notion of
open similarity comparison.

Definition 7 (Maximal phrase assignments). Let
X be a collection of phrases. A phrase assignment P is X-
maximal if all phrases in P belong to X, and further more,

∀p ∈ X, p 6∈ P =⇒ ∃p′ ∈ P, p′ ∩ p 6= ∅

An X-maximal phrase assignment P asserts that P cannot
be augmented by any phrases in X and still remain a valid
phrase assignment.

Problem 1 (Online optimal phrase assignment).
The online optimal phrase assignment problem is defined as:

• Input: A text stream, T, and an admissibility thresh-
old, Cclosed.

5Further discussion of the similarity function is deferred to
later sections.

• Output: For each I ∈ N, compute the ACclosed
(1, I)-

maximal phrase assignment that has the greatest score.
Denote the optimal phrase assignment as P ∗

I .

The ACclosed
(1, I)-maximality requirement in Problem 1 en-

forces that each phrase in the assignment is Cclosed admis-
sible, and that no other admissible phrases can be added to
the phrase assignment.

In order to handle infinite streams, in practice, we further
impose the constraint that for each time step I , P ∗

I can be
computed with the time and space complexity of O(1) with
respect to I . A keen reader may see something troublesome:
the number of phrases, length(P ∗

I ), increases as I increases,
so it is not guaranteed that it is possible at all to compute P ∗

I

in constant time in general. There is, yet, another problem
with the definition of Problem 1.

In dealing with the non-determinism of phase assignments,
one may be tempted to simply generalize Problem 1 to an
online top-k phrase assignments problem. However, the top-
k analogue to Problem 1 has very little value in practice. Let
us demonstrate by an example.

Example 2. Consider a text stream containing the fol-
lowing range: ‘... doctor pepper mint tea ... programming

java coffee ...’

Individually we have the following phrase assignments ranked
by their scores.

doctor pepper mint tea 1.0

doctor pepper mint tea 0.9

doctor pepper mint tea 0.9

programming java coffee 0.9

programming java coffee 0.75

The top-3 phrase assignments for this range of the stream
consists of:

doctor pepper mint tea programming java coffee

doctor pepper mint tea programming java coffee

doctor pepper mint tea programming java coffee

Something very alarming can be seen: the possibility of
‘programming’ ‘java coffee’ is eliminated from the top-3
list. Increasing the k value for the top-k phrase assignments
will not solve the problem in a fundamental way.

As the stream grows, more “independent” ranges form,
and the total number of candidate phrase assignments of
the whole stream is the product of the phrase assignments
of the individual ranges. So, as the stream grows, the total
search space grows exponentially. If only top-k of the whole
stream is to be computed, then the search result becomes
diminishing small, and more and more interesting phrase
assignments will be lost, as demonstrated in Example 2.

The solution is to report the top-k phrase assignments for
each sub-range. In Example 2, we see two distinct ranges:
‘doctor pepper mint tea’ and ‘programming java coffee’. So,
we need to redefine the optimal phrase assignment problem
in such a way that the algorithm computes the individual
regions, and the top-k phrase assignments for each region.

Definition 8 (Stable ranges). Given a collection X
of phrases, the projection πI,J(X) is defined as,

πI,J (X) = {T (i, j) ∈ X : i ∈ [I, J) or j ∈ [I, J)}

Let c be the admissibility threshold. A range T (I, J) is c-
stable if for all I ′ ≤ I and J ′ ≥ J, we have Ac(I, J) =
πI,J (Ac(I

′, J ′)). The range is minimally stable if (I + 1, J)
and (I, J − 1) are not stable. The set of all minimally stable
ranges is denoted by M(T ).

32



The significance of a stable range is that its set of admissible
phrases is unaffected by what comes before and after it in
the text stream.

Example 3. Consider the range: ‘having pepper mint
tea programming java coffee all the time’. Let the en-
tity database contain entities with text values: ‘doctor pep-
per’, ‘java coffee’, ‘mint tea’, ‘programming java’.
Let T (I, J) = ‘pepper mint tea’. The range T (I, J) is
stable because phrases A(I, J) = {‘pepper mint’, ‘mint tea’}

which can be always obtained from A(I ′, J ′) where (I, J) ⊆
(I ′, J ′) by means of projection back to (I, J). On the other
hand ‘pepper mint’ is not stable because its phrases cannot
be obtained by projecting A(I, J):

A(‘pepper mint’) = {‘pepper mint’}

A(‘pepper mint tea’) = {‘pepper mint’, ‘mint tea’}

π‘pepper mint’(A(‘pepper mint tea’))

= {‘pepper mint’, ‘mint tea’}

6= A(‘pepper mint’)

The following properties of minimally stable ranges follow
immediately from the definitions.

Proposition 3.1. All distinct minimally stable ranges of
T are disjoint. Consequently, M(T ) is totally ordered.

Proposition 3.2 (Boundaries of stable ranges).
Given a position I in the stream. If for all T (i, j) ∈ Ac(T ),
I 6∈ (i, j), then I is a boundary of two stable ranges.

Proposition 3.1 makes it possible to define the last min-
imally stable range before I for any position I . The last
minimally stable range before I is given by:

max{T (J,K) ∈M : K ≤ I}

We generalize Problem 1 by always computing the top-k
annotated phrase assignment for the last stable range.

Problem 2 (Online top-k phrase assignment). The
online top-k phrase assignment over stable ranges is defined
as:

• Input: a text stream, T , and an admissibility thresh-
old Cclosed.

• Output: for each position I, compute the last mini-
mally stable range Mi (w.r.t. ACclosed

) and its top-k
phrase assignments over Mi.

By Definition 4, the solution to the problem is a stream of
frames ranging over minimally stable ranges, and containing
the top-k optimal phrase assignments ranked according to
the scoring function defined in Definition 5. In the case of
top-1, Problem 2 computes P ∗

I in a streamed fashion: it
yields a stream of segments of P ∗

I .

3.3 Open similarity
The score of a phrase indicates how well it matches enti-

ties in the database. However, we are interested in an online
solution that permits us to score phrases as they are being
presented in a stream, even if they are not yet complete.
This is particularly important for the case of online annota-
tion, for we do not have the entire text stream to analyze. To
do this, we use an additional score scoreo(p) to reflect how
well a phrase p partially matches entities in the database.
We refer to scoreo(p) as the open-score.

Definition 9 (Open similarity and open scores).
Let p be a phrase, and e ∈ E an entity. Let Words(p) and
Words(e) be, respectively, the words in the phrase and words
in the entity text value (split by white space). Define a bi-
partite graph G with weighted edges as:

• Nodes, V (G), of G are words in p and text(e).

• Edges, E(G), of G are Words(p)×Words(e).

• The weight of an edge (w,w′) is the similarity measure
Similarity(w,w′).

Let M ⊆ E(G) be the maximal matching in G. The open
similarity Similarityo(p, e) is given as:

Similarityo(p, e) = average{Similarity(w,w′) : (w,w′) ∈M}

The open score of p is the best possible open similarity:

scoreo(p) = max
e∈E

Similarityo(p, e)

In Definition 9, we assume that |Words(p)| = |Words(e)|
without loss of generality, for one can always pad either
Words(p) or Words(e) with slack words and set
Similarity(w,w′) = 0 if w or w′ is a slack word.

Example 4. Consider the phrase p = 〈‘mint’, ‘tea’〉,

and the entity e =

[

type : HOT DRINKS
text : ‘herbal tea: pepper mints’

Clearly, the two should have a high similarity measure (as
it is possible that p is extended into the entity text). How-
ever, if 3-gram is used, then the Jaccard similarity between p
and text(e) is only 0.28. The open similarity reflects a very
different story.

The graph G as in Definition 9 is as follows.6

‘mint’
0

rrrrrrrrrrr
0

0

LLLLLLLLLL

0.6
VVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVV
‘tea’

0hhhhhhhhhhhhhhhhhhh

1.0rrrrrrrrrrr

rrrrrrrrrrr

0

0

MMMMMMMMMMM

‘herbal’ ‘tea’ ‘pepper’ ‘mints’

The nodes are the words in p and the text value of e. The
weights on the edges are the Jaccard similarity between 3-
grams of the words. The maximum matching is the edges
with double lines.

Similarityo(p, e) = average{0.6, 1.0} = 0.8

We remark that the open similarity Similarityo(p, e) can
be computed exactly in O(n3) where n is the total word
count in p and text(e), using the Hungarian algorithm [7].

4. THE ALGORITHMIC SOLUTION
Before presenting an exact algorithm, we need to provide

definitions on how phrases and phrase assignments can be
extended.

Definition 10 (Phrase Extension with Threshold).
Let p = T (i, j) be a phrase, and wj be the word immediately
after p in the text stream. Let Copen > 0 be a constant.
Denote

Goodo(i, j) ≡ scoreo(i, j) ≥ Copen

6When constructing the set of words of a string, we use the
standard practice of removing non-alphanumerics (e.g. ‘:’),
and splitting by whitespace.
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Algorithm 1 All phrase assignments over stable ranges.

1: M ← {∅} {M is a frame}
2: for every position i in stream T do

3: try: M ′ =
⋃

P∈M P ⊕ wi

4: on success:

5: M ←M ′

6: on error: Not mergable
7: yield topk(M)
8: if Goodo(i, i+ 1) then

9: M = {(i, i+ 1)}
10: else
11: M = {∅}
12: end if

13: end for

Goodc(i, j) ≡ score(i, j) ≥ Cclosed

The non-deterministic phrase extension p⊕wj is defined as:

p⊕ wj = if Goodo(i, j + 1) then {T (i, j + 1)} else ∅
⋃

{T (i, k), T (k, j + 1) : i < k ≤ j and

Goodc(i, k) and Goodo(k, j + 1)}
⋃

{T (k, j + 1) : i < k ≤ j and

¬Goodc(i, k) and Goodo(k, j + 1)} (1)

Equation 1 includes three types of phrases: p merged with
wj , p split into two parts with the second part merged with
wj , and finally the case where part of p is merged with wj.
Let P be a phrase assignment over range T (I, J). The head,
head(P ), of P is the phrase assignment that consists of all
phrases in P except the last one, and the tail, tail(P ), of P
is the last phrase of P .

The non-deterministic phrase assignment extension to
word wJ is given by:

P ⊕ wJ = {head(P ) + P1 : P1 ∈ tail(P )⊕ wJ}

We omit the details of the pseudo code for computing the
phrase extension, p⊕w, and the phrase assignment extension
P ⊕ w, as they are implemented precisely as defined. The
only point to note is that P ⊕ w will raise a Not mergable
exception if P ⊕ w = ∅.

4.1 An exact solution
We first present an exact solution to Problem 2. Although

it correctly computes the stream of annotated phrase as-
signments over stable ranges, it fails to satisfy the constant
time/space complexity requirement. Nonetheless, it serves
as the core algorithm, based on which we will construct an
online version. The exact solution is shown in Algorithm 1.

Proposition 4.1 (Correctness). Algorithm 1 gener-
ates frames over all minimally stable ranges.

Proposition 4.2 (Maximal phrase length). Let
ℓ(E) = maxe∈E length(text(e)), where length is the length
in words. Then, for each phrase reported by Algorithm 1,
we have:

length(p) ≤

⌈

ℓ(E)

Copen

⌉

Proof Proof Outline. All p must be a tail phrase of
some P , thus, by Line 8 of Algorithm 1, it must have an open

score ≥ Copen. If length(p) ≥
⌈

ℓ(E)
Copen

⌉

, then it cannot match

with any entities and still have the required open score.

Algorithm 2 Online annotation

lines 1 . . . 5 of Algorithm 1
if width of M > Cframewidth then

yield {head(P ) : P ∈M}
M = {{tail(P )} : P ∈M}

end if

lines 6 . . . 13 of Algorithm 1

4.2 Online annotation
Given our emphasis on handling text streams with un-

bounded length, it is important that the entity annotation
algorithm have constant complexity when processing each
new word in the stream. Let the width of a frame be the
number of words of the corresponding minimally stable range.

Proposition 4.3. With a fixed entity database E, com-
puting p⊕w requires constant time. The time complexity of
Line 3. of Algorithm 1 is O(2n) where n is the width of M .

So, Algorithm 1 is not sufficient to handle streams with long
stable ranges. Generally, the width of a minimally stable
range is unbounded. Consider the entity database consist-
ing of movies and actors, and the stream ‘jack black jack

black jack ...’. Given the actor entity JACK BLACK
and the movie titled BLACK JACK, the entire stream has
one stable region.

For real-time and interactive entity annotation applica-
tions, there should also be a constant bound on the delay
between two consecutive frames yielded by the annotation
algorithm. Algorithm 1, however, does not have these prop-
erties. A frame M(I, J) is only yielded after the boundary
J of the stable range T (I, J). So, the delay would be J − I .

In order to make Algorithm 1 online and with a lower
bound on real-time delay, we construct an approximation al-
gorithm which yields a stream of possibly overlapping frames.
By sacrificing the disjointness property of the frames, we can
place a bound on the frame width. This is done by modify-
ing Algorithm 1 as shown in Algorithm 2. We refer to the
resulting algorithm as the online annotation algorithm.

Proposition 4.4. Each iteration in the for-loop of the
online annotation algorithm takes constant time and space.

Proof. By induction, it’s easy to see that cardinality of
M is bounded in each iteration, and therefore, M ′ can be
computed in constant time. The time and space complexity
is bounded by max |M | = Θ(2Cframewidth).

The bound seems rather excessive. However, our experi-
ments (Section 6, Figure 5(b)) show that, max |M | ≪ 2Cframewidth .
The reason is that, by using Copen to prune out invalid
phrase extensions, and Cclosed to reduce the number of ex-
tensions while computing p ⊕ w, we are able to reduce the
ambiguity of phrase assignments dramatically from the worst
case scenario.

The online annotation algorithm approximates frames over
minimally stable regions with frames that may overlap. The
following result places a bound on the amount of overlap.

Proposition 4.5. The overlap between the ranges cov-
ered by any two adjacent frames yielded by the online anno-

tation algorithm is bounded by a constant
[

ℓ(E)
Copen

]

.
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Proof Outline. From the construction of Algorithm 2,
two adjacent frames overlap by at most one phrase. By

Proposition 4.2, the phrase length is at most
[

ℓ(E)
Copen

]

.

4.3 Similarity, indexing and searching entities
So far, we have treated the similarity measure as a black

box. We also omitted details on the retrieval of entities to
form the non-deterministic entity annotation of the phrases
contributed by the online annotation algorithm.

We choose to utilize the Jaccard similarity of q-grams of
two strings as the string similarity. Let Gramsq(w) be the
q-grams of the word w. The string similarity is given as:

Similarity(w,w′) =
Gramsq(w) ∩Gramsq(w

′)

Gramsq(w) ∪Gramsq(w′)

Given a choice of q, entities are indexed as documents. Terms
of the document for an entity e are the q-grams of text(e),
and they are stored in an inverted list text index [9]. The in-
dex supports very efficient implementation of a search func-
tion, defined as:

Search : Text × R→ Pscore(E)

: (w, c) 7→ {(e, Similarity(s, text(e)) :

e ∈ E and Similarity(q, text(e)) ≥ c}

Recall that the online annotation algorithm computes the
scores score(i, j) of various phrases p = T (i, j) when comput-
ing the extensions P⊕w (Line 3 in Algorithm 1). We memo-
ize the search results during the computation for score(i, j).
Let H be a hash table used to store the memoization. The
entry H [i, j] stores the search result Search(T (i, j), Cclosed).
The score score(i, j) is computed as in Algorithm 3. The

Algorithm 3 Score(i, j)

1: if H [i, j] is undefined then

2: H [i, j]← Search(T (i, j), Cclosed)
3: end if

4: return max{Similarity(T (i, j), e) : e ∈ H [i, j]}

search operator is relatively expensive because it requires
access to the external disk-based index. In order to speed
up the search and further utilize existing memoized search
results, we introduce a technique to approximate score(i, j)
by recycling the search results of other relevant phrases in
the cache. If H [i, j] is undefined, instead of committing to a
disk access search immediately, we check to see if an approx-
imation to the search result can be constructed from other
entries in H . If by recycling cached search results, we have
achieved high enough matching, then the approximation is
returned, otherwise a disk-based search is issued. The search
approximation algorithm is shown in Algorithm 4.

The computation of the open scores scoreo(i, j) is done
similarly. The only differences are to replace Cclosed with
Copen, and to use the maximal-matching based open simi-
larity measure when comparing strings.

The runtime constants Cclosed and Copen in the algorithms
control the precision and runtime. Figure 1 gives some typ-
ical values that are shown to work well in the experiments
of Section 6.

5. ADAPTIVE ONLINE ANNOTATION
By adaptive online annotation, we mean to design the on-

line annotation algorithm so that it can adapt to changes in

Algorithm 4 Approximate-search(T (i, j), Cclosed)

1: if H[i, j] is undefined then
2: if ∃k ∈ [i, j), H[i, k] or H[k, j] is defined then

3: H[i, j]←
⋃

k∈(i,j){e ∈ H[i, k] ∪H[k, j] :

4: Similarity(T (i, j), text(e)) ≥ Cclosed}
5: end if

6: if H[i, j] is undefined
7: or (maxe∈H[i,j] Similarity(T (i, j), e)) ≤ Capxsearch

8: then

9: H[i, j]← Search(T (i, j), Cclosed)
10: end if

11: end if

12: return H[i, j]

Parameter Effect Discretized val-
ues

Cclosed Increasing (decreasing) effi-
ciency - reducing (improv-
ing) recall

0.5, 0.6, . . . , 1.0

Copen Increasing (decreasing) effi-
ciency - reducing (improv-
ing) precision and recall

0.3, 0.4, . . . , 1.0

Cframewidth Improving efficiency (and
accuracy), increasing the
memory requirement

10, 15, . . . , 30

Capproxsearch Exact is inefficient but ac-
curate, approximate is fast
but reduces accuracy.

0.0, 0.1, . . . , 1.0

q-gram Increasing q improves effi-
ciency, q > 3 may result in
loss of accuracy

3, 4, 5,∞, (re-
stricted to
the available
indices).

Figure 1: Summary of runtime parameters

the run-time environment, user preferences and search pat-
terns. Run-time changes include varying word rate of the
text stream and the varying processing speed of the CPU.
We wish to design the annotation algorithm to self-adjust
to these changes. For instance, if the text stream speeds up,
the annotation algorithm can still keep up with the annota-
tion by sacrificing in accuracy. Conversely, if the text stream
slows down, the annotation algorithm should automatically
spend more time in processing to improve the accuracy. User
preferences and search patterns allow the online annotation
algorithm to personalize the search to individual users. User
preference allows certain types of entities to be favored, af-
fecting the rank of the non-deterministic entity annotations
of the phrases. Search patterns allow the online annota-
tion algorithm to identify historically popular patterns in the
stream, and use them to better predict the non-deterministic
phrase assignments.

5.1 Runtime adaptation via parameter tuning
There are a number of runtime parameters that affect

the time and accuracy of the annotation algorithm. We
summarize them in Figure 1. Assume that each param-
eter is selected from a finite discrete collection. For ex-
ample, the threshold value Cclosed is to be selected from
{0.5, 0.6, . . . , 1.0}. Let {αk} be the runtime parameters,
and X(αi) be the choices of αi. A runtime configuration
is a tuple ~v ∈

∏

k
X(αi). Define the configuration space

X =
∏

k
X(αi). Based on the performance of the online

entity annotation algorithm, we wish to dynamically adjust
the configuration to (1) minimize the delay of annotations
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and (2) maximize the accuracy of the annotations. For each
parameter αi, can be sorted using an ordering function ≺
from low values that improve accuracy (but the algorithm
runs slow) to high values that reduce accuracy (but the al-
gorithm runs fast). For instance, Cclosed = 0.5 allows ap-
proximate string matching, which increases the size of p⊕w
thus making the annotation algorithm slower. On the other
hand, Cclosed = 1.0 uses exact string matching, reducing
p ⊕ w, possibly missing relevant entities, but improves the
time complexity of the algorithm. Thus, it is desirable to se-
lect the small values w.r.t. ≺ from a set of possible settings
Xi while ensuring a minimal performance of the annotation
given by the word rate of the text stream. If one is able to
observe the resulting accuracy, a multi-variable closed loop
controller can be designed using feedback control. However,
this is not possible for our scenario, as we cannot realisti-
cally expect the user to provide query feedback for all non-
deterministically annotated frames. We propose an open-
loop best-effort controller.

First, we group the parameters into two groups:

C1 = {Copen, Cclosed, Cframewidth, Capproxsearch}

C2 = {q-gram}

The first group C1 are parameters that are easily updat-
able, incurring no overhead or external behavioural changes.
In contrast, the choice of q requires the search function to
use a different text index, so there is significant overhead
associated with updates to the value of q at runtime.

We define Zorder(X1, X2, . . . , Xk) to be the z-ordering
[11] of the ordered sets Xi. Z-ordering in a multidimen-
sional grid has the desirable property that it will equally
enumerate over values in each Xi from small to large.
We define Lexico(X1, X2, . . . , Xk) to be the lexicographical
ordering of the ordered sets Xi. Lexico(X1, X2) will ex-
haust all possibilities in X1 before changing the values in X2,
thus, at runtime, the adaption of parameters in the order of
Lexico(X1, X2) has the desirable property that X2 remains
fixed for as long as possible. Using Zorder and Lexico, we
linearly order the entire multidimensional parameter space
into a single dimension:

(X ,≺) = Lexico(Zorder(C1),C2)

The adaptive parameter selection algorithm uses the linear
ordering to select the next runtime parameter. It detects
the current text word rate, and the annotation rate, and
updates the current runtime parameter by either choosing
smaller values or larger values in (X ,≺).

rtext = current word rate of the text stream

rentity = word rate in the past N frames

~v = values of the current runtime parameter

~v′ =







next in (X ,≺) if rtext − rentity > ∆r
previous in (X ,≺) if rentity − rtext > ∆r
~v otherwise

where N is the window size used to estimate the word rate
of the annotation algorithm, and ∆r is the threshold for
changing the the run-time parameter.

5.2 User preference
Generally, the database of entities span over multiple types.

For example, in the IMDB data set, we have entity types
MOVIE, ACTOR, LOCATION, TRIVIA, etc. Users have
different preferences over the types of entities. A typical
user may only be interested in the movie and actor entities,
while a movie buff may be interested in the trivia and loca-
tion entities as well. Users may also exhibit certain search
patterns out of habit. For instance, one user may have the
habit of mentioning a list of actors and then movies, while
another user may list movies and actors in random order.
In this section, we present the modeling of user preferences
and search patterns, training methods and how they are
incorporated into the online entity search algorithm. For
feedback training, we assume the user will select the correct
phrase assignment P ∗

M over each region M in the stream.
Furthermore, the user will also indicate the correct entity
annotation for each phrase in P ∗. Given that the search
algorithm yields a stream of regions, we choose to concate-
nate P ∗ = P ∗

M1
+ P ∗

M2
+ · · · . Since each phrase p ∈ P ∗ is

assumed to have been disambiguated into a unique entity
e∗p, we assume that the user feedback is a list of entities E∗.

The user preference is modeled as a simple preference
function:

pref : Types(E)→ R
+

Training: Given that we have the list of entities E∗, it is
easy to train for a preference function. We apply Laplace’s
law [10] for unobserved entity types:

pref(t) =
|{e ∈ E∗ : type(e) = t}|+ 1

|E∗|+ |Types(E)|

Preference based search: The similarity measure be-
tween closed phrases and an entity is modified to be:

Similarity(T (i, j), e|pref)

= Similarity(T (i, j), text(e)) · pref(type(e))

The search algorithm simply utilizes the preference specific
similarity function.

6. IMPLEMENTATIONANDEXPERIMEN-

TAL EVALUATIONS
We have conducted extensive experimental evaluation on

the implementation of our online entity annotation algo-
rithm against a variety of data sets. The algorithm is imple-
mented in Python. We used the open source search engine,
Xapian7, to implement the search function in Section 4.3.
We modified Xapian’s ranking function to rank the search
results according to the Jaccard similarity measure. In order
to also compute the open similarity measure, we perform ad-
hoc re-ranking, when necessary, inside the Python program.

The data sets. We have collected three data sets to
evaluate the algorithm. They are listed in Figure 3. IMDB
consists of entity types: movies, actors, actresses and pro-
duction companies. The Companies data set consists of
nine different entity types ranging from companies, prod-
ucts, employees, boards of directors, etc. The final data set
is an undergraduate teaching schedule consisting of course
code, course title, description, room number, and instructor
names, etc.

Experimental design. From the data sets, we gener-
ate a text stream consisting of entity names (altered with

7The Xapian Project: http://xapian.org
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Figure 2: Precision with respect to top-k phrase assignments

Data set # of entities # of types
IMDB 2,300 K 4
Companies 77 K 9
University course info. 6 K 8

Figure 3: Data sets used

spelling errors and truncation). Entities are randomly sam-
pled from the data sets, and their text values are altered by
permutation of randomly selected letters by substitution or
deletion. The probability of permutation is referred to as the
spelling error. This is to simulate the spelling errors for hu-
manly generated text streams. The resulting text stream is
processed by the online entity annotation algorithm. Based
on the annotated frames generated by the algorithm, we
measure the precision and recall of the annotation, and the
performance of the annotation. The runtime parameters are
varied to evaluate the effect of the parameter tuning on the
performance of the algorithm. We have also experimented
with the user preference learning (Section 5.2) and its ef-
fect on precision. Unless otherwise specified, the default
values used for the runtime parameters are: Cclosed = 0.6,
Copen = 0.4, Cframewidth = 20.

Precision and recall. Recall that the annotation algo-
rithm yields a stream of frames. Each frame consists of a
ranked list of phrase assignments. The k-correctness of each
frame, as a function of an integer k > 0, is defined as fol-
lows: if any of the top-k phrase assignment matches with the
sampled entities in the same stream range, then the frame
is correct; otherwise, the frame is incorrect. The k-precision
is the percentage of correct matches. Similarly, the k-recall
is the percentage of sampled entities that are found in the
top-k phrase assignment of the corresponding frame.

Experimental results. The precision for different k val-
ues for all data sets are shown in Figure 2. The recall values
are quite similar, so we omitted the plots. In Figure 2, we
have also included the k-precision of always using disk-based
index search, always recycling previously cached search re-
sult, and the hybrid of Capproxsearch = 0.6. One can see that
the hybrid search (with recycling previous results) yields
comparable accuracy comparing to the more costly naive
method.

Since, we are dealing with approximate string matching,
our annotation algorithm can handle spelling error intro-
duced by human errors. The precision and recall for differ-
ent spelling errors of the IMDB based text stream is shown
in Figure 4(a).

The histogram performance of the annotation algorithm
for the IMDB data set is shown if Figure 5(a). The x-axis is

the time it takes to process each additional word (seconds),
and the y-axis is the normalized count over 1000 words. One
can see that approximate search by recycling dramatically
improves the rate of annotation.

We experimented with the effect of runtime parameters
on the precision, recall and annotation rate of the algorithm.
Figure 4(b) shows the effect of Cclosed on the precision and
recall (with k = 1). Note, by increasing Cclosed close to 1.0,
it greatly improves the precision because it requires stronger
string similarity, and thus recall is greater deduced.

Figure 5(b) shows the distribution of the number of phrase
assignments in frames (frame cardinality) for the IMDB
stream with the Cframewidth = 50. (Distributions for Uni-
versity and Company data sets are similar, hence omitted.)
Recall from Section 4, the cardinality is loosely bounded by
2Cframewidth . The actual observations show that, in practice,
the cardinality is quite small.

In order to study the effect of parameter tuning to trade
precision for speed, we have sampled the parameter space
X =

∏

k
(X(αi), where X(αi) is the discretized parame-

ter values of parameter αi (Section 5.1). For each random
sampled setting, we measured the resulting precision and
annotation rate (words/second). The result is plotted in
Figure 5(c). The most effective parameter to improve an-
notation rate is Capproxsearch, showing that recycling search
results is an important method to boost the search speed.

Finally, we experimented with learning of user preferences.
For the IMDB database, we restricted the samples of enti-
ties to only actor names, thus excluding movies and actress
names. Without learning the user preference, the search
function returns results containing all entity types, thus re-
ducing the precision. By learning the user preference, the
similarity measures of the entities that are not actor names
are greatly suppressed, and are eliminated by the thresh-
old Cclosed. Figure 4(c) shows that, with learning, we can
improve precision greatly.

7. CONCLUSION AND FUTURE WORK
We have presented an online entity annotation algorithm

which correlates an unbounded text stream with databases
of entities by means of non-deterministic annotation. Our
algorithm produces frames which non-deterministically iden-
tify interesting phrases in the stream along with relevant en-
tities in a ranked order. Our work distinguishes itself from
existing literature by performing entity annotation in a com-
pletely online fashion. The algorithm is capable of adapting
to varying text word rate by trading off precision with per-
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Figure 5: Runtime evaluation of the annotation

formance. The algorithm can also learn the user preference
if query feedback is available.

Currently, we do not consider relations among entities.
However, in many applications, entity relations are also an
important factor in deciding the relevance of an entity. For
future work, we would like to extend the scoring function
and the online algorithm to incorporate known relations of
entities.
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