
Cartesian k-means

Mohammad Norouzi David J. Fleet

Department of Computer Science

University of Toronto

{norouzi,fleet}@cs.toronto.edu

Abstract
A fundamental limitation of quantization techniques like

the k-means clustering algorithm is the storage and run-

time cost associated with the large numbers of clusters re-

quired to keep quantization errors small and model fidelity

high. We develop new models with a compositional param-

eterization of cluster centers, so representational capacity

increases super-linearly in the number of parameters. This

allows one to effectively quantize data using billions or tril-

lions of centers. We formulate two such models, Orthogonal

k-means and Cartesian k-means. They are closely related to

one another, to k-means, to methods for binary hash func-

tion optimization like ITQ [5], and to Product Quantization

for vector quantization [7]. The models are tested on large-

scale ANN retrieval tasks (1M GIST, 1B SIFT features), and

on codebook learning for object recognition (CIFAR-10).

1. Introduction and background

Techniques for vector quantization, like the well-known

k-means algorithm, are used widely in vision and learning.

Common applications include codebook learning for object

recognition [16], and approximate nearest neighbor (ANN)

search for information retrieval [12, 14]. In general terms,

such techniques involve partitioning an input vector space

into multiple regions {Si}ki=1, mapping points x in each

region into region-specific representatives {ci}ki=1, known

as centers. As such, a quantizer, q(x), can be expressed as

q(x) =

k
∑

i=1

1(x∈Si) ci , (1)

where 1(·) is the usual indicator function.

The quality of a quantizer is expressed in terms of ex-

pected distortion, a common measure of which is squared

error ‖x − q(x)‖22. In this case, given centers {ci}, the re-

gion to which a point is assigned with minimal distortion is

obtained by Euclidean nearest neighbor (NN) search. The

k-means algorithm can be used to learn centers from data.

To reduce expected distortion, crucial for many appli-

cations, one can shrink region volumes by increasing k,

the number of regions. In practice, however, increasing k

results in prohibitive storage and run-time costs. Even if

one resorts to ANN search with approximate k-means [14]

or hierarchical k-means [12], it is hard to scale to large k
(e.g., k = 264), as storing the centers is untenable.

This paper concerns methods for scalable quantization

with tractable storage and run-time costs. Inspired by Prod-

uct Quantization (PQ), a state-of-the-art algorithm for ANN

search with high-dimensional data (e.g., [7]), composition-

ality is one key. By expressing data in terms of recurring,

reusable parts, the representational capacity of composi-

tional models grows exponentially in the number of parame-

ters. Compression techniques like JPEG accomplish this by

encoding images as disjoint rectangular patches. PQ divides

the feature space into disjoint subspaces that are quantized

independently. Other examples include part-based recogni-

tion models (e.g., [18]), and tensor-based models for style-

content separation (e.g., [17]). Here, with a compositional

parameterization of region centers, we find a family of mod-

els that reduce the encoding cost of k centers down from k
to between log2 k and

√
k. A model parameter controls the

trade-off between model fidelity and compactness.

We formulate two related algorithms, Orthogonal k-

means (ok-means) and Cartesian k-means (ck-means).

They are natural extensions of k-means, and are closely re-

lated to other hashing and quantization methods. The ok-

means algorithm is a generalization of the Iterative Quan-

tization (ITQ) algorithm for finding locality-sensitive bi-

nary codes [5]. The ck-means model is an extension of ok-

means, and can be viewed as a generalization of PQ.1

We then report empirical results on large-scale ANN

search tasks, and on codebook learning for recognition. For

ANN search we use datasets of 1M GIST and 1B SIFT fea-

tures, with both symmetric and asymmetric distance mea-

sures on the latent codes. We consider codebook learning

for a generic form of recognition on CIFAR-10.

2. k-means

Given a dataset of n p-dim points, D ≡ {xj}nj=1, the k-

means algorithm partitions the n points into k clusters, and

1A very similar generalization of PQ, was developed concurrently by

Ge, He, Ke and Sun, and also appears in CVPR 2013 [4].

1

represents each cluster by a center point. Let C ∈ R
p×k

be a matrix whose columns comprise the k cluster centers,

i.e., C = [c1, c2, · · · , ck]. The k-means objective is to min-

imize the within-cluster squared distances:

ℓk-means(C) =
∑

x∈D

min
i
‖x− ci‖22

=
∑

x∈D

min
b∈H1/k

‖x− Cb‖22 (2)

where H1/k≡{b |b∈{0, 1}k and ‖b‖=1}, i.e., b is a bi-

nary vector comprising a 1-of-k encoding. Lloyd’s k-means

algorithm [11] finds a local minimum of (2) by iterative, al-

ternating optimization with respect to C and the b’s.

The k-means model is simple and intuitive, using NN

search to assign points to centers. The assignment of points

to centers can be represented with a log k-bit index per data

point. The cost of storing the centers grows linearly with k.

3. Orthogonal k-means with 2m centers

With a compositional model one can represent clus-

ter centers more efficiently. One such approach is to re-

construct each input with an additive combination of the

columns of C. To this end, instead of the 1-of-k encoding in

(2), we let b be a general m-bit vector, b ∈ Hm≡{0, 1}m,

and C ∈ R
p×m. As such, each cluster center is the sum of a

subset of the columns of C. There are 2m possible subsets,

and therefore k = 2m centers. While the number of param-

eters in the quantizer is linear in m, the number of centers

increases exponentially.

While efficient in representing cluster centers, the ap-

proach is problematic, because solving

b̂ = argmin
b∈Hm

‖x− Cb‖22 , (3)

is intractable; i.e., the discrete optimization is not submodu-

lar. Obviously, for small 2m one could generate all possible

centers and then perform NN search to find the optimal so-

lution, but this would not scale well to large values of m.

One key observation is that if the columns of C are or-

thogonal, then optimization (3) becomes tractable. To ex-

plain this, without loss of generality, assume the bits belong

to {−1, 1} instead of {0, 1}, i.e., b′ ∈ H′
m ≡ {−1, 1}m.

Then,

‖x− Cb
′‖22 = x

T
x+ b

′TCTCb
′ − 2xTCb

′ . (4)

For diagonal CTC, the middle quadratic term on the RHS

becomes trace(CTC), independent of b
′. As a conse-

quence, when C has orthogonal columns,

argmin
b′∈H′

m

‖x− Cb
′ ‖22 = sgn(CT

x) , (5)

where sgn(·) is the element-wise sign function.

[

+1
+1

][

−1
+1

]

[

+1
−1

][

−1
−1

]

[

−1
+1

]

[

−1
−1

]

[

+1
+1

]

[

+1
−1

]

Figure 1. Two quantizations of 2D data (red ×’s) by ok-means.

Cluster centers are depicted by dots, and cluster boundaries by

dashed lines. (Left) Clusters formed by a 2-cube with no rotation,

scaling or translation; centers = {b′|b′ ∈ H′

2}. (Right) Rotation,

scaling and translation are used to reduce distances between data

points and cluster centers; centers = {µ+RDb
′ | b′ ∈ H′

2}.

To reduce quantization error further we can also intro-

duce an offset, denoted µ, to translate x. Taken together

with (5), this leads to the loss function for the model we

call orthogonal k-means (ok-means):2

ℓok-means(C, µ) =
∑

x∈D

min
b′∈H′

m

‖x− µ− Cb
′‖22 . (6)

Clearly, with a change of variables, b′ = 2b−1, we can de-

fine new versions of µ and C, with identical loss, for which

the unknowns are binary, but in {0, 1}m.

The ok-means quantizer encodes each data point as a ver-

tex of a transformed m-dimensional unit hypercube. The

transform, via C and µ, maps the hypercube vertices onto

the input feature space, ideally as close as possible to the

data points. The matrix C has orthogonal columns and

can therefore be expressed in terms of rotation and scal-

ing; i.e., C ≡ RD, where R ∈ R
p×m has orthonormal

columns (RTR = Im), and D is diagonal and positive def-

inite. The goal of learning is to find the parameters, R, D,

and µ, which minimize quantization error.

Fig. 1 depicts a small set of 2D data points (red x’s) and

two possible quantizations. Fig. 1 (left) depicts the vertices

of a 2-cube with C = I2 and zero translation. The cluster

regions are simply the four quadrants of the 2D space. The

distances between data points and cluster centers, i.e., the

quantization errors, are relatively large. By comparison,

Fig. 1 (right) shows how a transformed 2-cube, the full

model, can greatly reduce quantization errors.

3.1. Learning okmeans

To derive the learning algorithm for ok-means we first re-

write the objective in matrix terms. Given n data points, let

X = [x1,x2, · · · ,xn] ∈ R
p×n. Let B′ ∈ {−1, 1}m×n de-

note the corresponding cluster assignment coefficients. Our

2While closely related to ITQ, we use the term ok-means to emphasize

the relationship to k-means.

goal is to find the assignment coefficients B′ and the trans-

formation parameters, namely, the rotation R, scaling D,

and translation µ, that minimize

ℓok-means(B
′, R,D, µ) = ‖X − µ1T −RDB′‖2f (7)

= ‖X ′ −RDB′‖2f (8)

where ‖·‖f denotes the Frobenius norm, X ′ ≡ X − µ1T, R
is constrained to have orthonormal columns (RTR = Im),

and D is a positive diagonal matrix.

Like k-means, coordinate descent is effective for opti-

mizing (8). We first initialize µ and R, and then iteratively

optimize ℓok-means with respect to B′, D, R, and µ:

• Optimize B′ and D: With straightforward algebraic ma-

nipulation, one can show that

ℓok-means = ‖RTX ′−DB′‖2f + ‖R⊥T

X ′‖2f , (9)

where columns of R⊥ span the orthogonal complement

of the column-space of R (i.e., the block matrix [R R⊥]
is orthogonal).

It follows that, given X ′ and R, we can optimize the first

term in (9) to solve for B′ and D. Here, DB′ is the least-

squares approximation to RTX ′, where RTX ′ and DB′

are m×n. Further, the ith row of DB′ can only contain

elements from {−di,+di} where di = Dii. Wherever

the corresponding element of RTX ′ is positive (negative)

we should put a positive (negative) value in DB′. The

optimal di is determined by the mean absolute value of

the elements in the ith row of RTX ′:

B′ ← sgn
(

RTX ′
)

(10)

D ← Diag(mean
row

(abs(RTX ′))) (11)

• Optimize R: Using the original objective (8), find R that

minimizes ‖X ′ −RA‖2f , subject to RTR = Im, and

A ≡ DB′. This is equivalent to an Orthogonal Procrustes

problem [15], and can be solved exactly using SVD. In

particular, by adding p −m rows of zeros to the bottom

of D, DB becomes p× n. Then R is square and orthog-

onal and can be estimated with SVD. But since DB is

degenerate we are only interested in the first m columns

of R; the remaining columns are unique only up to rota-

tion of the null-space.)

• Optimize µ: Given R, B′ and D, the optimal µ is given

by the column average of X−RDB′:

µ ← mean
colum

(X−RDB′) (12)

3.2. Approximate nearest neighbor search

One application of scalable quantization is ANN search.

Before introducing more advanced quantization techniques,

we describe some experimental results with ok-means on

Euclidean ANN search. The benefits of ok-means for ANN

search are two-fold. Storage costs for the centers is reduced

to O(log k), from O(k) with k-means. Second, substantial

speedups are possible by exploiting fast methods for NN

search on binary codes in Hamming space (e.g., [13]).

Generally, in terms of a generic quantizer q(·), there are

two natural ways to estimate the distance between two vec-

tors, v and u [7]. Using the Symmetric quantizer distance

(SQD) ‖v−u‖ is approximated by ‖q(v)−q(u)‖. Using the

Asymmetric quantizer distance (AQD), only one of the two

vectors is quantized, and ‖v−u‖ is estimated as ‖v−q(u)‖.
While SQD might be slightly faster to compute, AQD in-

curs lower quantization errors, and hence is more accurate.

For ANN search, in a pre-processing stage, each

database entry, u, is encoded into a binary vector corre-

sponding to the cluster center index to which u is assigned.

At test time, the queries may or may not be encoded into

indices, depending on whether one uses SQD or AQD.

In the ok-means model, the quantization of an input x is

straightforwardly shown to be

qok(x) = µ+RD sgn(RT(x− µ)) . (13)

The corresponding m-bit cluster index is sgn(RT(x − µ)).
Given two indices, namely b

′
1,b

′
2 ∈ {−1,+1}m, the sym-

metric ok-means quantizer distance is

SQDok(b
′
1,b

′
2) = ‖µ+RDb

′
1 − µ−RDb

′
2‖

2
2

= ‖D(b′
1 − b

′
2)‖22 . (14)

In effect, SQDok is a weighted Hamming distance. It is

the sum of the squared diagonal entries of D correspond-

ing to bits where b
′
1 and b

′
2 differ. Interestingly, in our

experiments with ok-means, Hamming and weighted Ham-

ming distances yield similar results. Thus, in ok-means ex-

periments we simply report results for Hamming distance,

to facilitate comparisons with other techniques. When the

scaling in ok-means is constrained to be isotropic (i.e., D =
αIm for α ∈ R

+), then SQDok becomes a constant multi-

ple of the usual Hamming distance. As discussed in Sec. 5,

this isotropic ok-means is closely related to ITQ [5].

The ok-means AQD between a feature vector x and a

cluster index b
′, is defined as

AQDok(x,b
′) = ‖x− µ−RDb

′‖22
= ‖RT

x
′ −Db

′‖22 + ‖R⊥T

x
′‖22 , (15)

where x′ = x−µ. For ANN search, in comparing distances

from query x to a dataset of binary indices, the second term

on the RHS of (15) is irrelevant, since it does not depend on

b
′. Without this term, AQDok becomes a form of asymmet-

ric Hamming (AH) distance between RT
x
′ and b

′. While

previous work [6] discussed various ad hoc AH distance

measures for binary hashing, interestingly, the optimal AH

distance for ok-means is derived directly in our model.

 1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1
1M SIFT, 64−bit encoding (k = 2

64
)

R
e

c
a

ll@
R

R

PQ (AD)
ok−means (AH)
ITQ (AH)
ok−means (H)
ITQ (H)

Figure 2. Euclidean ANN retrieval results for different methods

and distance functions on the 1M SIFT dataset.

3.3. Experiments with okmeans

Following [7], we report ANN search results on 1M

SIFT, a corpus of 128D SIFT descriptors with disjoint sets

of 100K training, 1M base, and 10K test vectors. The train-

ing set is used to train models. The base set is the database,

and the test points are queries. The number of bits m is

typically less than p, but no pre-processing is needed for di-

mensionality reduction. Rather, to initialize learning, R is

a random rotation of the first m principal directions of the

training data, and µ is the mean of the data.

For each query we find R nearest neighbors, and com-

pute Recall@R, the fraction of queries for which the

ground-truth Euclidean NN is found in the R retrieved

items. Fig. 2 shows the Recall@R plots for ok-means with

Hamming (H) ≈ SQDok and asymmetric Hamming (AH)

≡ AQDok distance, vs. ITQ [5] and PQ [7]. The PQ

method exploits a more complex asymmetric distance func-

tion denoted AD ≡ AQDck (defined in Sec. 6.1). Note first

that ok-means improves upon ITQ, with both Hamming and

asymmetric Hamming distances. This is due to the scal-

ing parameters (i.e., D) in ok-means. If one is interested in

Hamming distance efficient retrieval, ok-means is prefered

over ITQ. But better results are obtained with the asymmet-

ric distance function.

Fig. 2 also shows that PQ achieves superior recall rates.

This stems from its joint encoding of multiple feature di-

mensions. In ok-means, each bit represents a partition of the

feature space into two clusters, separated by a hyperplane.

The intersection of m orthogonal hyperplanes yields 2m re-

gions. Hence we obtain just two clusters per dimension,

and each dimension is encoded independently. In PQ, by

comparison, multiple dimensions are encoded jointly, with

arbitrary numbers of clusters. PQ thereby captures statis-

tical dependencies among different dimensions. We next

extend ok-means to jointly encode multiple dimensions.

4. Cartesian k-means

In the Cartesian k-means (ck-means) model, each region

center is expressed parametrically as an additive combina-

tion of multiple subcenters. Let there be m sets of subcen-

d4

d3

d1

d5d2

d
′

2

d
′

1 d
′

4

d
′

3

d
′

5

qck() =

[

d4

d
′

3

]

qck() =

[

d1

d
′

5

]

qck() =

[

d3

d
′

1

]

Figure 3. Depiction of Cartesian quantization on 4D data, with

the first (last) two dimensions sub-quantized on the left (right).

Cartesian k-means quantizer denoted qck, combines the sub-

quantizations in subspaces, and produces a 4D reconstruction.

ters, each with h elements.3 Let C(i) be a matrix whose

columns comprise the elements of the ith subcenter set;

C(i) ∈ R
p×h. Finally, assume that each cluster center, c,

is the sum of exactly one element from each subcenter set:

c =

m
∑

i=1

C(i)
b
(i) , (16)

where b
(i) ∈ H1/h is a 1-of-h encoding.

As a concrete example (see Fig. 3), suppose we are given

4D inputs, x∈R4, and we split each datum into m=2 parts:

z
(1) =

[

I2 0
]

x , and z
(2) =

[

0 I2

]

x . (17)

Then, suppose we quantize each part, z(1) and z
(2), sepa-

rately. As depicted in Fig. 3 (left and middle), we could use

h = 5 subcenters for each one. Placing the corresponding

subcenters in the columns of 4×5 matrices C(1) and C(2),

C(1) =

[

d1 d2 d3 d4 d5

02×5

]

, C(2) =

[

02×5

d
′
1 d

′
2 d

′
3 d

′
4 d

′
5

]

,

we obtain a model (16) that provides 52 possible centers

with which to quantize the data.

More generally, the total number of model centers is

k = hm. Each center is a member of the Cartesian product

of the subcenter sets, hence the name Cartesian k-means.

Importantly, while the number of centers is hm, the number

of subcenters is only mh. The model provides a super-linear

number of centers with a linear number of parameters.

The learning objective for Cartesian k-means is

ℓck-means(C) =
∑

x∈D

min
{b(i)}m

i=1

∥

∥

∥
x−

m
∑

i=1

C(i)
b
(i)
∥

∥

∥

2

2
(18)

where b
(i) ∈ H1/h, and C ≡ [C(1), · · · , C(m)] ∈ R

p×mh.

If we let bT ≡ [b(1)T, · · · ,b(m)T] then the second sum in

(18) can be expressed succinctly as Cb.

3While here we assume a fixed cardinality for all subcenter sets, the

model is easily extended to allow sets with different cardinalities.

The key problem with this formulation is that the min-

imization of (18) with respect to the b
(i)’s is intractable.

Nevertheless, motivated by orthogonal k-means (Sec. 3),

encoding can be shown to be both efficient and exact if we

impose orthogonality constraints on the sets of subcenters.

To that end, assume that all subcenters in different sets are

pairwise orthogonal; i.e.,

∀i, j | i 6= j C(i)TC(j) = 0h×h . (19)

Each subcenter matrix C(i) spans a linear subspace of Rp,

and the linear subspaces for different subcenter sets do not

intersect. Hence, (19) implies that only the subcenters in

C(i) can explain the projection of x onto the C(i) subspace.

In the example depicted in Fig. 3, the input features are

simply partitioned (17), and the subspaces clearly satisfy

the orthogonality constraints. It is also clear that C ≡
[C(1) C(2)] is block diagonal, with 2×5 blocks, denoted

D(1) and D(2). The quantization error therefore becomes

∥

∥x− Cb
∥

∥

2

2
=

∥

∥

∥

[

z
(1)

z
(2)

]

−
[

D(1) 0
0 D(2)

] [

b
(1)

b
(2)

]

∥

∥

∥

2

=
∥

∥

∥
z
(1)−D(1)

b
(1)

∥

∥

∥

2

+
∥

∥

∥
z
(2)−D(2)

b
(2)

∥

∥

∥

2

.

In words, the squared quantization error is the sum of the

squared errors on the subspaces. One can therefore solve for

the binary coefficients of the subcenter sets independently.

In the general case, assuming (19) is satisfied, C can

be expressed as a product RD, where R has orthonormal

columns, and D is block diagonal; i.e., C = RD where

R = [R(1)
, · · · , R(m)] , and D=

D(1) 0 . . . 0

0 D(2) 0
...

. . .
...

0 0 . . . D(m)

, (20)

and hence C(i)=R(i)D(i). With si≡rank(C(i)), it follows

that D(i) ∈ R
si×h and R(i) ∈ R

p×si . Clearly,
∑

si ≤ p,

because of the orthogonality constraints.

Replacing C(i) with R(i)D(i) in the RHS of (18), we find

∥

∥x−Cb
∥

∥

2

2
=

m
∑

i=1

∥

∥z
(i)−D(i)

b
(i)
∥

∥

2

2
+ ‖R⊥T

x‖22 , (21)

where z(i)≡R(i)T
x, and R⊥ is the orthogonal complement

of R. This shows that, with orthogonality constraints (19),

the ck-means encoding problem can be split into m inde-

pendent sub-encoding problems, one for each subcenter set.

To find the b
(i) that minimizes

∥

∥z
(i)−D(i)

b
(i)
∥

∥

2

2
, we

perform NN search with z
(i) against h si-dim vectors in

D(i). This entails a cost of O(hsi). Fortunately, all the el-

ements of b can be found very efficiently, in O(hs), where

s ≡ ∑

si. If we also include the cost of rotating x to

method #centers #bits cost cost(s)

ok-means 2m m O(mp) O(mp)

ck-means hm m log h
O(p2 + hp) O(ps+hs) or

or O(mhp) O(ps+mhs)

k-means k log k O(kp) O(ps+ ks)

Table 1. A summery of ok-means, ck-means, and k-means in terms

of number of centers, number of bits needed for indices (i.e., log
#centers), and the storage cost of representation, which is the same

as the encoding cost to convert inputs to indices. The last column

shows the costs given an assumption that C has a rank of s ≥ m.

obtain each z
(i), the total encoding cost is O(ps+ hs),

i.e., O(p2+hp). Alternatively, one could perform NN search

in p-dim C(i)’s, to find the b(i)’s, which costs O(mhp). Ta-

ble 1 summerizes the models in terms of their number of

centers, index size, and cost of storage and encoding.

4.1. Learning ckmeans

We can re-write the ck-means objective (18) in matrix

form with the Frobenius norm; i.e.,

ℓck-means(R,D,B) = ‖X −RDB ‖2f (22)

where the columns of X and B comprise the data points

and the subcenter assignment coefficients. The input to the

learning algorithm is the training data X , the number of

subcenter sets m, the cardinality of the subcenter sets h,

and an upper bound on the rank of C, i.e., s. In practice,

we also let each rotation matrix R(i) have the same number

of columns, i.e., si = s/m. The outputs are the matrices

{R(i)} and {D(i)} that provide a local minima of (22).

Learning begins with the initialization of R and D, fol-

lowed by iterative coordinate descent in B, D, and R:

• Optimize B and D: With R fixed, the objective is given

by (21) where ‖R⊥T

X‖2f is constant. Given data pro-

jections Z(i) ≡ R(i)TX , to optimize for B and D we

perform one step of k-means for each subcenter set:

– Assignment: Perform NN searches for each subcenter

set to find the assignment coefficients, B(i),

B(i) ← argmin
B(i)

‖Z(i) −D(i)B(i)‖2f

– Update: D(i) ← argmin
D(i)

‖Z(i) −D(i)B(i)‖2f

• Optimize R: Placing the D(i)’s along the diagonal of

D, as in (20), and concatenating B(i)’s as rows of B,

i.e., BT = [B(1)T, . . . , B(m)T], the optimization of R re-

duces to the orthogonal Procrustes problem:

R← argmin
R

‖X −RDB‖2f .

In experiments below, R ∈ R
p×p, and rank(C) ≤ p is un-

constrained. For high-dimensional data where rank(X) ≪
p, for efficiency it may be useful to constrain rank(C).

5. Relations and related work

As mentioned above, there are close mathematical re-

lationships between ok-means, ck-means, ITQ for binary

hashing [5], and PQ for vector quantization [7]. It is in-

structive to specify these relationships in some detail.

Iterative Quantization vs. Orthogonal k-means.

ITQ [5] is a variant of locality-sensitive hashing, mapping

data to binary codes for fast retrieval. To extract m-bit

codes, ITQ first zero-centers the data matrix to obtain X ′.

PCA is then used for dimensionality reduction, from p down

to m dimensions, after which the subspace representation is

randomly rotated. The composition of PCA and the random

rotation can be expressed as WTX ′ where W ∈Rp×m. ITQ

then solves for the m×m rotation matrix, R, that minimizes

ℓITQ(B
′, R) = ‖RTWTX ′−B′‖2f , s.t. RTR = Im×m,

(23)

where B′ ∈ {−1,+1}n×p.

ITQ rotates the subspace representation of the data to

match the binary codes, and then minimizes quantization

error within the subspace. By contrast, ok-means maps the

binary codes into the original input space, and then consid-

ers both the quantization error within the subspace and the

out-of-subspace projection error. A key difference is the in-

clusion of ‖R⊥X ′‖2f in the ok-means objective (9). This is

important since one can often reduce quantization errors by

projecting out significant portions of the feature space.

Another key difference between ITQ and ok-means is

the inclusion of non-uniform scaling in ok-means. This is

important when the data are not isotropic, and contributes

to the marked improvement in recall rates in Fig. 2.

Orthogonal k-means vs. Cartesian k-means.

We next show that ok-means is a special case of ck-means

with h = 2, where each subcenter set has two elements. To

this end, let C(i)=[c
(i)
1 c

(i)
2], and let b(i)=[b

(i)
1 b

(i)
2]T be the

ith subcenter matrix selection vector. Since b
(i) is a 1-of-2

encoding (
[

0
1

]

or
[

1
0

]

), it follows that:

b
(i)
1 c

(i)
1 + b

(i)
2 c

(i)
2 =

c
(i)
1 + c

(i)
2

2
+ b′i

c
(i)
1 − c

(i)
2

2
, (24)

where b′i ≡ b
(i)
1 − b

(i)
2 ∈ {−1,+1}. With the following

setting of the ok-means parameters,

µ=

m
∑

i=1

c
(i)
1 +c

(i)
2

2
, and C=

[

c
(1)
1 −c

(1)
2

2
, . . . ,

c
(m)
1 −c

(m)
2

2

]

,

it should be clear that
∑

i C
(i)
b
(i) = µ + Cb

′, where

b
′ ∈ {−1,+1}m, and b′i is the ith bit of b′, used in (24).

Similarly, one can also map ok-means parameters onto cor-

responding subcenters for ck-means.

Thus, there is a 1-to-1 mapping between the parameter-

izations of cluster centers in ok-means and ck-means for

h = 2. The benefits of ok-means are its small number of

parameters, and its intuitive formulation. The benefit of the

ck-means generalization is its joint encoding of multiple di-

mensions with an arbitrary number of centers, allowing it to

capture intrinsic dependence among data dimensions.

Product Quantization vs. Cartesian k-means.

PQ first splits the input vectors into m disjoint sub-vectors,

and then quantizes each sub-vector separately using a sub-

quantizer. Thus PQ is a special case of ck-means where

the rotation R is not optimized; rather, R is fixed in

both learning and retrieval. This is important because the

sub-quantizers act independently, thereby ignoring intra-

subspace statistical dependence. Thus the selection of sub-

spaces is critical for PQ [7, 8]. Jégou et al. [8] suggest using

PCA, followed by random rotation, before applying PQ to

high-dimensional vectors. Finding the rotation to minimize

quantization error is mentioned in [8], but it was considered

too difficult to estimate.

Here we show that one can find a rotation to minimize

the quantization error. The ck-means learning algorithm op-

timizes sub-quantizers in the inner loop, but they interact in

an outer loop that optimizes the rotation (Sec. 4.1).

6. Experiments

6.1. Euclidean ANN search

Euclidean ANN is a useful task for comparing quan-

tization techniques. Given a database of ck-means in-

dices, and a query, we use Asymmetric and Symmetric

ck-means quantizer distance, denoted AQDck and SQDck.

The AQDck between a query x and a binary index b ≡
[

b(1)
T

, . . . , b(m)T
]T

, derived in (21), is

AQDck(x,b) =

m
∑

i=1

∥

∥z
(i)−D(i)

b
(i)
∥

∥

2

2
+ ‖R⊥T

x‖22 . (25)

Here,
∥

∥z
(i)−D(i)

b
(i)
∥

∥

2

2
is the distance between the ith pro-

jection of x, i.e., z(i), and a subcenter projection from D(i)

selected by b
(i). Given a query, these distances for each i,

and all h possible values of b(i) can be pre-computed and

stored in a query-specific h×m lookup table. Once created,

the lookup table is used to compare all database points to the

query. So computing AQDck entails m lookups and addi-

tions, somewhat more costly than Hamming distance. The

last term on the RHS of (25) is irrelevant for NN search.

Since PQ is a special case of ck-means with pre-defined

subspaces, the same distances are used for PQ (cf. [7]).

The SQDck between binary codes b1 and b2 is given by

SQDck(b1,b2) =

m
∑

i=1

∥

∥D(i)
b
(i)
1 −D(i)

b
(i)
2

∥

∥

2

2
. (26)

Since b
(i)
1 and b

(i)
2 are 1-of-h encodings, an m×h×h lookup

table can be created to store all pairwise sub-distances.

 1 10 100 1K
0

0.2

0.4

0.6

0.8

1
1M SIFT, 64−bit encoding (k = 2

64
)

R
e

c
a

ll@
R

R

ck−means (AD)
PQ (AD)
ck−means (SD)
PQ (SD)
ok−means (AH)
ITQ (AH)

 1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1
1M GIST, 64−bit encoding (k = 2

64
)

R

ck−means (AD)
PQ (AD)
ck−means (SD)
PQ (SD)
ok−means (AH)
ITQ (AH)

 1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1
1B SIFT, 64−bit encoding (k = 2

64
)

R

ck−means (AD)
PQ (AD)
ck−means (SD)
PQ (SD)
ok−means (AH)
ITQ (AH)

Figure 4. Euclidean NN recall@R (number of items retrieved) based on different quantizers and corresponding distance functions on the

1M SIFT, 1M GIST, and 1B SIFT datasets. The dashed curves use symmetric distance. (AH ≡ AQDok, SD ≡ SQDck, AD ≡ AQDck)

While the cost of computing SQDck is the same as AQDck,

SQDck could also be used to estimate the distance between

the indexed database entries, for diversifying the retrieval

results, or to detect near duplicates, for example.

Datasets. We use the 1M SIFT dataset, as in Sec. 3.3, along

with two others, namely, 1M GIST (960D features) and 1B

SIFT, both comprising disjoint sets of training, base and

test vectors. 1M GIST has 500K training, 1M base, and 1K

query vectors. 1B SIFT has 100M training, 1B base, and

10K query points. In each case, recall rates are averaged

over queries in test set for a database populated from the

base set. For expedience, we use only the first 1M training

points for the 1B SIFT experiments.

Parameters. In ANN experiments below, for both ck-

means and PQ, we use m = 8 and h = 256. Hence the

number of clusters is k = 2568 = 264, so 64-bits are used

as database indices. Using h=256 is particularly attractive

because the resulting lookup tables are small, encoding is

fast, and each subcenter index fits into one byte. As h in-

creases we expect retrieval results to improve, but encoding

and indexing of a query to become slower.

Initialization. To initialize the Di’s for learning, as in k-

means, we simply begin with random samples from the

set of Zi’s (see Sec. 4.1). To initialize R we consider the

different methods that Jégou et al. [7] proposed for split-

ting the feature dimensions into m sub-vectors for PQ: (1)

natural: sub-vectors comprise consecutive dimensions, (2)

structured: dimensions with the same index modulo 8 are

grouped, and (3) random: random permutations are used.

For PQ in the experiments below, we use the orderings

that produced the best results in [7], namely, the structured

ordering for 960D GIST, and the natural ordering for 128D

SIFT. For learning ck-means, R is initialized to the identity

with SIFT corpora. For 1M GIST, where the PQ ordering is

significant, we consider all three orderings to initialize R.

Results. Fig. 4 shows Recall@R plots for ck-means and

PQ [7] with symmetric and asymmetric distances (SD ≡
SQDck and AD ≡ AQDck) on the 3 datasets. The hori-

zontal axis represents the number of retrieved items, R, on

a log-scale. The results consistently favor ck-means. On

 1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1

1M GIST, 64−bit encoding (k = 2
64

)

R
e

c
a

ll@
R

R

ck−means (1) (AD)
ck−means (2) (AD)
ck−means (3) (AD)
PQ (2) (AD)
PQ (1) (AD)
PQ (3) (AD)

Figure 5. PQ and ck-means results using natural (1), structured (2),

and random (3) ordering to define the (initial) subspaces.

the high-dimensional GIST data, ck-means with AD sig-

nificantly outperforms other methods; even ck-means with

SD performs on par with PQ with AD. On 1M SIFT, the

Recall@10 numbers for PQ and ck-means, both using AD,

are 59.9% and 63.7%. On 1B SIFT, Recall@100 numbers

are 56.5% and 64.9%. As expected, with increasing dataset

size, the difference between methods is more significant.

In 1B SIFT, each feature vector is 128 bytes, hence a

total of 119GB. Using any method in Fig. 4 (including ck-

means) to index the database into 64 bits, this storage cost

reduces to only 7.5GB. This allows one to work with much

larger datasets. In the experiments we use linear scan to find

the nearest items according to quantizer distances. For NN

search using 10K SIFT queries on 1B SIFT this takes about

8 hours for AD and AH and 4 hours for Hamming distance

on a 2×4-core computer. Search can be sped up signifi-

cantly; using a coarse initial quantization and an inverted

file structure for AD and AH , as suggested by [7, 1], and

using the multi-index hashing method of [13] for Hamming

distance. In this paper we did not implement these efficien-

cies as we focus primarily on the quality of quantization.

Fig. 5 compares ck-means to PQ when R in ck-means

is initialized using the 3 orderings of [7]. It shows that ck-

means is superior in all cases. Simiarly interesting, it also

shows that despite the non-convexity of the optimization ob-

jective, ck-means learning tends to find similarly good en-

codings under different initial conditions. Finally, Fig. 6

compares the methods under different code dimensionality.

 1 10 100 1K 10K
0

0.2

0.4

0.6

0.8

1
1M GIST, encoding with 64, 96, and 128 bits

R
e
c
a
ll@

R

R

ck−means 128−bit
ck−means 96−bit
ck−means 64−bit
PQ 128−bit
PQ 96−bit
PQ 64−bit

Figure 6. PQ and ck-means results using different number of bits

for encoding. In all cases asymmetric distance is used.

Codebook Accuracy

PQ (k = 402) 75.9%
ck-means (k = 402) 78.2%

k-means (k = 1600) [2] 77.9%

PQ (k = 642) 78.2%
ck-means (k = 642) 79.7%

k-means (k = 4000) [2] 79.6%

Table 2. Recognition accuracy on the CIFAR-10 test set using dif-

ferent codebook learning algorithms.

6.2. Learning visual codebooks

While the ANN seach tasks above require too many

clusters for k-means, it is interesing to compare k-means

and ck-means on a task with a moderate number of clus-

ters. To this end we consider codebook learning for bag-of-

words models [3, 10]. We use ck-means with m = 2 and

h =
√
k, and hence k centers. The main advantage of ck-

means here is that finding the closest cluster center is done

in O(
√
k) time, much faster than standard NN search with

k-means in O(k). Alternatives for k-means, to improve effi-

ciency, include approximate k-means [14], and hierarchical

k-means [12]. Here we only compare to exact k-means.

CIFAR-10 [9] comprises 50K training and 10K test im-

ages (32×32 pixels). Each image is one of 10 classes (air-

plane, bird, car, cat, deer, dog, frog, horse, ship, and truck).

We use publicly available code from Coates et al [2], with

changes to the codebook learning and cluster assignment

modules. Codebooks are built on 6×6 whitened color image

patches. One histogram is created per image quadrant, and

a linear SVM is applied to 4k-dim feature vectors.

Recognition accuracy rates on the test set for different

models and k are given in Table 2. Despite having fewer

parameters, ck-means performs on par or better than k-

means. This is consistent for different initializations of the

algorithms. Although k-means has higher fedility than ck-

means, with fewer parameters, ck-means may be less sus-

ceptible to overfitting. Table 2, also compares with the

approach of [19], where PQ without learning a rotation is

used for clustering features. As expected, learning the ro-

tation has a significant impact on recognition rates, out-

performing all three initializations of PQ.

7. Conclusions

We present the Cartesian k-means algorithm, a gener-

alization of k-means with a parameterization of the clus-

ter centers such that number of centers is super-linear in

the number of parameters. The method is also shown

to be a generalization of the ITQ algorithm and Product

Quantization. In experiments on large-scale retrieval and

codebook learning for recognition the results are impres-

sive, outperforming product quantization by a significant

margin. An implementation of the method is available at

https://github.com/norouzi/ckmeans.

References

[1] A. Babenko and V. Lempitsky. The inverted multi-index.

CVPR, 2012.

[2] A. Coates, H. Lee, and A. Ng. An analysis of single-layer

networks in unsupervised feature learning. AISTATS, 2011.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. ECCV Work-

shop Statistical Learning in Computer Vision, 2004.

[4] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantiza-

tion for approximate nearest neighbor search. CVPR, 2013.

[5] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. CVPR, 2011.

[6] A. Gordo and F. Perronnin. Asymmetric distances for binary

embeddings. CVPR, 2011.

[7] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE Trans. PAMI, 2011.

[8] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-

ing local descriptors into a compact image representation.

CVPR, 2010.

[9] A. Krizhevsky. Learning multiple layers of features from

tiny images. MSc Thesis, Univ. Toronto, 2009.

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. CVPR, 2006.

[11] S. P. Lloyd. Least squares quantization in pcm. IEEE Trans.

IT, 28(2):129–137, 1982.

[12] D. Nister and H. Stewenius. Scalable recognition with a vo-

cabulary tree. CVPR, 2006.

[13] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in ham-

ming space with multi-index hashing. CVPR, 2012.

[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-

man. Object retrieval with large vocabularies and fast spatial

matching. CVPR, 2007.

[15] P. Schönemann. A generalized solution of the orthogonal

procrustes problem. Psychometrika, 31, 1966.

[16] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. ICCV, 2003.

[17] J. Tenenbaum and W. Freeman. Separating style and content

with bilinear models. Neural Comp., 12:1247–1283, 2000.

[18] A. Torralba, K. Murphy, and W. Freeman. Sharing visual

features for multiclass and multiview object detection. IEEE

T. PAMI, 29(5):854–869, 2007.

[19] S. Wei, X. Wu, and D. Xu. Partitioned k-means clustering

for fast construction of unbiased visual vocabulary. The Era

of Interactive Media, 2012.

