SAT Solving

Noah Fleming
University of California, San Diego
SAT

→ Canonical NP-Complete language

→ Believed to be intractable in the worst case
SAT

→ Canonical NP-Complete language
→ Believed to be intractable in the worst case

Surprisingly…

Highly efficient algorithms — SAT solvers — have been developed that routinely solve instances of SAT that occur in practice.
SAT

→ Canonical **NP-Complete** language

→ Believed to be intractable in the worst case

Surprisingly…

Highly efficient algorithms — SAT solvers — have been developed that routinely solve instances of SAT that occur in **practice**.

- Solve practical SAT instances involving **millions** of constraints and variables
SAT

→ Canonical NP-Complete language
→ Believed to be intractable in the worst case

Surprisingly…

Highly efficient algorithms — SAT solvers — have been developed that routinely solve instances of SAT that occur in practice.

- Solve practical SAT instances involving millions of constraints and variables
- Routinely used in practice
SAT

→ Canonical NP-Complete language
→ Believed to be intractable in the worst case

Surprisingly…

Highly efficient algorithms — SAT solvers — have been developed that routinely solve instances of SAT that occur in practice.

- Solve practical SAT instances involving millions of constraints and variables
- Routinely used in practice
- Can be more efficient to reduce to SAT and use a SAT solver than to solve directly
SAT Solvers

Used in a wide variety of practical applications

- Verifying correctness of hardware and software
- Planning (e.g., air-traffic control)
- Bioinformatics
- Verifying conjectures in mathematics and physics
- Security
- Program synthesis
This Seminar

We will explore…

- What are SAT solvers? How do they work?
This Seminar

We will explore...

- What are SAT solvers? How do they work?
- How can we analyze SAT solvers?
 - → Proof complexity as a tool for algorithm analysis
This Seminar

We will explore…

- What are SAT solvers? How do they work?
- How can we analyze SAT solvers?
 - Proof complexity as a tool for algorithm analysis
- Why do SAT solvers work so well?
This Seminar

We will explore...

- What are SAT solvers? How do they work?
- How can we analyze SAT solvers?
 -> Proof complexity as a tool for algorithm analysis
- Why do SAT solvers work so well?
- Beyond SAT (pseudo-boolean solvers, integer programming solvers)
This Seminar

We will explore…

- What are SAT solvers? How do they work?
- How can we analyze SAT solvers?
 → Proof complexity as a tool for algorithm analysis
- Why do SAT solvers work so well?
- Beyond SAT (pseudo-boolean solvers, integer programming solvers)
- … and more!
Outline for Today

1. Propositional Logic Syntax & SAT
2. DPLL
3. Analyzing DPLL by tree Resolution
4. Overview of CDCL
5. Unit Propagation
6. Clause Learning
7. Restarting
Syntax of Propositional Logic

Variables: x_1, \ldots, x_n taking value in $\{0,1\}$
Syntax of Propositional Logic

Variables: \(x_1, \ldots, x_n \) taking value in \(\{0,1\} \)

Literals: \(\ell = x_i \) or \(\bar{x}_i \)
Syntax of Propositional Logic

Variables: x_1, \ldots, x_n taking value in $\{0, 1\}$

Literals: $\ell = x_i$ or \bar{x}_i

Connectives: \land (AND), \lor (OR)
Syntax of Propositional Logic

Variables: \(x_1, \ldots, x_n \) taking value in \(\{0, 1\} \)

Literals: \(\ell = x_i \) or \(\bar{x}_i \)

Connectives: \(\land \) (AND), \(\lor \) (OR)

Propositional Logic Formula: built up from literals and connectives
Syntax of Propositional Logic

Variables: \(x_1, \ldots, x_n \) taking value in \{0,1\}

Literals: \(\ell = x_i \) or \(\bar{x}_i \)

Connectives: \(\land \) (AND), \(\lor \) (OR)

Propositional Logic Formula: built up from literals and connectives

\[F = x_1 \land (x_3 \lor (\bar{x}_2 \land \bar{x}_3)) \land x_2 \]
Syntax of Propositional Logic

Variables: x_1, \ldots, x_n taking value in $\{0,1\}$

Literals: $\ell = x_i$ or \bar{x}_i

Connectives: \land (AND), \lor (OR)

Propositional Logic Formula: built up from literals and connectives

e.g. $F = x_1 \land (x_3 \lor (\bar{x}_2 \land \bar{x}_3)) \land x_2$

Satisfiable: If there is $x \in \{0,1\}^n$ such that $F(x) = 1$
Syntax of Propositional Logic

Variables: \(x_1, \ldots, x_n \) taking value in \(\{0,1\} \)

Literals: \(\ell = x_i \) or \(\bar{x}_i \)

Connectives: \(\land \) (AND), \(\lor \) (OR)

Propositional Logic Formula: built up from literals and connectives

e.g. \(F = x_1 \land (x_3 \lor (\bar{x}_2 \land \bar{x}_3)) \land x_2 \)

Satisfied by \(x = (1,1,1) \)

Satisfiable: If there is \(x \in \{0,1\}^n \) such that \(F(x) = 1 \)
Syntax of Propositional Logic

Variables: x_1, \ldots, x_n taking value in $\{0,1\}$

Literals: $\ell = x_i$ or $\bar{x_i}$

Connectives: \land (AND), \lor (OR)

Propositional Logic Formula: built up from literals and connectives

e.g. $F = x_1 \land (x_3 \lor (\bar{x}_2 \land \bar{x}_3)) \land x_2$

Satisfied by $x = (1,1,1)$

Satisfiable: If there is $x \in \{0,1\}^n$ such that $F(x) = 1$
Syntax of Propositional Logic

Variables: \(x_1, \ldots, x_n \) taking value in \(\{0,1\} \)

Literals: \(\ell = x_i \) or \(\bar{x}_i \)

Connectives: \(\wedge \) (AND), \(\vee \) (OR)

Propositional Logic Formula: built up from literals and connectives

e.g. \(F = x_1 \wedge (x_3 \vee (\bar{x}_2 \wedge \bar{x}_3)) \wedge x_2 \) \(\text{Satisfied by } x = (1,1,1) \)

Satisfiable: If there is \(x \in \{0,1\}^n \) such that \(F(x) = 1 \)

Unsatisfiable: Otherwise
Syntax of Propositional Logic

Clause: Disjunction of literals $C = \ell_1 \lor \ldots \lor \ell_k$

e.g. $(x_1 \lor \bar{x}_2 \lor x_4)$
Syntax of Propositional Logic

Clause: Disjunction of literals \(C = \ell_1 \lor \ldots \lor \ell_k \)

 e.g. \((x_1 \lor \bar{x}_2 \lor x_4)\)

CNF Formula: Conjunction of clauses \(F = C_1 \land \ldots \land C_m \)

 e.g. \((x_1 \lor \bar{x}_2 \lor x_4) \land (x_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_4) \land (\bar{x}_4)\)
The SAT Problem

SAT: Given a CNF formula F, does there exist $x \in \{0,1\}^n$ such that $F(x) = 1$
The SAT Problem

SAT: Given a CNF formula \(F \), does there exist \(x \in \{0,1\}^n \) such that \(F(x) = 1 \)

- Canonical NP-complete problem
- Nonetheless, huge success in designing efficient algorithms for solving SAT in practice
The SAT Problem

SAT: Given a CNF formula F, does there exist $x \in \{0,1\}^n$ such that $F(x) = 1$

- Canonical NP-complete problem
- Nonetheless, huge success in designing efficient algorithms for solving SAT in **practice**

 e.g. $$(x_1 \lor \overline{x}_2 \lor x_4) \land (x_1 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_4) \land (\overline{x}_4)$$

Satisfiable?
The SAT Problem

SAT: Given a CNF formula F, does there exist $x \in \{0, 1\}^n$ such that $F(x) = 1$

- Canonical NP-complete problem
- Nonetheless, huge success in designing efficient algorithms for solving SAT in practice

Example:

$$ (x_1 \lor \bar{x}_2 \lor x_4) \land (x_1 \lor x_3) \land (\bar{x}_1 \lor x_4) \land (\bar{x}_4) $$

Satisfiable? Yes! $x = (0, 0, 0, 0)$
The SAT Problem

SAT: Given a CNF formula F, does there exist $x \in \{0,1\}^n$ such that $F(x) = 1$?

- Canonical NP-complete problem
- Nonetheless, huge success in designing efficient algorithms for solving SAT in practice.

e.g. $(x_1 \lor \bar{x}_2 \lor x_4) \land (x_1 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_4) \land (\bar{x}_4)$

Satisfiable? Yes! $x = (0,0,0,0)$

Q: How would you determine whether a formula is satisfiable?
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula F

Output: Whether F is satisfiable
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula F

Output: Whether F is satisfiable

DPLL(F):

If $F = 1$, output *SAT*

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. **DPLL**($F \upharpoonright x_i = 0$)
3. **DPLL**($F \upharpoonright x_i = 1$)
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \]

Input: A CNF formula \(F \)

Output: Whether \(F \) is satisfiable

\(\text{DPLL}(F) \):

If \(F = 1 \), output SAT

If \(F \neq 0 \), do:

1. **Choose** a variable \(x_i \) (heuristically)

2. \(\text{DPLL}(F \upharpoonright x_i = 0) \)

3. \(\text{DPLL}(F \upharpoonright x_i = 1) \)
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \]

Input: A CNF formula \(F \)

Output: Whether \(F \) is satisfiable

\[(\text{DPLL}(F)):\]

- If \(F = 1 \), output SAT
- If \(F \neq 0 \), do:
 1. **Choose** a variable \(x_i \) (heuristically)
 2. \(\text{DPLL}(F \upharpoonright x_i = 0) \)
 3. \(\text{DPLL}(F \upharpoonright x_i = 1) \)
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula F

Output: Whether F is satisfiable

$\text{DPLL}(F)$:
If $F = 1$, output SAT
If $F \neq 0$, do:
1. Choose a variable x_i (heuristically)
2. $\text{DPLL}(F \upharpoonright x_i = 0)$
3. $\text{DPLL}(F \upharpoonright x_i = 1)$

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)$
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula \(F \)

Output: Whether \(F \) is satisfiable

DPLL(\(F \)):

If \(F = 1 \), output SAT

If \(F \neq 0 \), do:

1. **Choose** a variable \(x_i \) (heuristically)
2. DPLL(\(F \upharpoonright x_i = 0 \))
3. DPLL(\(F \upharpoonright x_i = 1 \))

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \]
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula F

Output: Whether F is satisfiable

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. DPLL($F \upharpoonright x_i = 0$)
3. DPLL($F \upharpoonright x_i = 1$)

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)$
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

\[
F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)
\]

Input: A CNF formula \(F \)

Output: Whether \(F \) is satisfiable

DPLL(\(F \)):

If \(F = 1 \), output SAT

If \(F \neq 0 \), do:

1. **Choose** a variable \(x_i \) (heuristically)
2. \(\text{DPLL}(F \upharpoonright x_i = 0) \)
3. \(\text{DPLL}(F \upharpoonright x_i = 1) \)

Falsified!
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula F

Output: Whether F is satisfiable

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. DPLL($F \upharpoonright x_i = 0$)
3. DPLL($F \upharpoonright x_i = 1$)

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)$

Falsified! (Conflict)
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

Input: A CNF formula \(F \)

Output: Whether \(F \) is satisfiable

DPLL(\(F \)):

If \(F = 1 \), output SAT

If \(F \neq 0 \), do:

1. **Choose** a variable \(x_i \) (heuristically)
2. \(\text{DPLL}(F \upharpoonright x_i = 0) \)
3. \(\text{DPLL}(F \upharpoonright x_i = 1) \)

\[
F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)
\]
DPLL — The Heart of SAT Solvers

DPLL: A brute-force approach to solving SAT

| Input: | A CNF formula F |
| Output: | Whether F is satisfiable |

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. **DPLL**($F \upharpoonright x_i = 0$)
3. **DPLL**($F \upharpoonright x_i = 1$)

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2)$

SAT!
Analyzing DPLL

DPLL: A brute-force approach to solving SAT

→ Modern SAT Solvers build on DPLL
Analyzing DPLL

DPLL: A brute-force approach to solving SAT

→ Modern SAT Solvers build on DPLL

Q. Can we show that DPLL alone is sufficient to solve SAT?
Analyzing DPLL

DPLL: A brute-force approach to solving SAT

→ Modern SAT Solvers build on DPLL

Q. Can we show that DPLL alone is sufficient to solve SAT?

Proof Complexity provides a convenient tool for algorithm analysis

→ Studies the size of **proofs** of unsatisfiability of CNF formulas
Resolution

Resolution: A method for proving that a CNF formula is **unsatisfiable**
Resolution: A method for proving that a CNF formula is unsatisfiable

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)\]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)\]

“Set of clauses”
Resolution: A method for proving that a CNF formula is unsatisfiable

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)\]

Derive new clauses from old using: “Set of clauses”
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

\[\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2} \]

"Set of clauses"
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule**:

\[
\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}
\]

Goal: derive empty clause \(\Lambda \)

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)\]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule:**

\[
\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}
\]

Goal: derive empty clause \(\Lambda\)

Resolution rule is sound

\[\rightarrow\] Derivation of \(\Lambda\) certifies unsatisfiability
Resolution

Resolution: A method for proving that a CNF formula is **unsatisfiable**

Derive new clauses from old using:

→ **Resolution rule:**

\[
\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}
\]

Goal: derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3) \]

\[(x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3) \]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:
→ Resolution rule:

\[C_1 \lor x, \quad C_2 \lor \neg x \]

\[\frac{}{C_1 \lor C_2} \]

Goal: derive empty clause \(\Lambda \)

Resolution rule is sound

\[\neg x_3 \]

\[(x_1 \lor \neg x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[\neg x_3 \]

\[(x_1 \lor \neg x_3) \quad (\neg x_1 \lor \neg x_3) \]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule:**

\[
\begin{align*}
C_1 \lor x, \quad & C_2 \lor \neg x \\
\hline
& C_1 \lor C_2
\end{align*}
\]

Goal: derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule:**

\[C_1 \lor x, \quad C_2 \lor \neg x \]

\[\frac{}{C_1 \lor C_2} \]

Goal: derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

Derivation of \(\Lambda \) certifies unsatisfiability
Resolution

Resolution: A method for proving that a CNF formula is **unsatisfiable**

Derive new clauses from old using:

→ **Resolution rule:**
\[
\frac{C_1 \lor x, \quad C_2 \lor \neg x}{C_1 \lor C_2}
\]

Goal: derive empty clause Λ

Resolution rule is **sound**

\iff Derivation of Λ certifies unsatisfiability

\[
(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)
\]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule**:

\[
\frac{C_1 \lor x, \quad C_2 \lor \lnot x}{C_1 \lor C_2}
\]

Goal: derive empty clause Λ

Resolution rule is **sound**

\Rightarrow Derivation of Λ certifies unsatisfiability

\[(x_2 \lor x_3) \land (\lnot x_1 \lor \lnot x_3) \land (\lnot x_2) \land (x_1 \lor \lnot x_3)\]
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule:**

 \[
 \frac{C_1 \lor x, \ C_2 \lor \neg x}{C_1 \lor C_2}
 \]

Goal: derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[\ldots (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \ldots\]

Derivation of \(\Lambda \) certifies unsatisfiability
Resolution

Resolution: A method for proving that a CNF formula is unsatisfiable

Derive new clauses from old using:

→ **Resolution rule**:
\[
C_1 \lor x, \quad C_2 \lor \neg x \\
\hline
C_1 \lor C_2
\]

Goal: derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

- **Size**: # of clauses
- **Depth**: longest root-to-leaf path

Derivation of \(\Lambda \) certifies unsatisfiability
Resolution

** Resolution:** A method for proving that a CNF formula is **unsatisfiable**

\[(x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

Derive new clauses from old using:

→ **Resolution rule:**

\[
\begin{align*}
C_1 \lor x, & \quad C_2 \lor \neg x \\
\hline
C_1 \lor C_2
\end{align*}
\]

** Goal:** derive empty clause \(\Lambda \)

Resolution rule is **sound**

\[\text{Derivation of } \Lambda \text{ certifies unsatisfiability} \]

** Size:** # of clauses

** Depth:** longest root-to-leaf path

Tree proof!
Analyzing DPLL

We can use (tree) Resolution to study DPLL!
Analyzing DPLL

We can use (tree) Resolution to study DPLL!

Q. What happens if we run DPLL on an unsatisfiable formula?
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. DPLL($F \upharpoonright x_i = 0$)
3. DPLL($F \upharpoonright x_i = 1$)

$$F = (x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3) \land (\neg x_2)$$
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)

2. **DPLL**($F \upharpoonright x_i = 0$)

3. **DPLL**($F \upharpoonright x_i = 1$)

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)
2. **DPLL**($F \upharpoonright x_i = 0$)
3. **DPLL**($F \upharpoonright x_i = 1$)

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$

Conflict!
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):

- If $F = 1$, output SAT
- If $F \neq 0$, do:
 1. **Choose** a variable x_i (heuristically)
 2. **DPLL**($F \upharpoonright x_i = 0$)
 3. **DPLL**($F \upharpoonright x_i = 1$)

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$
DPLL

Input: A CNF formula F

Output: A satisfying assignment

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)

2. DPLL($F \upharpoonright x_i = 0$)

3. DPLL($F \upharpoonright x_i = 1$)
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):
If $F = 1$, output SAT
If $F \neq 0$, do:
1. **Choose** a variable x_i (heuristically)
2. **DPLL**($F \upharpoonright x_i = 0$)
3. **DPLL**($F \upharpoonright x_i = 1$)

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$

Conflict!
DPLL

Input: A CNF formula F

Output: A satisfying assignment

DPLL(F):

If $F = 1$, output SAT

If $F \neq 0$, do:

1. **Choose** a variable x_i (heuristically)

2. **DPLL**($F \upharpoonright x_i = 0$)

3. **DPLL**($F \upharpoonright x_i = 1$)

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

No satisfying assignment!
DPLL

Execution of DPLL is a **proof** that \(F \) is unsatisfiable!

\[
F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)
\]
DPLL

Execution of DPLL is a proof that F is unsatisfiable!

$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$

Proof of unsatisfiability!
DPLL

Execution of DPLL is a **tree**

Resolution proof of unsatisfiability

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$

Proof of unsatisfiability!
DPLL

Execution of DPLL is a **tree** Resolution proof of unsatisfiability

→ Every time we query a variable, resolve on it!

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]
DPLL

Execution of DPLL is a **tree Resolution proof** of unsatisfiability.

→ Every time we query a variable, **resolve** on it!

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]
DPLL

Every time we query a variable, resolve on it!

Execution of DPLL is a **tree Resolution proof** of unsatisfiability.

$$F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3)$$
DPLL

Every time we query a variable, resolve on it!

Execution of DPLL is a **tree Resolution proof** of unsatisfiability.

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]
DPLL

\[F = (x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2) \land (x_1 \lor \neg x_3) \]

Execution of DPLL is a **tree Resolution proof** of unsatisfiability.

→ Every time we query a variable, resolve on it!
Every time we query a variable, resolve on it!
Every time we query a variable, resolve on it!

Upshot: tree Resolution proofs = DPLL trees
Every time we query a variable, resolve on it!

Tree Resolution

DPLL

Lower bounds on size of tree Resolution proofs \implies bounds on runtime of DPLL!

Execution of DPLL is a tree Resolution proof of unsatisfiability

Upshot
tree Resolution proofs = DPLL trees
DPLL

Lower bounds on size of tree Resolution proofs \implies bounds on runtime of DPLL!

\rightarrow Tons of lower bounds on tree Resolution known!

\rightarrow One of the weakest proof systems!
Tons of lower bounds on tree Resolution known!

One of the weakest proof systems!

Simple Lower bound idea:
Exploit: Tree resolution cannot recognize redundant parts of the search space
DPLL

Lower bounds on size of tree Resolution proofs → bounds on runtime of DPLL!

→ Tons of lower bounds on tree Resolution known!

→ One of the weakest proof systems!

Simple Lower bound idea:

Exploit: Tree resolution cannot recognize redundant parts of the search space

1. Find a F such that any proof of F has a long path
DPLL

Lower bounds on size of tree **Resolution** proofs \implies bounds on runtime of DPLL!

\rightarrow Tons of lower bounds on tree Resolution known!

\rightarrow One of the **weakest** proof systems!

Simple Lower bound idea:

Exploit: Tree resolution cannot recognize redundant parts of the search space

1. Find a F such that any proof of F has a long path
DPLLL

Lower bounds on size of tree Resolution proofs \implies bounds on runtime of DPLL!

→ Tons of lower bounds on tree Resolution known!

→ One of the weakest proof systems!

Simple Lower bound idea:

Exploit: Tree resolution cannot recognize redundant parts of the search space

1. Find a F such that any proof of F has a long path

2. Then $F \circ XOR_2$ must have many long paths
Lower bounds on size of tree Resolution proofs \implies bounds on runtime of DPLL!

→ Tons of lower bounds on tree Resolution known!
→ One of the weakest proof systems!

Simple Lower bound idea:

Exploit: Tree resolution cannot recognize redundant parts of the search space

1. Find a F such that any proof of
 F has a long path

2. Then $F \circ XOR_2$ must have many long paths

Theorem: $\text{size}_{tRes}(F \circ XOR_2) \geq 2^{\text{depth}_{tRes}(F)/2}$
Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL
Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL

→ Multiple subroutines built to avoid getting stuck in bad areas of the search space
Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL

→ Multiple subroutines built to avoid getting stuck in bad areas of the search space

We will develop CDCL in stages by extending DPLL with the following:

- Unit Propagation
- Clause Learning
- Restarts
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ
Unit Propagation

Speeds up search

Unit clause: a clause containing a **single** literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

DPLL with unit prop

$$(x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z})$$
Unit Propagation

Speeds up search

Unit clause: a clause containing a **single** literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

\[(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (i \lor \bar{z}) \land (i \lor \bar{z})\]
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

DPLL with unit prop

$(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z})$
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause
(under the current assignment), set $\ell = 1$

$$(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z})$$
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

DPLL with unit prop

$(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (i \lor
\bar{z}) \land (i \lor \bar{z})$
Unit Propagation

Speeds up search

Unit clause: a clause containing a **single** literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

$$(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z})$$
Unit Propagation

Speeds up search

Unit clause: a clause containing a **single** literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$
Unit Propagation

Speeds up search

Unit clause: a clause containing a **single** literal \(\ell \)

Unit Propagation: if \(F \) contains a unit clause (under the current assignment), set \(\ell = 1 \)

Decision Level: A literal set by a decision together with all unit propagated literals constitutes a decision level.
Unit Propagation

Speeds up search

Unit clause: a clause containing a single literal ℓ

Unit Propagation: if F contains a unit clause (under the current assignment), set $\ell = 1$

Decision Level: A literal set by a decision together with all unit propagated literals constitutes a decision level.
Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL

→ Multiple subroutines built to avoid getting stuck in bad areas of the search space

We will develop CDCL in stages by extending DPLL with the following:
- Unit Propagation
- Clause Learning
- Restarts
Clause Learning

The main improvement over DPLL
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future

Want:
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future

Want:

- The learned clause is a sound inference from F
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future

Want:
- The learned clause is a sound inference from F
- The learned clause causes many unit propagations
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future

Want:
- The learned clause is a sound inference from F
- The learned clause causes many unit propagations

Q. How can we achieve this?
Clause Learning

The main improvement over DPLL

When a conflict occurs learn a new clause (add it to F) which helps to avoid similar conflicts in the future

Want:

- The learned clause is a sound inference from F
- The learned clause causes many unit propagations

Q. How can we achieve this? **Resolution!**
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

⇒ Generates a new sound clause for F!
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

Generates a new sound clause for F!

Can derive new clauses by resolving up the path
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

→ Generates a new sound clause for F!

Can derive new clauses by resolving up the path
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

\[(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]

Generates a new sound clause for \(F\)!

Can derive new clauses by resolving up the path
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

\[(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]

→ Generates a new sound clause for F!

Can derive new clauses by resolving up the path
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

→ Generates a new sound clause for F!

Can derive new clauses by resolving up the path

$$(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})$$
Clause Learning

Use Resolution to learn new clauses

Any variable in the conflict clause that was unit propagated along the path can be resolved with the clause that caused that unit propagation!

→ Generates a new sound clause for F!

Can derive new clauses by resolving up the path

Q. When should we stop?
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

If we resolved until all literals which were unit propagated are resolved away we get an all-decision clause

\[(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

If we resolved until all literals which were unit propagated are resolved away we get an **all-decision** clause.
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

If we resolved until all literals which were unit propagated are resolved away we get an all-decision clause

→ Empirically not very useful (too specific)
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

Standard clause to learn is a 1-UIP clause
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

\[(x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (i \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause
Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level
Clause Learning

\[(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (i \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]

Use Resolution to learn new clauses

\[Q\] When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level
Clause Learning

Use Resolution to learn new clauses

\[(z \lor \neg y) \land (x \lor y) \land (z \lor w) \land (h \lor \neg z \lor \neg y) \land (\neg i \lor \neg z) \land (i \lor \neg z \lor \neg y) \]

Q. When should we stop?

Standard clause to learn is a **1-UIP clause**

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest decision level in the learned clause
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest decision level in the learned clause
Clause Learning

Use Resolution to learn new clauses

When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:

Remove everything up to the second largest decision level in the learned clause
Clause Learning

Use Resolution to learn new clauses

Q. When should we stop?

Standard clause to learn is a 1-UIP clause

1-UIP Clause

Obtained by resolving the conflict clause along the path until there is only one literal in the clause at the largest decision level

Backtracking with 1-UIP:
Remove everything up to the second largest decision level in the learned clause

Clause Learning

\((\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\)
Clause Learning

\[(\overline{z} \lor \overline{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})\]

Q. What happens when we backtrack?
What happens when we backtrack?

New 1-UIP clause causes unit propagations!
Clause Learning

\[(\overline{z} \lor \overline{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \overline{z} \lor \overline{y}) \land (\overline{i} \lor \overline{z}) \land (i \lor \overline{z} \lor \overline{y})\]

Q. What happens when we backtrack?

New 1-UIP clause causes unit propagations!

→ This always happens because we backtracked to the second largest decision level in the learned clause!
What happens when we backtrack?

New 1-UIP clause causes unit propagations!

This always happens because we backtracked to the second largest decision level in the learned clause!

It is a unit clause at this decision level!
Clause Learning

\[(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (i \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]

Q. What happens when we backtrack?

New 1-UIP clause causes **unit propagations**!

→ This always happens because we backtracked to the **second largest** decision level in the learned clause!

⇒ It is a unit clause at this decision level!
Clause Learning

\((\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\)

Q. What happens when we backtrack?

New 1-UIP clause causes unit propagations!

This always happens because we backtracked to the second largest decision level in the learned clause!

It is a unit clause at this decision level!
Clause Learning

$$(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})$$

Q. What happens when we backtrack?

New 1-UIP clause causes **unit propagations**!

→ This always happens because we backtracked to the **second largest** decision level in the learned clause!

$$\implies$$ It is a unit clause at this decision level!
Clause Learning

\[(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{t} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]

Q. What happens when we backtrack?

New 1-UIP clause causes unit propagations!
→ This always happens because we backtracked to the second largest decision level in the learned clause!

⇒ It is a unit clause at this decision level!
Clause Learning

$$(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})$$

Q. What happens when we backtrack?

New 1-UIP clause causes **unit propagations**!

→ This always happens because we backtracked to the **second largest** decision level in the learned clause!

→ It is a unit clause at this decision level!

→ Known as an **asserting** clause
Conflict-Driven Clause Learning

Modern (CDCL) SAT Solvers build on DPLL
→ Multiple subroutines built to avoid getting stuck in bad areas of the search space

We will develop CDCL in stages by extending DPLL with the following:

- Unit Propagation
- Clause Learning
- Restarts
Restarting

Restarting:
After learning so many clauses, restart the search

Helps to escape bad areas of the search space
Restarting:
After learning so many clauses, restart the search
→ Return to decision level 0, discarding all queries made so far
Restarting:
After learning so many clauses, restart the search
→ Return to decision level 0, discarding all queries made so far
→ Retain all learned clauses
Restarting

Restarting:
After learning so many clauses, restart the search
→ Return to decision level 0, **discarding** all queries made so far
→ **Retain** all learned clauses

Helps to escape bad areas of the search space
Restarting

After learning so many clauses, restart the search
→ Return to decision level 0, **discarding** all queries made so far
→ **Retain** all learned clauses

Helps to escape bad areas of the search space

\[(\bar{z} \lor \bar{y}) \land (x \lor y) \land (z \lor w) \land (h \lor \bar{z} \lor \bar{y}) \land (\bar{i} \lor \bar{z}) \land (i \lor \bar{z} \lor \bar{y})\]
Restarting

After learning so many clauses, restart the search

→ Return to decision level 0, **discarding** all queries made so far

→ **Retain** all learned clauses

Helps to escape bad areas of the search space