Using Roark-Hollingshead Distance to Probe BERT’s Syntactic Competence

Jingcheng NiuRH Wenjie LuR Eric CorlettR Gerald PennRH

University of TorontoR Vector InstituteR

Emails: (niu, luwenjie, ecorlett, gpenn)@cs.toronto.edu
Code: https://github.com/frankniujc/rh_probe

Overview

- Probing BERT’s general ability to reason about syntax is not simple.
- Performance-based probes suffer the criticism that the observed syntactic knowledge is not obtained by the LM through pretraining, but rather emerges from the probe classifier itself. Parameter-free probe (Perturbed Masking) produces unimpressive results.
- Still, we want to measure the inferential capacity of the language model itself. E.g., to induce parse trees.
- RH Probe: an encoder-decoder-based probing architecture with two experiments (ablation probe & attack probe). Ablation study is still a valid way to interrogate the model.
- Finding: BERT’s word embeddings contain important syntactic information, but this information alone is not enough to reproduce traditional syntactic representations (e.g. phrase structure) in their entirety.

Previous Work

Probability Probing

\(P(\text{grammar}) > P(\text{ungrammar}) \)?

- Probability is not a particularly good reflection of syntactic well-formedness.
- It also does not reflect the modern pretrain/finetune usage of language models.

Performance-based Probing

Hewitt and Liang (2019): “When a probe achieves high accuracy on a linguistic task … can we conclude that the representation encodes linguistic structure, or has the probe just learned the task?”

Perturbed Masking

Uses a parameter-free approach:

- Mask up pairs of tokens.
- Calculate pairwise impact between tokens.
- Induce dependency trees with a matrix-based top-down parsing algorithm (MART).

Reappraising Perturbed Masking

MART’s performance compared to different naïve baselines:

<table>
<thead>
<tr>
<th>Method</th>
<th>WSJ10</th>
<th>WSJ23</th>
</tr>
</thead>
<tbody>
<tr>
<td>MART + RB Tree</td>
<td>58.0</td>
<td>32.1</td>
</tr>
<tr>
<td>Random</td>
<td>56.7</td>
<td>39.8</td>
</tr>
<tr>
<td>BERT + POS</td>
<td>57.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

MART “performs” better when evaluated using RB trees as gold standard. It generates trees more closely resembling RB trees than constituency trees.

Wu et. al (2020): “There is actually no guarantee that our probe will find a strong correlation with human-designed syntax … What we found is the ‘natural’ syntax inherent in BERT, which is acquired from self-supervised learning on plain text.”

Experimental Design

RH Probe Encoder-Decoder Architecture. We use this simple probing architecture to avoid providing structural hints to the probe itself.

Ablation Probe: whether the addition of a feature type during training can increase the probe’s performance.

Attack Probe: whether randomizing (attacking) certain features during testing can cause the performance to drop.

Experimental Results & Analysis

Tree Integrity: Ablation Probe Result

Levenshtein: Ablation Probe Result

Ablation Probe:

- Language models provide useful information for parsing.
- RH distance increases performance across the board – even on top of what POS provides.
- Better language model \(\neq \) More syntactic knowledge.

Attack Probe:

- Higher dimensionality = Easier to extract.
- Better language model = Easier to extract.