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Overview

Probing BERT"’s general ability to reason about syntax is not simple.
Pertormance-based probes suffer the criticism that the observed syn-
tactic knowledge is not obtained by the LM through pretraining, but
rather emerges from the probe classifier itself. Parameter-free probe h(t1,to) = h(tr-1,tr) = h(r)+1
(Perturbed Masking) produces unimpressive results. h(u,v) = h(u U v), otherwise.
Still, we want to measure the inferential capacity of the language model
itself. E.g., to induce parse trees.

RH Probe: an encoder-decoder-based probing architecture with two
experiments (ablation probe & attack probe). Ablation study is still a
valid way to interrogate the model.

Finding: BERT’s word embeddings contain important syntactic infor-
mation, but this information alone is not enough to reproduce tradi- An RH distance calculation example. | tree.

tional syntactic representations (e.g. phrase structure) in their entirety. The heights of nodes (h) are in brackets. | We proved this conjecture.
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