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Abstract
We use Long Short Term Memory (LSTM)
networks to learn representations of video se-
quences. Our model uses an encoder LSTM to
map an input sequence into a fixed length rep-
resentation. This representation is decoded us-
ing single or multiple decoder LSTMs to perform
different tasks, such as reconstructing the input
sequence, or predicting the future sequence. We
experiment with two kinds of input sequences
– patches of image pixels and high-level repre-
sentations (“percepts”) of video frames extracted
using a pretrained convolutional net. We ex-
plore different design choices such as whether
the decoder LSTMs should condition on the gen-
erated output. We analyze the outputs of the
model qualitatively to see how well the model
can extrapolate the learned video representation
into the future and into the past. We further
evaluate the representations by finetuning them
for a supervised learning problem – human ac-
tion recognition on the UCF-101 and HMDB-51
datasets. We show that the representations help
improve classification accuracy, especially when
there are only few training examples. Even mod-
els pretrained on unrelated datasets (300 hours of
YouTube videos) can help action recognition per-
formance.

1. Introduction
Understanding temporal sequences is important for solv-
ing many problems in the AI-set. Recently, recurrent neu-
ral networks using the Long Short Term Memory (LSTM)
architecture have been used successfully to perform var-
ious supervised sequence learning tasks, such as speech
recognition (Graves & Jaitly, 2014), machine translation
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(Sutskever et al., 2014; Cho et al., 2014), and caption gen-
eration for images (Vinyals et al., 2014). They have also
been applied on videos for recognizing actions and gener-
ating natural language descriptions (Donahue et al., 2014).
A general sequence to sequence learning framework was
described by Sutskever et al. (2014) in which a recurrent
network is used to encode a sequence into a fixed length
representation, and then another recurrent network is used
to decode a sequence out of that representation. In this
work, we apply and extend this framework to learn rep-
resentations of sequences of images. We choose to work
in the unsupervised setting where we only have access to a
dataset of unlabelled videos.

1.1. Why Unsupervised Learning?

Supervised learning has been extremely successful in learn-
ing good visual representations that not only produce good
results at the task they are trained for, but also transfer well
to other tasks and datasets. Therefore, it is natural to ex-
tend the same approach to learning video representations.
This has led to research in 3D convolutional nets (Ji et al.,
2013; Tran et al., 2014), different temporal fusion strategies
(Karpathy et al., 2014) and exploring different ways of pre-
senting visual information to convolutional nets (Simonyan
& Zisserman, 2014a). However, videos are much higher di-
mensional entities compared to single images. Therefore, it
becomes increasingly difficult to do credit assignment and
learn long range structure, unless we collect much more
labelled data or do a lot of feature engineering (for exam-
ple computing the right kinds of flow features) to keep the
dimensionality low. The costly work of collecting more
labelled data and the tedious work of doing more clever en-
gineering can go a long way in solving particular problems,
but this is ultimately unsatisfying as a machine learning
solution. This highlights the need for using unsupervised
learning to find and represent structure in videos. More-
over, videos have a lot of structure in them (spatial and
temporal regularities) which makes them particularly well
suited as a domain for building unsupervised learning mod-
els.
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1.2. Our Approach

In this paper, we use the LSTM Encoder-Decoder frame-
work to learn video representations. The Encoder LSTM
runs through a sequence of frames to come up with a rep-
resentation. This representation is then decoded through
another LSTM to produce a target sequence. We consider
different choices of the target sequence. One choice is to
predict the same sequence as the input. The motivation is
similar to that of autoencoders – we wish to capture all that
is needed to reproduce the input but at the same time go
through the inductive biases imposed by the model. An-
other option is to predict the future frames. Here the mo-
tivation is to learn a representation that extracts all that is
needed to extrapolate the motion and appearance beyond
what has been seen. These two natural choices can also be
combined. In this case, there are two decoder LSTMs – one
that decodes the representation into the input sequence and
another that decodes the same representation to predict the
future.

The inputs to the model can, in principle, be any representa-
tion of individual video frames. However, for the purposes
of evaluation, we limit our attention to two kinds of inputs.
The first is image patches. For this we use natural image
patches as well as a dataset of moving MNIST digits. The
second is the high-level “percepts” extracted by applying a
convolutional net pretrained on ImageNet. These percepts
are the states of the last (and/or second-to-last) layer of rec-
tified linear hidden units.

In order to evaluate the learned representations we quali-
tatively analyze the reconstructions and predictions made
by the model. For a more quantitative evaluation, we use
these LSTMs as initializations for the supervised task of ac-
tion recognition. If the unsupervised learning model comes
up with useful representations then the classifier should be
able to perform better, especially when there are only a few
labelled examples. We find that this is indeed the case.

1.3. Related Work

The first approaches to learning representations of videos
in an unsupervised way were based on ICA (van Hateren &
Ruderman, 1998; Hurri & Hyvärinen, 2003). Mobahi et al.
(2009) proposed a regularizer that encourages temporal co-
herence using a contrastive hinge loss. Le et al. (2011) ap-
proached this problem using multiple layers of Independent
Subspace Analysis modules. Generative models for under-
standing transformations between pairs of consecutive im-
ages are also well studied (Memisevic, 2013; Memisevic &
Hinton, 2010; Susskind et al., 2011). This work was ex-
tended recently by Michalski et al. (2014) to model longer
sequences.

Recently, Ranzato et al. (2014) proposed a generative

model for videos. The model uses a recurrent neural
network to predict the next frame or interpolate between
frames. This work highlights the importance of choosing
the right loss function. It is argued that squared loss in
input space is not the right objective because it does not
respond well to small distortions in input space. The pro-
posed solution is to quantize the image patches into a large
dictionary and train the model to predict the identity of
the target patch. This does solve some of the problems of
squared loss but it introduces an arbitrary dictionary size
into the picture and altogether removes the idea of patches
being similar or dissimilar to one other. Other metrics such
as Structural Similarity (Wang et al., 2004) have also been
proposed. Designing a loss function that respects our no-
tion of visual similarity is a very hard problem (in a sense,
almost as hard as the modeling problem we want to solve
in the first place). Therefore, in this paper, we use the sim-
ple squared loss objective function as a starting point and
focus on designing an encoder-decoder RNN architecture
that can be used with any differentiable loss function.

2. Model Description
In this section, we describe several variants of our LSTM
Encoder-Decoder model. The basic unit of our network
is the LSTM cell block that consists of four input termi-
nals, a memory cell and an output unit. Our implementa-
tion of LSTMs follows closely the one discussed by Graves
(2013).

2.1. LSTM Autoencoder Model

This model consists of two Recurrent Neural Nets, the en-
coder LSTM and the decoder LSTM as shown in Fig. 1.
The input to the model is a sequence of vectors (image
patches or features). The encoder LSTM reads in this se-
quence. After the last input has been read, the cell state and
output state of the encoder are copied over to the decoder
LSTM. The decoder outputs a prediction for the target se-
quence. The target sequence is same as the input sequence,
but in reverse order. Reversing the target sequence makes
the optimization easier because the model can get off the
ground by looking at low range correlations. This is also
inspired by a stack representation of lists (for example in
LISP). The encoder creates a list by pushing frames on top
of the stack and the decoder unrolls this list by removing
frames from the top.

The decoder can be conditional or unconditioned. A con-
ditional decoder receives the last generated output frame
as input, i.e., the dotted boxes in Fig. 1 are present. An
unconditioned decoder does not receive that input. This is
discussed in more detail in Sec. 2.3. The architecture can
be extended to multiple layers by stacking LSTMs on top
of each other.
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Figure 1. LSTM Autoencoder Model

Why should this learn good features ?
The state of the encoder LSTM after the last input frame
has been read is the representation of the input video. The
decoder LSTM is being asked to reconstruct back the input
sequence from this representation. In order to do so, the
representation must retain information about the appear-
ance of the objects and the background as well as any mo-
tion contained in the video. This is exactly the information
that we would like the representation to contain. However,
an important question for any autoencoder-style model is
what prevents it from learning a trivial identity mapping
by effectively copying the input to the output. Two factors
prevent this behaviour. First, the fact that there are only
a fixed number of hidden units makes it unlikely that the
model can learn trivial mappings for arbitrary length input
sequences. Second, the same dynamics must be applied re-
cursively on the representation. This further makes it hard
for the model to learn an identity mapping.

2.2. LSTM Future Predictor Model

Another natural unsupervised learning task for sequences
is predicting the future. This is the approach used in lan-
guage models. The design of the Future Predictor Model is
same as that of the Autoencoder Model, except that the de-
coder LSTM in this case predicts frames of the video that
come just after the input sequence (Fig. 2). Ranzato et al.
(2014) use a similar model but predict only the next frame
at each time step. This model, on the other hand, predicts a
long sequence into the future. Here again we consider two
variants of the decoder – conditional and unconditioned.

Why should this learn good features ?
In order to predict the next few frames correctly, the model
needs information about which objects are present and how
they are moving so that the motion can be extrapolated. The
hidden state coming out from the encoder will try to capture
this information.

2.3. Conditional Decoder

For each of these two models, we consider two possibil-
ities - one in which the decoder LSTM is conditioned on
the last generated frame and the other in which it is not. In

v1 v2 v3 v̂4 v̂5

v̂4 v̂5 v̂6Learned
Representation

W1 W1 copy W2 W2

Figure 2. LSTM Future Predictor Model

the experimental section, we explore these choices quan-
titatively. Here we briefly discuss the modeling issues in-
volved. A conditional decoder helps model multiple modes
in the target sequence distribution. Without that, we would
end up averaging the multiple modes in the low-level input
space. In order to fully exploit such a conditional decoder,
we would need some stochasticity in the way we gener-
ate a frame. In the case of machine translation (Sutskever
et al., 2014) this was achieved by sampling from the pre-
dicted multinomial distribution over words. Analogously,
we could consider adding noise to the predicted frames in
our model. However, simple ways of doing this, for exam-
ple, adding independent Gaussian noise are unlikely to be
effective since they only serve to corrupt the data and take it
away from the data manifold. We need to stay on the man-
ifold in order to generate plausible alternatives. For exam-
ple, if based on some input video, a ball is equally likely to
move left or right, we need a stochastic process that can
predict the ball moving either to the left or to the right
but not a ball in the middle plus Gaussian noise. This re-
quires adding some noise in the higher layers of the model
and then having a deterministic process generate the frame.
Variational autoencoders and related methods (Kingma &
Welling, 2013; Gregor et al., 2015) are promising ways of
doing this. We intend to explore these techniques in future.
In this work, however, we use a completely deterministic
conditional decoder. At test time we feed in the generated
frame from the previous step without adding any noise. At
training time we feed in the ground truth.

Modeling multiple modes is an issue only if we expect mul-
tiple modes in the target sequence distribution. For the
LSTM Autoencoder, there is only one correct target and
hence the target distribution can be considered almost uni-
modal. But for the LSTM Future Predictor there is a possi-
bility of multiple targets given an input. It should be noted
that for videos the source of uncertainty about the future is
often completely external to the input. For example, there
is often no way to predict that a new object might come
into the scene, or what kind of background will come into
view as the camera moves. Therefore the future is reason-
ably predictable only for a very short time, making multiple
modes in the target distribution less of a concern.
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Figure 3. The Composite Model: The LSTM predicts the future
as well as the input sequence.

2.4. A Composite Model

The two tasks – reconstructing the input and predicting the
future can be combined to create a composite model as
shown in Fig. 3. Here the encoder LSTM is asked to come
up with a state from which we can both predict the next few
frames as well as reconstruct the input.

This composite model tries to overcome the shortcomings
that each model suffers on its own. A high-capacity au-
toencoder would suffer from the tendency to learn trivial
representations that just memorize the inputs. However,
this memorization is not useful at all for predicting the fu-
ture. Therefore, the composite model cannot just memo-
rize information. On the other hand, the future predictor
suffers form the tendency to store information only about
the last few frames since those are most important for pre-
dicting the future, i.e., in order to predict vt, the frames
{vt−1, . . . , vt−k} are much more important than v0, for
some small value of k. Therefore the representation at the
end of the encoder will have forgotten about a large part of
the input. But if we ask the model to also predict all of the
input sequence, then it cannot just pay attention to the last
few frames.

3. Experiments
We design experiments to accomplish the following objec-
tives:
• Get a qualitative understanding of what the LSTM

learns to do.
• Measure the benefit of initializing networks for super-

vised learning tasks with the weights found by unsu-

pervised learning, especially with very few training
examples.
• Compare the different proposed models – Autoen-

coder, Future Predictor and Composite models and
their conditional variants.
• Compare with state-of-the-art action recognition

benchmarks.

3.1. Training

The proposed models were trained by backpropagation.
RMSProp gave much faster convergence than well-tuned
stochastic gradient descent with momentum. More details
about the training, weight initialization and other hyperpa-
rameters can be found in the expanded version of this paper
(Srivastava et al., 2015).

3.2. Datasets

We use the UCF-101 and HMDB-51 datasets for super-
vised tasks. The UCF-101 dataset (Soomro et al., 2012)
contains 13,320 videos with an average length of 6.2 sec-
onds belonging to 101 different action categories. The
dataset has 3 standard train/test splits with the training set
containing around 9,500 videos in each split (the rest are
test). The HMDB-51 dataset (Kuehne et al., 2011) con-
tains 5100 videos belonging to 51 different action cate-
gories. Mean length of the videos is 3.2 s. This also has
3 train/test splits with 3570 videos in the training set and
rest in test.

To train the unsupervised models, we used a subset of
the YouTube videos from the Sports-1M dataset (Karpa-
thy et al., 2014). Even though this dataset is labelled for
actions, we did not do any supervised experiments on it
because of logistical constraints with working with such a
huge dataset. We instead collected 300 hours of video by
randomly sampling 10 second clips. We also used the su-
pervised datasets (UCF-101 and HMDB-51) for unsuper-
vised training. However, we found that using them did not
give any significant advantage over just using the YouTube
videos. Percepts were extracted using the convolutional
neural net model of Simonyan & Zisserman (2014b). The
videos have a resolution of 240× 320 and were sampled at
30 frames per second. The central 224 × 224 patch from
each frame was forward proped to obtained the RGB per-
cepts. We used only a single patch for simplicity of doing
the experiments, although the performance can probably be
improved by taking multiple patches, doing horizontal flips
and other distortions. We also computed flow percepts by
training the temporal stream convolutional network as de-
scribed by Simonyan & Zisserman (2014a). We found that
the fc6 features worked better than fc7 for single frame
classification using both RGB and flow percepts. There-
fore, we used the 4096-dimensional fc6 layer as the input
representation of our data. Besides these percepts, we also
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Ground Truth Future -�Input Sequence� -

Future Prediction -�Input Reconstruction� -

One Layer Composite Model

Two Layer Composite Model

Two Layer Composite Model with a Conditional Future Predictor

Figure 4. Reconstruction and future prediction obtained from the Composite Model on a dataset of moving MNIST digits.

trained the proposed models on 32 × 32 patches of pixels.

3.3. Visualization and Qualitative Analysis

The aim of this set of experiments is to visualize the prop-
erties of the proposed models. We first trained the models
on a dataset of moving MNIST digits. Each video was 20
frames long and consisted of 2 digits moving inside a 64
× 64 patch. The digits were chosen randomly from the
training set and placed initially at random locations inside
the patch. Each digit was assigned a velocity whose di-
rection was chosen uniformly randomly on a unit circle
and whose magnitude was also chosen uniformly at ran-
dom over a fixed range. The digits bounced-off the edges
of the 64 × 64 frame and overlapped if they were at the
same location. The reason for working with this dataset is
that it is infinite in size and can be generated quickly on the
fly. This makes it possible to explore the model without ex-
pensive disk accesses or overfitting issues. Even though it
is simple to generate, this dataset has non-trivial properties
because the digits occlude each other and bounce off walls.

We first trained a one layer Composite Model. The LSTM
had 2048 units. The encoder took 10 frames as input. The
decoder tried to reconstruct these 10 frames and the fu-
ture predictor attempted to predict the next 10 frames. We
used logistic output units with a cross entropy loss function.
Fig. 4 shows two examples of running this model. The true
sequences are shown in the first two rows. The next two
rows show the reconstruction and future prediction from
the one layer Composite Model. The model figures out

how to separate superimposed digits and can model them
as they pass through each other. This shows some evidence
of disentangling the two independent factors of variation
in this sequence. The model can also correctly predict the
motion after the digits bounce off the walls. In order to
see if adding depth helps, we trained a two layer Compos-
ite Model, with each layer having 2048 units. We can see
that adding depth helps the model make better predictions.
Next, we changed the future predictor by making it condi-
tional. We can see that this model makes even better pre-
dictions. More experiments and analysis, including visu-
alization of learned features and evolution of the LSTMs
state can be found in the expanded version of this paper
(Srivastava et al., 2015).

Next, we tried to see if our models can also work with nat-
ural image patches. For this, we trained the models using
a conditional future predictor on sequences of 32 × 32 im-
age patches extracted from the UCF-101 dataset. In this
case, we used linear output units and the squared error loss
function. The input was 16 frames. The model was asked
to reconstruct these 16 frames and predict the future 13
frames. Fig. 5 shows the reconstructions obtained from a
two layer Composite model with 2048 units. We found that
the future predictions quickly blur out but the input recon-
structions look better. We then trained a bigger model with
4096 units. Even in this case, the future blurred out quickly.
However, the reconstructions look sharper. We believe that
models that look at bigger contexts and use more powerful
stochastic decoders are required to get better future predic-
tions.
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Ground Truth Future -�Input Sequence� -

Future Prediction -�Input Reconstruction� -

Two Layer Composite Model with 2048 LSTM units

Two Layer Composite Model with 4096 LSTM units

Figure 5. Reconstruction and future prediction obtained from the Composite Model on a dataset of natural image patches. The first two
rows show ground truth sequences. The model takes 16 frames as inputs. Only the last 10 frames of the input sequence are shown here.
The next 13 frames are the ground truth future. In the rows that follow, we show the reconstructed and predicted frames for two instances
of the model.

3.4. Action Recognition on UCF-101/HMDB-51

The aim of this set of experiments is to see if the features
learned by unsupervised learning can help improve perfor-
mance on supervised tasks.

v1 v2 . . . vT

. . .

. . .

y1 y2 . . . yT

W (1) W (1) W (1)

W (2) W (2) W (2)

Figure 6. LSTM Classifier.

We used a two layer Composite Model with 2048 hid-
den units with no conditioning on either decoders. The
model was trained on percepts extracted from 300 hours of
YouTube data. It was trained to autoencode 16 frames and
predict the next 13 frames. We initialize an LSTM classi-
fier with the weights learned by the encoder LSTM from
this model. The model is shown in Fig. 6. The output from
each LSTM goes into a softmax classifier that makes a pre-
diction about the action being performed at each time step.
Since only one action is being performed in each video in
the datasets we consider, the target is the same at each time

step. At test time, the predictions made at each time step are
averaged. To get a prediction for the entire video, we av-
erage the predictions from all 16 frame blocks in the video
with a stride of 8 frames. Using a smaller stride did not
improve results.

The baseline for comparing these models is an identical
LSTM classifier but with randomly initialized weights. All
classifiers used dropout regularization, where we dropped
activations as they were communicated across layers but
not through time within the same LSTM as proposed in
Zaremba et al. (2014). We emphasize that this is a very
strong baseline and does significantly better than just using
single frames. Using dropout was crucial in order to train
good baseline models with very few training examples.

Fig. 7 compares three models - single frame classifier, base-
line LSTM classifier and the LSTM classifier initialized
with weights from the Composite Model. The number of
labelled videos per class is varied. Note that having one
labelled video means having many labelled 16 frame se-
quences. We can see that for the case of very few train-
ing examples, unsupervised learning gives a substantial im-
provement. For example, for UCF-101, the performance
improves from 29.6% to 34.3% when training on only one
labelled video. As the size of the labelled dataset grows, the
improvement becomes smaller. Even for the full UCF-101
dataset we get a considerable improvement from 74.5% to
75.8%. On HMDB-51, the improvement is from 42.8% to
44.0% for the full dataset (70 videos per class) and 14.4%
to 19.1% for one video per class. Although, the improve-
ment in classification by using unsupervised learning was
not as big as we expected, we still managed to yield an ad-
ditional improvement over a strong baseline.
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Figure 7. Effect of pretraining on action recognition with change in the size of the labelled training set. The error bars are over 10
different samples of training sets.

Model UCF-101
RGB

UCF-101
1- frame flow

HMDB-51
RGB

Single Frame 72.2 72.2 40.1
LSTM classifier 74.5 74.3 42.8
Composite LSTM
Model + Finetuning 75.8 74.9 44.1

Table 1. Summary of Results on Action Recognition.

Model Cross Entropy
on MNIST

Squared loss
on image
patches

Future Predictor 350.2 225.2
Composite Model 344.9 210.7
Conditional Future Predictor 343.5 221.3
Composite Model with
Conditional Future Predictor 341.2 208.1

Table 2. Future prediction results on MNIST and image patches.
All models use 2 layers of LSTMs.

We further ran similar experiments on the optical flow per-
cepts extracted from the UCF-101 dataset. A temporal
stream convolutional net, similar to the one proposed by Si-
monyan & Zisserman (2014b), was trained on single frame
optical flows as well as on stacks of 10 optical flows. This
gave an accuracy of 72.2% and 77.5% respectively. Here
again, our models took 16 frames as input, reconstructed
them and predicted 13 frames into the future. LSTMs with
128 hidden units improved the accuracy by 2.1% to 74.3%
for the single frame case. Bigger LSTMs did not improve
results. By pretraining the LSTM, we were able to further
improve the classification to 74.9% (±0.1). For stacks of
10 frames we improved very slightly to 77.7%. These re-
sults are summarized in Table 1.

3.5. Comparison of Different Model Variants

The aim of this set of experiments is to compare the differ-
ent variants of the model proposed in this paper. Since it is

always possible to get lower reconstruction error by copy-
ing the inputs, we cannot use input reconstruction error as
a measure of how well a model is doing. However, we can
use the error in predicting the future as a reasonable mea-
sure of performance. We can also use the performance on
supervised tasks as a proxy for how well the unsupervised
model is doing. In this section, we present results from
these two analyses.

Future prediction results are summarized in Table 2. For
MNIST we compute the cross entropy of the predictions
with respect to the ground truth. For natural image patches,
we compute the squared loss. We see that the Compos-
ite Model always does a better job of predicting the future
compared to the Future Predictor. This indicates that hav-
ing the autoencoder along with the future predictor to force
the model to remember more about the inputs actually helps
predict the future better. Next, we compare each model
with its conditional variant. Here, we find that the condi-
tional models perform slightly better, as was also noted in
Fig. 4.

The performance on action recognition achieved by fine-
tuning different unsupervised learning models is summa-
rized in Table 3. Besides running the experiments on the
full UCF-101 and HMDB-51 datasets, we also ran the ex-
periments on small subsets of these datasets where the ef-
fects of pretraining would be more pronounced. We find
that all unsupervised models improve over the baseline
LSTM which is itself well-regularized using dropout. The
Autoencoder model seems to perform consistently better
than the Future Predictor. The Composite model, which
combines the two, does better than either one alone. Con-
ditioning on the generated inputs does not seem to give a
clear advantage over not doing so. The Composite Model
with a conditional future predictor works the best, although
its performance is almost same as that of the Composite
Model without conditioning.
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Method UCF-101 small UCF-101 HMDB-51 small HMDB-51

Baseline LSTM 63.7 74.5 25.3 42.8
Autoencoder 66.2 75.1 28.6 44.0
Future Predictor 64.9 74.9 27.3 43.1
Conditional Autoencoder 65.8 74.8 27.9 43.1
Conditional Future Predictor 65.1 74.9 27.4 43.4
Composite Model 67.0 75.8 29.1 44.1
Composite Model with Conditional Future Predictor 67.1 75.8 29.2 44.0

Table 3. Comparison of different unsupervised pretraining methods. UCF-101 small is a subset containing 10 videos per class. HMDB-
51 small contains 4 videos per class.

3.6. Comparison with Action Recognition Benchmarks

Finally, we compare our models to the state-of-the-art ac-
tion recognition results. The performance is summarized in
Table 4. The table is divided into three sets. The first set
compares models that use only RGB data (single or mul-
tiple frames). The second set compares models that use
explicitly computed flow features only. Models in the third
set use both.

On RGB data, our model performs at par with the best deep
models. It performs 4.7% better than the LRCN model that
also used LSTMs on top of conv net features1. Our model
performs better than C3D features that use a 3D convolu-
tional net. However, when the C3D features are concate-
nated with fc6 percepts, they do slightly better than our
model.

The improvement for flow features over using a randomly
initialized LSTM network is quite small. We believe this
is partly due to the fact that the flow percepts already cap-
ture a lot of the motion information that the LSTM would
otherwise discover. Another contributing factor is that the
temporal stream convolutional net that is used to extract
flow percepts overfits very readily (in the sense that it gets
almost zero training error but much higher test error) in
spite of strong regularization. Therefore the statistics of
the percepts might be different between the training and
test sets. This is not the case for RGB percepts because the
network there was trained on an entirely different dataset
(ImageNet).

When we combine predictions from the RGB and flow
models, we obtain 84.3 % accuracy on UCF-101. We be-
lieve further improvements can be made by running the
model over different patch locations and mirroring the
patches. Also, our model can be applied deeper inside the
conv net instead of just at the top-level.

4. Conclusions
We proposed models based on LSTMs that can learn good
video representations. We compared them and analyzed

1However, the improvement is only partially from unsuper-
vised learning, since we used a better conv net model.

Method UCF-101 HMDB-
51

Spatial Convolutional Net (Simonyan &
Zisserman, 2014a) 73.0 40.5

C3D (Tran et al., 2014) 72.3 -
C3D + fc6 (Tran et al., 2014) 76.4 -
LRCN (Donahue et al., 2014) 71.1 -
Composite LSTM Model 75.8 44.0

Temporal Convolutional Net (Simonyan &
Zisserman, 2014a) 83.7 54.6

LRCN (Donahue et al., 2014) 77.0 -
Composite LSTM Model 77.7 -

LRCN (Donahue et al., 2014) 82.9 -
Two-stream Convolutional Net (Simonyan &
Zisserman, 2014a) 88.0 59.4

Multi-skip feature stacking (Lan et al., 2014) 89.1 65.1
Composite LSTM Model 84.3 -

Table 4. Comparison with state-of-the-art action recognition
models.

their properties through visualizations. More detailed anal-
ysis can be found in the expanded version of this paper
(Srivastava et al., 2015). There we found that on the mov-
ing MNIST digits dataset, the model was able to generate
persistent motion over long periods of time into the future
even though it was trained for much shorter time scales.
The learned features at the encoder and decoder when vi-
sualized show some important qualitative differences. In
terms of performance on supervised tasks, we managed to
get modest improvements only. The best performing model
was the Composite Model that combined an autoencoder
and a future predictor. The conditional variants did not
give any significant improvements in terms of classification
accuracy after finetuning, however they did give slightly
lower prediction errors. More powerful decoders which in-
corporate some form of stochasticity are required to further
address this question.

To get improvements on supervised tasks, the model can
be extended by applying it convolutionally across patches
of the video and stacking multiple layers of such models.
In our future work, we plan to build temporal models from
the bottom up instead of using them only to model high-
level percepts. We will also use more powerful decoders
that can model multimodal target distributions.
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