
Improving Neural Networks with Dropout

by

Nitish Srivastava

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2013 by Nitish Srivastava



Abstract

Improving Neural Networks with Dropout

Nitish Srivastava

Master of Science

Graduate Department of Computer Science

University of Toronto

2013

Deep neural nets with a huge number of parameters are very powerful machine learning systems. How-

ever, overfitting is a serious problem in such networks. Large networks are also slow to use, making it

difficult to deal with overfitting by combining many different large neural nets at test time. Dropout

is a technique for addressing this problem. The key idea is to randomly drop units (along with their

connections) from a neural network during training. This prevents the units from co-adapting too much.

Dropping units creates thinned networks during training. The number of possible thinned networks is

exponential in the number of units in the network. At test time all possible thinned networks are com-

bined using an approximate model averaging procedure. Dropout training followed by this approximate

model combination significantly reduces overfitting and gives major improvements over other regulariza-

tion methods. In this work, we describe models that improve the performance of neural networks using

dropout, often obtaining state-of-the-art results on benchmark datasets.

ii



Contents

1 Introduction 1

2 Dropout with feed forward neural nets 3

2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Learning dropout nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Pretraining dropout nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5 Comparison with Bayesian methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Comparison with standard regularizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Effect on features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Effect on sparsity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Effect of dropout rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.10 Effect of data set size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Monte-Carlo model averaging vs. weight scaling. . . . . . . . . . . . . . . . . . . . . . . . 13

3 Dropout with Boltzmann Machines 15

3.1 Dropout RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Learning Dropout RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Effect on features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Effect on sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Marginalizing dropout 18

4.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Logistic regression and deep networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 20

Bibliography 21

iii



Chapter 1

Introduction

Neural networks are powerful computational models that are being used extensively for solving problems

in vision, speech, natural language processing and many other areas.

In spite of many successes, neural networks still suffer from a major weakness. The presence of non-

linear hidden layers makes deep networks very expressive models which are therefore prone to severe

overfitting. A typical neural net training procedure involves early stopping to prevent this. Several

regularization schemes have also been proposed to prevent overfitting. These methods combined with

large datasets have made it possible to apply neural networks for solving machine learning problems

in several domains. However, overfitting still remains a major challenge to overcome when it comes to

training extremely large neural networks or working in domains which offer very small amounts of data.

Model combination typically improves the performance of machine learning models. Averaging the

predictions of several models is most helpful when the individual models are different from each other

and each model is fast to train and use at test time. However, large neural networks are hard to train and

slow to use at test time. In order to make them different they must either have different hyperparameters

or be trained on different data. This often makes it impractical to train many large networks and average

all their predictions at test time.

“Dropout” is a technique that aims to address both these concerns. The term “dropout” refers to

dropping out units (hidden and visible) in a neural network. By dropping a unit out, we mean removing

it from the network, along with all its incoming and outgoing edges. The choice of which units to drop

is random. In the simplest case, each unit is retained with a fixed probability p, where p can be chosen

based on the particular problem by a validation set (a typical value is p = 0.5). Dropping out is done

independently for each hidden unit and for each training case. Thus, applying dropout to a neural

network amounts to sub-sampling a “thinned” neural network from it. A neural net with n units, can

be seen as a collection of 2n possible thinned neural networks. These networks all share weights so that

the total number of parameters is still O(n2), or less.

For large n, each time a training case is presented, it is likely to use a new thinned network. So

training a neural network with dropout can be seen as training a collection of 2n thinned networks with

massive weight sharing, where each thinned network gets trained very rarely, if at all.

When the model is being used at test time, it is not feasible to explicitly average the predictions from

exponentially many thinned models. However, a very simple approximate averaging method works well.

The idea is to use a single neural net at test time without dropout. The weights of this test network

1



Chapter 1. Introduction 2

are scaled versions of the weights of the thinned networks used during training. The weights are scaled

such that for any given input to a hidden unit the expected output (under the distribution used to drop

units at training time) is the same as the output at test time. So, if a unit is retained with probability

p, this amounts to multiplying the outgoing weights of that unit by p. With this approximate averaging

method, 2n networks with shared weights can be combined into a single neural network to be used at

test time. Training a network with dropout and using the approximate averaging method at test time

leads to significantly lower generalization error on a wide variety of classification problems.

Dropout can also be interpreted as a way of regularizing a neural network by adding noise to its

hidden units. This idea has previously been used in the context of Denoising Autoencoders [26, 27]

where noise is added to the inputs of an autoencoder and the target is kept noise-free. Our work extends

this idea by dropping units in the hidden layers too and performing appropriate weight scaling at test

time. Compared to the 5% noise that typically works best for DAEs, it is usually optimal to drop out

20% of input units and 50% of the hidden units to obtain the most benefit from dropout.

A motivation for this method comes from a theory of role of sex in evolution [10]. Sexual reproduction

involves taking half the genes of one parent and half of the other and combining them to produce an

offspring. The asexual alternative involves creating an offspring with a copy of the parent’s genes. It

seems plausible that asexual reproduction is a better optimizer of fitness which is widely believed to

be the criterion for natural selection, i.e., successful organisms would be able to create more copies

of successful organisms. Sexual reproduction seems to be downgrading the genes by pairing up two

randomly chosen halves. However, sexual reproduction is the way most advanced organisms evolved.

One explanation is that the criteria for natural selection may not be individual fitness but rather mix-

ability of genes. The ability of genes to be able to work well with another random set of genes makes

them more robust. Since a gene cannot rely on an exact partner to be present at all times, it must

learn to do something useful on its own without relying on a partner to make up for its shortcomings.

Similarly, hidden units in a neural network trained with dropout must learn to work with a randomly

chosen sample of other units. This makes each hidden unit more robust and drives it towards creating

useful features on its own without relying on other hidden units to correct its mistakes. Preventing

co-adaptation in this manner improves neural networks.

The idea of dropout is not limited to feed forward neural nets. It can be more generally applied

to graphical models such as Boltzmann Machines. The chapters that follow explore different aspects of

dropout in detail, apply it to different problems and compare it with other forms of regularization and

model combination.



Chapter 2

Dropout with feed forward neural

nets

This chapter describes training and testing methods to be used when dropout is applied to feed forward

neural nets.

2.1 Model Description

This section describes the dropout neural network model. Consider a neural network with L hidden

layers. Let l ∈ {1, . . . , L} index the hidden layers of the network. Let z(l) denote the vector of inputs

into layer l, y(l) denote the vector of outputs from layer l (y(0) = x is the input). W (l) and b(l) are the

weights and biases at layer l. The feed forward operation of a neural network can be described as (for

l ∈ {0, . . . , L− 1})-

z(l+1) = W (l+1)yl + b(l+1) (2.1)

y(l+1) = f(z(l+1)) (2.2)

where f is any activation function. With dropout, the feed forward operation becomes -

r
(l)
i ∼ Bernoulli(p) (2.3)

ỹ(l) = r(l) ∗ y(l) (2.4)

z(l+1) = W (l+1)ỹl + b(l+1) (2.5)

y(l+1) = f(z(l+1)) (2.6)

Here r(l) is a vector of Bernoulli random variables each of which has probability p of being 1. This

vector is sampled for each layer and multiplied element-wise with the outputs of that layer, y(l), to create

the thinned outputs ỹ(l). The thinned outputs are then used as input to the next layer. For learning,

the derivatives of the loss function are backpropagated through the thinned network.

At test time, the weights are scaled as W
(l)
test = pW (l). The resulting neural network is run without

dropout.

3



Chapter 2. Dropout with feed forward neural nets 4

2.2 Learning dropout nets

Dropout neural networks can be trained with stochastic gradient descent. Dropout is done separately

for each training case in every minibatch. Dropout can be used with any activation function and our

experiments with logistic, tanh and rectified linear units yielded similar results though requiring different

amounts of training time (rectified linear units were fastest to train). Several methods that have been

used to improve stochastic gradient descent with standard neural networks such as momentum, decaying

learning rates and L2 weight decay are useful for dropout neural networks as well.

One particular form of regularization was found to be especially useful for dropout - constraining

the norm of the incoming weight vector at each hidden unit to be upper bounded by a fixed constant c.

In other words, if wi represents the vector of weights incident on hidden unit i, the neural network was

optimized under the constraint ||wi||2 ≤ c. This constraint was imposed during optimization by scaling

wi to lie on a ball of radius c, if it ever violated the constraint. This is kind of regularization is also called

max-norm regularization and has been previously used in the context of collaborative filtering [20].

The constant c is a tuneable hyperparameter, which can be determined using a validation set. Al-

though dropout alone gives significant improvements, optimizing under this constraint, coupled with a

large decaying learning rates and high momentum provides a significant boost over just using dropout.

One explanation of this fact is that constraining the weight vector to lie inside a ball of fixed radius makes

it possible to use a huge learning rate without the possibility of weights blowing up. The noise provided

by dropout then allows the optimization process to explore different regions of the weight space that it

would have otherwise not encountered. As the learning rate decays, the optimization takes shorter steps

and gradually trades off exploration with exploitation and finally settles into a minimum.

2.3 Pretraining dropout nets

Neural networks can be pretrained using stacks of RBMs [6], autoencoders [27] or Deep Boltzmann

Machines [17]. This pretraining followed by finetuning with backpropagation has been shown to give

significant performance boosts over finetuning from random initializations in certain cases. Pretraining

is also an effective way of making use of unlabeled data.

Dropout nets can also be pretrained using these techniques. The procedure is identical to standard

pretraining [6] except with a small modification - the weights obtained from pretraining should be scaled

up by a factor of 1/p. The reason is similar to that for scaling down the weights by a factor of p

when testing (maintaining the same expected output at each unit). Compared to learning from random

initializations, finetuning from pretrained weights typically requires a smaller learning rate so that the

information in the pretrained weights is not entirely lost.

2.4 Classification Results

The above training and test procedure was applied to several datasets. The best results were consistently

obtained when dropout was used. These datasets range over a variety of domains and tasks -

• MNIST is a standard toy dataset of handwritten digits.

• TIMIT is a standard speech benchmark for clean speech recognition.



Chapter 2. Dropout with feed forward neural nets 5

• SVHN consists of images of house numbers collected by Google Street View.

• Reuters-RCV1 is a collection of Reuters newswire articles.

• Flickr-1M consists of multimodal data (1 million images and tags).

• Alternate Splicing dataset consists of biochemistry data for genes.

For completeness, we also report results obtained by other researchers who have used dropout. These

include CIFAR-10 [7] and ImageNet-1K [9]. This section describes the results along with the neural net

architectures used to obtain these results. All datasets are publicly available and all except TIMIT and

WSJ are free. The code for reproducing these results can be obtained from http://www.cs.toronto.

edu/~nitish/dropout. The implementation is GPU-based and uses cudamat [11]. Convolutional neural

net implementation is based on kernels from cuda-convnet used for obtaining results in [9].

2.4.1 Results on MNIST

Method Unit Type Error %
2 layer NN [19] Logistic 1.60
SVM gaussian kernel - 1.4
Dropout ReLU 1.25
Dropout + weight
norm constraint

ReLU 1.05

DBN + finetuning Logistic 1.18
DBN + dropout fine-
tuning

Logistic 0.92

DBM + finetuning Logistic 0.96
DBM + dropout
finetuning

Logistic 0.79

Figure 2.1: Comparison of training methods
.

0 200000 400000 600000 800000 1000000
Number of weight updates

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Cl

as
si

fic
at

io
n 

Er
ro

r %
Dropout 1000 units 2 layers
Dropout 1000 units 3 layers
Dropout 1000 units 4 layers
Dropout 2000 units 2 layers
Dropout 2000 units 3 layers
Dropout 2000 units 4 layers

Figure 2.2: Test error for different architectures
.

MNIST is a collection of 28×28 pixel handwritten digit images. There are 60,000 training and 10,000

test images. A validation set consisting of 10,000 images was held out from the training set. No input

preprocessing was done. No spatial information or input distortions was used.

Classification experiments were done with networks of many different architectures. Fig. 2.2 shows

the test error curves obtained for some of these. All of these used rectified linear units.

Fig 2.1 compares the test classification results obtained by several different methods and their exten-

sions using dropout. The pretrained dropout nets use logistic units and all other networks use rectified

linear units. The best performance without unsupervised pretraining for the permutation invariant set-

ting using neural nets is 1.60% [19]. Adding dropout reduced the error to 1.25% and adding weight norm

constraints further reduced that to 1.05%. Pretrained dropout nets also improved the performance for

Deep Belief Nets and Deep Boltzmann Machines. DBM pretrained dropout nets achieve a test error of

0.79% which is state-of-the-art for the permutation invariant setting.

http://www.cs.toronto.edu/~nitish/dropout
http://www.cs.toronto.edu/~nitish/dropout


Chapter 2. Dropout with feed forward neural nets 6

2.4.2 Results on SVHN

The Street View House Numbers (SVHN) Dataset [14] consists of real-world images of house numbers

obtained from Google Street View. The part of the dataset that we use in our experiments consists

of 32 × 32 pixel color images centered on a digit in a house number. Fig. 2.3 shows some examples of

images from this dataset. The task is to identify the digit in the center of the image.

Figure 2.3: Samples of images from the Street View House Numbers (SVHN) dataset.

For this dataset, dropout was applied in convolutional neural networks. The network consists of three

convolutional layers each followed by a max-pooling layer. The convolutional layers have 64, 64 and 128

filters respectively. Each convolutional layer has a 5× 5 receptive field applied with a stride of 1 pixel.

The max pooling layers pool a 3 × 3 region and are applied at strides of 2 pixels. The convolutional

layers are followed by two fully connected hidden layers having 3072 and 2048 units respectively. All

units use the rectified linear activation function. Dropout was applied to all the layers of the network

with the probability of retaining the unit being p = (0.9, 0.9, 0.9, 0.5, 0.5, 0.5) for the different layers of

the network (going from input to convolutional layers to fully connected layers). These hyperparameters

were tuned using a validation set. In addition, the weight norm constraint was used for hidden units

in the fully-connected layers. Besides the test set, the SVHN dataset consists of a standard labelled

training set and another set of labelled examples that are easy. The validation set was constructed by

taking examples from both the sets. Two-thirds of it were taken from the standard set (400 per class)

and one-third from the extra set (200 per class), a total of 6000 samples. This same process is used

in [18]. The inputs were RGB pixels normalized to have zero mean and unit variance.

Table. 2.1 compares the results obtained by using dropout with other methods. Dropout leads to a

more than 35% relative improvement over the best previously published results. It bridges the distance

to human-level performance by more than half. The additional gain in performance obtained by adding

dropout in the convolutional layers besides doing dropout in the fully connected layers suggests that the

utility of dropout is not limited to densely connected neural networks but can be more generally applied

to other specialized architectures.



Chapter 2. Dropout with feed forward neural nets 7

Table 2.1: Results on the Street View House Numbers dataset.

Method Error %
Binary Features (WDCH) [14] 36.7
HOG [14] 15.0
Stacked Sparse Autoencoders [14] 10.3
KMeans [14] 9.4
Multi-stage Conv Net with average pooling [18] 9.06
Multi-stage Conv Net + L2 pooling [18] 5.36
Multi-stage Conv Net + L4 pooling + padding [18] 4.90
Conv Net + max-pooling 3.95
Conv Net + max pooling + dropout in fully connected layers 3.02
Conv Net + max pooling + dropout in all layers 2.78
Conv Net + max pooling + dropout in all layers + input translations 2.68
Human Performance 2.0

2.4.3 Results on TIMIT

TIMIT is a speech dataset with recordings from 680 speakers covering 8 major dialects of American

English reading ten phonetically-rich sentences in a controlled noise-free environment. It has been used

to benchmark many speech recognition systems. Table. 2.2 compares dropout neural nets against some

of them. The open source Kaldi toolkit [16] was used to preprocess the data into log-filter banks and to

get labels for speech frames. Dropout neural networks were trained on windows of 21 frames to predict

the label of the central frame. No speaker dependent operations were performed. A 6-layer dropout net

gives a phone error rate of 23.4%. This is already a very good performance on this dataset. Dropped

further improves it to 21.8%. Similarly, a 4-layer pretrained dropout net improves the phone error rate

from 22.7% to 19.7%.

Table 2.2: Phone error rate on the TIMIT core test set.

Method Phone Error Rate%
Neural Net (6 layers) [12] 23.4
Dropout Neural Net (6 layers) 21.8
DBN-pretrained Neural Net (4 layers) 22.7
DBN-pretrained Neural Net (6 layers) [12] 22.4
DBN-pretrained Neural Net (8 layers) [12] 20.7
mcRBM-DBN-pretrained Neural Net (5 layers) [2] 20.5
DBN-pretrained Neural Net (4 layers) + dropout 19.7
DBN-pretrained Neural Net (8 layers) + dropout 19.7

2.4.4 Results on Reuters-RCV1

Reuters-RCV1 is a collection of newswire articles from Reuters. We created a subset of this dataset

consisting of 402,738 articles and a vocabulary of 2000 most commonly used words after removing stop

words. The subset was created so that the articles belong to 50 disjoint categories. The task is to identify

the category that a document belongs to. The data was split into equal sized training and test sets.

A neural net with 2 hidden layers of 2000 units each obtained an error rate of 31.05%. Adding

dropout reduced the error marginally to 29.62%.



Chapter 2. Dropout with feed forward neural nets 8

2.4.5 Results on Flickr-1M

Often real-world data consists of multiple modalities - photographs on the web (images and text), videos

(images and sound), sensory perception (images, sound, touch, internal feedbacks). Multimodal data

raises interesting machine learning problems such as fusing multiple modalities into a joint representa-

tion and inferring missing modalities conditioned on observed ones. Recent efforts have been made in

computer vision [4] and deep learning [15, 22, 21].

The Flickr-1M dataset [8] consists of 1 million pairs of images and tags (text attributed to the

images by users) obtained from the social photography website Flickr. 25,000 pairs are labelled into

38 overlapping topics. The other 975,000 image-text pairs are unlabeled. The task is to identify the

topics to which the labelled pairs belongs. Applying dropout to this dataset seeks to demonstrate two

ideas. Firstly, the use of unlabeled data to pretrain dropout neural networks and secondly, to show the

applicability of dropout to the much less studied domain of multimodal data.

Table 2.3: Results on the Flickr-1M dataset.

Method Mean Average Precision % Precision at 50
LDA [8] 0.492 0.754
SVM [8] 0.475 0.758
DBN [22] 0.599 0.867
Autoencoder (based on [15]) 0.600 0.875
DBM [22] 0.609 0.873
Multiple Kernel Learning SVMs [4] 0.623 -
DBN with dropout finetuning 0.628 0.891
DBM with dropout finetuning 0.632 0.895

Table. 2.3 compares the pretrained dropout neural networks with other models. The evaluation

metrics are Mean Average Precision and Precision at 50. Mean Average Precision is the mean over all

38 topics of the recall-weighted precision for each topic. Precision at 50 is the mean over all 38 topics

of the precision at a recall of 50 data points. The labelled set was split as 10K-5K-10K for training,

validation and testing respectively. The unlabeled data was used for training DBN and DBM models as

described in [22]. The discriminative model pretrained by a DBN has more than 10 million parameters.

The DBM model, after being unrolled as described in [17] has around 16 million parameters. However,

the training set is only 10,000 in size. This makes it hard to discriminatively finetune the models without

causing overfitting. However, when dropout is applied, overfitting is drastically reduced. Dropout with

pretrained models achieves state-of-the-art results, outperforming the best previously published results

on this dataset that were obtained with an Multiple Kernel Learning based SVM model [4]. It is also

interesting to note that the MKL model used over 30,000 standard computer vision features while our

model used 3857 features only.

2.4.6 Results on ImageNet

ImageNet-1K is a collection of over 1 million images categorized into 1000 labels. The system that

was used to obtain state-of-the-art results on this dataset in the ILSVRC-2012 competition [9] used

convolutional neural networks trained with dropout. The model achieved a top-5 error rate of 15.3%

and won the competition by a massive margin (The second best entry stood at 26.2%).



Chapter 2. Dropout with feed forward neural nets 9

2.5 Comparison with Bayesian methods.

Dropout can be seen as a way of doing an approximate equally-weighted averaging of exponentially

many models. On the other hand, Bayesian neural networks [13] are the proper way of doing model

averaging over a continuum of neural network models with appropriate weights. Unfortunately, Bayesian

neural nets are slow to train and difficult to scale to very large neural nets. It is also expensive to get

predictions from many large nets at test time. On the other hand, dropout neural nets are much faster

to train and use at test time. However, Bayesian neural nets are extremely useful for solving problems in

domains where data is scarce such as medical diagnosis, genetics, drug discovery and other bio-chemical

applications. In this section we report experiments that compare Bayesian neural nets with dropout

neural nets for small datasets where Bayesian neural networks are known to perform well and obtain

state-of-the-art results. These datasets are mostly characterized by having a large number of dimensions

relative to the number of examples.

2.5.1 Predicting tissue-regulated alternative splicing

Alternative splicing is a significant cause of cellular diversity in mammalian tissues. Predicting the oc-

currence of alternate splicing in certain tissues under different conditions is important for understanding

many human diseases. The alternative splicing dataset consists of data for 3665 cassette exons, 1014

RNA features and 4 tissue types derived from 27 mouse tissues. Given the RNA features, the task is

to predict the probability of three splicing related events that biologists care about. See [29] for a full

exposition. The evaluation metric is Code Quality which is a measure of the negative KL divergence

between the target and predicted probability distributions (Higher is better).

Table 2.4: Results on the Alternative Splicing Dataset.

Method Code Quality (bits)
Neural Network (early stopping) [29] 440
Regression, PCA [29] 463
SVM, PCA [29] 487
Neural Network (dropout) 567
Bayesian Neural Network [29] 623

A two layer network with 1024 units in each layer was trained on this dataset. A value of p = 0.5

was used for the hidden layer and p = 0.7 for the input layer. Results were averaged across the same

5 folds used in [29]. Table. 2.4 compares dropout neural nets with other models trained on this data.

This experiment suggests that dropout improves the performance of neural networks significantly but not

enough to match the performance of Bayesian neural networks. The dropout neural networks outperform

SVMs and standard neural nets trained with early stopping. It is interesting to note that the dropout

nets are very large (1000s of hidden units) compared to a few tens of units in the Bayesian network.

2.6 Comparison with standard regularizers.

Several regularization methods have been proposed for preventing overfitting in neural networks. These

include L2 weight decay (more generally Tikhonov regularization [24]), lasso [23] and KL-sparsity reg-

ularization which minimizes the KL-divergence between the distribution of hidden unit activations and



Chapter 2. Dropout with feed forward neural nets 10

a target Bernoulli distribution. Another regularization involves putting an upper bound on the norm

of the incoming weight vector at each hidden unit. Dropout can be seen as another way of regularizing

neural networks. In this section we compare dropout with some of these regularization methods.

The MNIST dataset is used to compare these regularizers. The same network architecture (784-

1024-1024-2048-10) was used for all the methods. Table. 2.5 shows the results. The KL-sparsity method

used a target sparsity of 0.1 at each layer of the network. It is easy to see that dropout leads to less

generalization error. An important observation is that weight norm regularization significantly improves

the results obtained by dropout alone.

Table 2.5: Comparison of different regularization methods on MNIST

Method MNIST Classification error %
L2 1.62
L1 (towards the end of training) 1.60
KL-sparsity 1.55
Max-norm 1.35
Dropout 1.25
Dropout + Max-norm 1.05

2.7 Effect on features.

In a standard neural network, each parameter individually tries to change so that it reduces the final loss

function, given what all other units are doing. This conditioning may lead to complex co-adaptations

which cause overfitting since these co-adaptations do not generalize. We hypothesize that for each hidden

unit, dropout prevents co-adaptation by making the presence of other hidden units unreliable. Therefore,

no hidden unit can rely on other units to correct its mistakes and must perform well in a wide variety

of different contexts provided by the other hidden units. The experimental results discussed in previous

sections lend credence to this hypothesis. To observe this effect directly, we look at the features learned

by neural networks trained on visual tasks with and without dropout.

Fig. 2.4a shows features learned by an autoencoder with a single hidden layer of 256 rectified linear

units without dropout. Fig. 2.4b shows the features learned by an identical autoencoder which used

dropout in the hidden layer with p = 0.5. It is apparent that the features shown in Fig. 2.4a have

co-adapted in order to produce good reconstructions. Each hidden unit on its own does not seem to be

detecting a meaningful feature. On the other hand, in Fig. 2.4b, the features seem to detect edges and

spots in different parts of the image.

2.8 Effect on sparsity.

A curious side-effect of doing dropout training is that the activations of the hidden units become sparse,

even when no sparsity inducing regularizers are present. Thus, dropout leads to sparser representations.

To observe this effect, we take the autoencoders trained in the previous section and look at the histogram

of hidden unit activations on a random mini-batch taken from the test set. We also look at the histogram

of mean hidden unit activations over the minibatch. Fig. 2.5a and Fig. 2.5b show the histograms for the

two models. For the dropout autoencoder, we do not scale down the weights since that would obviously



Chapter 2. Dropout with feed forward neural nets 11

(a) Without dropout (b) Dropout with p = 0.5.

Figure 2.4: Features learned on MNIST with one hidden layer autoencoders having 256 rectified linear
units.

increase the sparsity by making the weights smaller. To ensure a fair comparison, the weights used to

obtain the histogram were the same as the ones learned during training.

(a) Without dropout (b) Dropout with p = 0.5.

Figure 2.5: Effect of dropout on sparsity: In each panel, the figure on the left shows a histogram of the
mean activation of hidden units in a randomly chosen test minibatch. The figure on the right shows a
histogram of the activations on the same minibatch.

In Fig. 2.5a, there are many more hidden units that are in a non-zero state compared to those in

Fig. 2.5b, as seen by the significant mass away from zero. The mean activation of hidden units is close

to 2.0 for the autoencoder without dropout but drops to around 0.5 when dropout is used.



Chapter 2. Dropout with feed forward neural nets 12

2.9 Effect of dropout rate.

Dropout has a tune-able hyperparameter p (the probability of retaining a hidden unit in the network).

In this section, the effect of varying this hyperparameter is explored. The comparison is done in two

situations -

1. The number of hidden units is held constant.

2. The expected number of hidden units that will be retained is held constant.

In the first case, all the nets have the same architecture at test time but they are trained with different

amounts of dropout. In our experiment we use a 784-2048-2048-2048-10 architecture. The inputs were

not thinned. Fig. 2.6a shows the test error obtained as a function of p. It can be observed that the

performance is insensitive to the value of p if 0.4 ≤ p ≤ 0.8, but rises sharply for small value of p. This

is to be expected because for the same number of hidden units, having a small p means very few units

will turn on during training. It can be seen that this has lead to underfitting since the training error is

also high.

Therefore, a more fair comparison is the second case in which the quantity pn is held constant where

n is the number of hidden units in any particular layer. This means that networks that have small p

will have larger number of hidden units. This ensures that the expected number of units that will be

present after dropout is same. However, the test networks will be of different sizes. In our experiments,

pn = 256 for the first two hidden layers and pn = 512 for the last hidden layer. Fig. 2.6b shows the

test error obtained as a function of p. We notice that the magnitude of errors for small values of p has

reduced compared to Fig. 2.6a. Values of p that are close to 0.6 seem to perform best for this choice of

pn but our usual default value of 0.5 is close to optimal.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of retaining a unit (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
la

ss
if
ic

at
io

n
 E

rr
or

 %

Test Error

Training Error

(a) Keeping n fixed.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of retaining a unit (p)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
la

ss
if
ic

at
io

n
 E

rr
or

 %

Test Error

Training Error

(b) Keeping pn fixed.

Figure 2.6: Effect of changing dropout rates on MNIST.

2.10 Effect of data set size.

One test of a good regularizer is that it should make it possible to train models with a large number of

parameters even on small datasets. This section explores the effect of changing the dataset size when

dropout is used with feed forward networks. Huge neural networks trained in the standard way overfit



Chapter 2. Dropout with feed forward neural nets 13

massively on small datasets. To see if dropout can help, we run classification experiments on MNIST

and vary the amount of data given to the network.

102 103 104 105

Dataset size

0

5

10

15

20

25

30

Cl
as

si
fic

at
io

n 
Er

ro
r %

With dropout
Without dropout

Figure 2.7: Effect of varying dataset size.

The results of these experiments are shown in Fig. 2.7. The network was given datasets of size 100,

500, 1K, 5K, 10K and 50K randomly sampled without replacement from the MNIST training set. The

same network architecture (784-1024-1024-2048-10) was used for all datasets. Dropout with p = 0.5 was

performed at all the hidden layers and p = 0.8 at the input layer. It can be observed that for extremely

small datasets (100, 500) dropout does not give any improvements. The model has enough parameters

that it can overfit on the training data, even with all the noise coming from dropout. As the size of

the dataset is increased, the gain from doing dropout increases up to a point and then declines. This

suggests that for any given architecture and dropout rate, there is a “sweet spot” corresponding to some

amount of data that is large enough to not be memorized in spite of the noise but not so large that

overfitting is not a problem anyways.

2.11 Monte-Carlo model averaging vs. weight scaling.

The test time procedure that was proposed is to do an approximate model combination by scaling down

the weights of the trained neural network. Another expensive but reasonable way of averaging the models

is to sample k neural nets using dropout for each test case and average their predictions. As k →∞, this

Monte-Carlo model average gets close to the true model average. Finite values of k are also expected

to give reasonable results. It is interesting to compare the performance of this method with the weight

scaling method that has been used till now.

We again use the MNIST dataset and do classification by averaging the predictions of k randomly

sampled neural networks. Fig. 2.8 shows the test error rate obtained for different values of k. This is

compared with the error obtained using the weight scaling method (shown as a horizontal line). It can

be seen that around k = 50, the Monte-Carlo method becomes as good as the approximate method.

Thereafter, the Monte-Carlo method is slightly better than the approximate method but well within one

standard deviation of it. This suggests that the weight scaling method is a fairly good approximation

of the true model average.



Chapter 2. Dropout with feed forward neural nets 14

0 20 40 60 80 100 120
Number of samples used for Monte-Carlo averaging (k)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Te
st

 C
la

ss
ifi

ca
tio

n 
er

ro
r %

Monte-Carlo Model Averaging
Approximate averaging by weight scaling

Figure 2.8: Monte-Carlo model averaging vs. weight scaling.



Chapter 3

Dropout with Boltzmann Machines

The core idea behind dropout is to sample smaller sub-models from a large model, train them and

then combine them at test time. This idea can be generalized beyond feed forward networks. In this

chapter, we explore dropout when applied to Restricted Boltzmann Machines. For clarity of exposition,

we describe dropout for hidden units only. Extending dropout to visible units is straightforward.

3.1 Dropout RBMs

Consider an RBM with visible units v ∈ {0, 1}D and hidden units h ∈ {0, 1}F . It defines the following

probability distribution

P (h,v; θ) =
1

Z(θ)
exp(v>Wh + a>h + b>v)

Where θ = (W,a,b) represents the model parameters and Z is the partition function.

Dropout RBMs are RBMs augmented with a vector of binary random variables r ∈ {0, 1}F . Each

random variable rj takes the value 1 with probability p, independent of others. If rj takes the value 1,

the hidden unit hj is retained, otherwise it is dropped from the model. The joint distribution defined

by a Dropout RBM can be expressed as-

P (r,h,v; p, θ) = P (r; p)P (h,v|r; θ) (3.1)

P (r; p) =

F∏
j=1

prj (1− p)1−rj

P (h,v|r; θ) =
1

Z ′(θ, r)
exp(v>Wh + a>h + b>v)

F∏
j=1

g(hj , rj)

g(hj , rj) = 1(rj = 1) + 1(rj = 0)1(hj = 0)

Z ′(θ, r) is the normalization constant. g(hj , rj) imposes the constraint that if rj = 0, hj must be 0.

15



Chapter 3. Dropout with Boltzmann Machines 16

The distribution over h, conditioned on v and r is factorial

P (h|r,v) =

F∏
j=1

P (hj |rj ,v)

P (hj = 1|rj ,v) = 1(rj = 1)σ

(
bj +

∑
i

Wijvi

)

The distribution over v conditioned on h is same as that of an RBM-

P (v|h) =

D∏
i=1

P (vi|h)

P (vi = 1|h) = σ

ai +
∑
j

Wijhj


Conditioned on r, the distribution over {v,h} is same as the distribution that an RBM would impose,

except that the units for which rj = 0 are dropped from h. Therefore, the Dropout RBM model can be

seen as a mixture of exponentially many RBMs with shared weights each using a different subset of h.

3.2 Learning Dropout RBMs

Learning algorithms developed for RBMs such as Contrastive Divergence [5] can be directly applied for

learning Dropout RBMs. The only difference is that r is first sampled and only the hidden units that

are retained are used for training. Similar to dropout neural networks, a different r is sampled for each

training case in every minibatch. In our experiments, we use CD-1 for training dropout RBMs.

3.3 Effect on features

Dropout in feed forward networks improved the quality of features by reducing co-adaptations. This

section explores whether this effect transfers to Dropout RBMs as well.

Fig. 3.1a shows features learned by a binary RBM with 256 hidden units. Fig. 3.1b shows features

learned by a dropout RBM with the same number of hidden units. Features learned by the dropout

RBM appear qualitatively different in the sense that they seem to capture features that are coarser

compared to the sharply defined stroke-like features in the standard RBM. There seem to be very few

dead units in the dropout RBM relative to the standard RBM.

3.4 Effect on sparsity

Next, we investigate the effect of dropout RBM training on sparsity of the hidden unit activations.

Fig. 3.2a shows the histograms of hidden unit activations and their means on a test mini-batch after

training an RBM. Fig. 3.2b shows the same for dropout RBMs. The histograms clearly indicate that

the dropout RBMs learn much sparser representations than standard RBMs even when no additional

sparsity inducing regularizer is present.



Chapter 3. Dropout with Boltzmann Machines 17

(a) Without dropout (b) Dropout with p = 0.5.

Figure 3.1: Features learned on MNIST by 256 hidden unit RBMs.

(a) Without dropout (b) Dropout with p = 0.5.

Figure 3.2: Effect of dropout on sparsity: In each panel, the figure on the left shows a histogram of the
mean activation of hidden units in a randomly chosen test minibatch. The figure on the right shows a
histogram of the activations on the same minibatch.



Chapter 4

Marginalizing dropout

Dropout can be seen as a way of adding noise to the states of hidden units in a neural network. In this

chapter, we explore the class of models that arise as a result of marginalizing this noise. These models

can be seen as deterministic versions of dropout. In contrast to regular (“Monte-Carlo”) dropout, these

models do not need random bits and it is possible to get gradients for the marginalized loss functions.

In this chapter, we briefly explore these models.

Marginalization in the context of denoising autoencoders has been explored previously [1, 25]. De-

terministic algorithms have been proposed that try to learn models that are robust to feature deletion

at test time [3].

4.1 Linear Regression

First we explore a very simple case of applying dropout to the classical problem of linear regression. Let

X ∈ RN×D be a data matrix of N data points. y ∈ RN be a vector of targets. Linear regression tries

to find a w ∈ RD that minimizes

||y −Xw||2

When the input X is dropped out such that any input dimension is retained with probability p, the

input can be expressed as R ∗X where R ∈ {0, 1}N×D is a random matrix with Rij ∼ Bernoulli(p) and

∗ denotes an element-wise product. Marginalizing the noise, the objective function becomes

minimize
w

E
R∼Bernoulli(p)

[
||y − (R ∗X)w||2

]
This reduces to

minimize
w

||y − pXw||2 + p(1− p)||Γw||2

where Γ = (diag(X>X))1/2. Therefore, dropout with linear regression is equivalent, in expectation, to

ridge regression with a particular form for Γ. This form of Γ essentially scales the weight cost for weight

wi by the standard deviation of the ith dimension of the data.

Another interesting way to look at this objective is to absorb the factor of p into w. This leads to

18



Chapter 4. Marginalizing dropout 19

the following form

minimize
w

||y −Xw̃||2 +
1− p
p
||Γw̃||2

Where w̃ = pw. This makes the dependence of the regularization constant on p explicit. For p close

to 1, all the inputs are retained and the regularization constant is small. As more dropout is done (by

decreasing p), the regularization constant grows larger.

4.2 Logistic regression and deep networks

For logistic regression and deep neural nets, it is hard to obtain a closed form marginalized model.

However, Wang [28] showed that in the context of dropout applied to logistic regression, the correspond-

ing marginalized model can be trained approximately. Under reasonable assumptions, the distributions

over the inputs to the logistic unit and over the gradients of the marginalized model are Gaussian.

Their means and variances can be computed efficiently. This approximate marginalization outperforms

Monte-Carlo dropout in terms of training time and generalization performance.

However, the assumptions involved in this technique become successively weaker as more layers are

added and it would be interesting to see if this same technique can be directly extended to deeper

networks.



Chapter 5

Conclusions

Dropout is a technique for improving neural networks by reducing overfitting. The main idea is to

prevent co-adaptation of hidden units. Dropout improves performance of neural nets in a wide variety

of application domains including object classification, digit recognition, speech recognition, document

classification and analysis of bio-medical data. This suggests that dropout as a technique is quite

general and not specific to any domain. It has been used in models that achieve state-of-the-art results

on ImageNet and SVHN.

The central idea of dropout is to take a large model that overfits easily and repeatedly sample and

train smaller sub-models from it. Since all the sub-models share parameters with the large model, this

process trains the large model which is then used at test time. We demonstrated that this idea works

in the context of feed forward neural networks. This idea can be extended to Restricted Boltzmann

Machines and other graphical models which can be seen as composed of exponentially many sub-models

with shared weights.

Marginalized versions of dropout models may offer some of the benefits of dropout training without

having to deal with noise. These models are an interesting direction for future work.

20



Bibliography

[1] Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized denoising autoencoders

for domain adaptation. In John Langford and Joelle Pineau, editors, Proceedings of the 29th Inter-

national Conference on Machine Learning (ICML-12), ICML ’12, pages 767–774. ACM, New York,

NY, USA, July 2012.

[2] G.E. Dahl, M. Ranzato, A. Mohamed, and GE Hinton. Phone recognition with the mean-covariance

restricted boltzmann machine. Advances in Neural Information Processing Systems, 23:469–477,

2010.

[3] A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion. In

Proceedings of the 23rd international conference on Machine learning, pages 353–360. ACM, 2006.

[4] M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classi-

fication. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages

902 –909, june 2010.

[5] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural

Computation, 18:1527–1554, 2006.

[6] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural net-

works. Science, 313(5786):504 – 507, 2006.

[7] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580,

2012.

[8] Mark J. Huiskes, Bart Thomee, and Michael S. Lew. New trends and ideas in visual concept

detection: the MIR flickr retrieval evaluation initiative. In Multimedia Information Retrieval, pages

527–536, 2010.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convolutional

neural networks. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems 25, pages 1106–1114. 2012.

[10] Adi Livnat, Christos Papadimitriou, Nicholas Pippenger, and Marcus W. Feldman. Sex, mixability,

and modularity. Proceedings of the National Academy of Sciences, 107(4):1452–1457, 2010.

[11] Volodymyr Mnih. Cudamat: a CUDA-based matrix class for python. Technical Report UTML TR

2009-004, Department of Computer Science, University of Toronto, November 2009.

21



Bibliography 22

[12] A. Mohamed, G. Dahl, and G. Hinton. Acoustic modeling using deep belief networks. Audio,

Speech, and Language Processing, IEEE Transactions on, (99):1–1, 2010.

[13] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 1996.

[14] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading

digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning

and Unsupervised Feature Learning 2011, 2011.

[15] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. Mul-

timodal deep learning. In International Conference on Machine Learning (ICML), Bellevue, USA,

June 2011.

[16] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,

Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and

Karel Vesely. The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech

Recognition and Understanding. IEEE Signal Processing Society, December 2011. IEEE Catalog

No.: CFP11SRW-USB.

[17] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann machines. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, volume 5, pages 448–455, 2009.

[18] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to

house numbers digit classification. In International Conference on Pattern Recognition (ICPR

2012), 2012.

[19] P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied

to visual document analysis. In Proceedings of the Seventh International Conference on Document

Analysis and Recognition, volume 2, pages 958–962, 2003.

[20] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Proceedings of the 18th

annual conference on Learning Theory, COLT’05, pages 545–560, Berlin, Heidelberg, 2005. Springer-

Verlag.

[21] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep belief nets. ICML

2012 Representation Learning Workshop, 2012.

[22] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep boltzmann machines.

In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances

in Neural Information Processing Systems 25, pages 2231–2239. 2012.

[23] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B,

58(1):267–288, 1996.

[24] Andrey Nikolayevich Tikhonov. On the stability of inverse problems. Doklady Akademii Nauk

SSSR, 39(5):195–198, 1943.

[25] Laurens van der Maaten, M. Chen, S. Tyree, and Kilian Weinberger. Learning with marginalized

corrupted features. In Proceedings of the International Conference on Machine Learning, In Press.



Bibliography 23

[26] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and

composing robust features with denoising autoencoders. In Proceedings of the 25th international

conference on Machine learning, ICML ’08, pages 1096–1103, New York, NY, USA, 2008. ACM.

[27] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.

Stacked denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. Journal of Machine Learning Research, 11:3371–3408, December 2010.

[28] Sida Wang. Fast dropout training for logistic regression. In NIPS workshop on log-linear models,

2012.

[29] Hui Yuan Xiong, Yoseph Barash, and Brendan J. Frey. Bayesian prediction of tissue-regulated

splicing using rna sequence and cellular context. Bioinformatics, 27(18):2554–2562, 2011.


	Introduction
	Dropout with feed forward neural nets
	Model Description
	Learning dropout nets
	Pretraining dropout nets
	Classification Results
	Comparison with Bayesian methods.
	Comparison with standard regularizers.
	Effect on features.
	Effect on sparsity.
	Effect of dropout rate.
	Effect of data set size.
	Monte-Carlo model averaging vs. weight scaling.

	Dropout with Boltzmann Machines
	Dropout RBMs
	Learning Dropout RBMs
	Effect on features
	Effect on sparsity

	Marginalizing dropout
	Linear Regression
	Logistic regression and deep networks

	Conclusions
	Bibliography

