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Abstract

We propose a Deep Belief Network archi-
tecture for learning a joint representation of
multimodal data. The model defines a prob-
ability distribution over the space of mul-
timodal inputs and allows sampling from
the conditional distributions over each data
modality. This makes it possible for the
model to create a multimodal representation
even when some data modalities are missing.
Our experimental results on bi-modal data
consisting of images and text show that the
Multimodal DBN can learn a good generative
model of the joint space of image and text in-
puts that is useful for filling in missing data
so it can be used both for image annotation
and image retrieval. We further demonstrate
that using the representation discovered by
the Multimodal DBN our model can signif-
icantly outperform SVMs and LDA on dis-
criminative tasks.

1. Introduction

Information in the real world comes through multi-
ple input channels. Images are associated with cap-
tions and tags, videos contain visual and audio signals,
sensory perception includes simultaneous inputs from
visual, auditory, motor and haptic pathways. While
each input modality conveys additional information,
the information content of any modality is unlikely to
be independent of the others. For example, images
of forests and landscapes are strongly associated with
tags like nature and scenery.
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Figure 1. Examples of data from the MIR Flickr Dataset,
along with text generated from the Deep Belief Net by
sampling from P (vtxt|vimg, θ)

The goal of this work is to learn a representation that
takes this association into account. At the same time,
the model must be able to handle missing data modal-
ities so that the same kind of representation can be ex-
tracted even when some input channels are not avail-
able. One way to achieve this is by learning a joint
density model over the space of multimodal inputs.
Missing modalities can then be handled by sampling
from the implied conditional distributions over miss-
ing modalities given the observed modalities. For ex-
ample, we can use a large collection of user-tagged
images to learn a distribution over images and text
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P (vimg, vtxt|θ) such that it is easy to sample from
P (vtxt|vimg, θ) and from P (vimg|vtxt, θ) so that we can
do image annotation (Figure 1) and image retrieval
(Figure 2). In addition, it is also desirable that the
representation be useful for discriminative tasks, such
as object recognition.

Before we describe our model in detail, it is useful to
note why such a model is required. In many appli-
cations, observations come from different input chan-
nels each of which has a different representation and
correlational structure. For example, text is usually
represented as sparse word count vectors whereas an
image is represented using pixel intensities or outputs
of feature extractors which are real-valued and dense.
This makes it much harder to discover relationships
across modalities than relationships among features of
the same modality. There is a lot of structure in the
input but it is difficult to discover the highly non-linear
relationships that exist between features across differ-
ent modalities. Moreover, these observations are noisy
and may have missing values. Using our probabilistic
model, it will be possible to discover joint latent rep-
resentations that capture relationships across various
modalities. Different modalities typically carry differ-
ent kinds of information. For example, people often
caption an image to say things that may not be ob-
vious from the image itself, such as the name of the
person or place in the picture. It would not be possible
to discover a lot of useful information about the world
unless we do multimodal learning.

In this paper, we propose a model based on Deep Belief
Nets (Hinton & Salakhutdinov, 2006). The key idea is
to first use separate modality-friendly latent variable
models to learn low-level representations of each data
modality independently. For doing this we can lever-
age a large supply of unlabeled data to separately learn
good generative models for each modality. Indeed, for
many domains, including text retrieval, speech per-
ception, and machine vision, unlabeled data is readily
available. While the inputs to each of these separate
models will typically belong to different modalities, our
model will learn latent representations that are similar
in form and correlational structure. The latent repre-
sentations for different modalities can then be concate-
nated to form a multimodal input. Higher-order latent
variables can then be used to model the distribution
over this input. The posteriors over the higher-order
variables can then be used to represent the multimodal
input.

There have been several approaches to learning from
multimodal data. In particular, Huiskes et al. (2010)
showed that using captions, or tags, in addition to

Figure 2. Examples of images retrieved using features
generated from a Deep Belief Net by sampling from
P (vimg|vtxt, θ)

standard low-level image features significantly im-
proves classification accuracy of SVM and LDA (Lin-
ear Discriminant Analysis) models. A similar ap-
proach of Guillaumin et al. (2010), based on multi-
ple kernel learning framework, further demonstrated
that an additional text modality can improve the ac-
curacy of SVMs on various object recognition tasks.
However, all of these approaches are discriminative by
nature and cannot make use of large amounts of unla-
beled data or deal easily with noisy or missing input
modalities.

On the generative side, Xing et al. (2005) used dual-
wing harmoniums to build a joint model of images and
text, which can be viewed as a linear RBM model
with Gaussian hidden units together with Gaussian
and Poisson visible units. Most similar to our work is
the recent approach of Ngiam et al. (2011) that used a
deep autoencoder for speech and vision fusion. There
are, however, several crucial differences. First, in this
work we focus on integrating together very different
data modalities: sparse word count vectors, and real-
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valued dense image features. Second, we develop a
Deep Belief Network as a generative model as opposed
to unrolling the network and finetuning it as an au-
toencoder. While both approaches have lead to inter-
esting results in several domains, using a generative
model is important here as it allows our model to eas-
ily handle missing data modalities.

2. Background: RBMs and Their
Generalizations

2.1. Restricted Boltzmann Machines

A Restricted Boltzmann Machine is an undirected
graphical model with visible units v ∈ {0, 1}D and
hidden units h ∈ {0, 1}F with each visible unit con-
nected to each hidden unit. The model defines an en-
ergy function E : {0, 1}D+F → R

E(v, h; θ) = −a>v − b>h− v>Wh,

where θ = {a,b,W} are the model parameters. The
joint distribution over the visible and hidden units is
defined by:

P (v,h; θ) =
1

Z(θ)
exp (−E(v,h; θ)), (1)

where Z(θ) is the normalizing constant.

2.2. Gaussian RBM

Consider modelling visible real-valued units v ∈ RD

and let h ∈ {0, 1}F be binary stochastic hidden units.
The energy of the state {v,h} of the Gaussian RBM
is defined as follows:

E(v,h; θ) =

D∑
i=1

(vi − bi)2

2σ2
i

−
D∑
i=1

F∑
j=1

vi
σi
Wijhj−

F∑
j=1

ajhj ,

where θ = {a,b,W, σ} are the model parameters.
This leads to the following conditional distribution:

P (vi|h; θ) = N

bi + σi

F∑
j=1

Wijhj , σ
2
i

 (2)

2.3. Replicated Softmax Model

The Replicated Softmax Model Salakhutdinov & Hin-
ton (2009) is useful for modelling sparse count data,
such as word count vectors in a document. Let v ∈ NK

be a vector of visible units where vk counts the num-
ber of times word k occurs in the document with the
vocabulary of size K. Let h ∈ {0, 1}J be binary
stochastic hidden topic features. The energy of the
state {v,h} is defined as follows

E(v, h; θ) = −
K∑

k=1

J∑
j=1

Wkjhjvk−
K∑

k=1

vkbk−M
J∑

j=1

hjaj

where θ = {a,b,W} are the model parameters and
M =

∑
k vk is the total number of words in a docu-

ment. The leads to the following conditional distribu-
tion:

P (vk = 1|h; θ) =
exp(−bk +

∑J
j=1Wkjhj)∑K

k′=1 exp(−bk′ +
∑J

j=1Wk′jhj)
(3)

For all of the above models, exact maximum likelihood
learning is intractable. In practice, efficient learning is
performed by following an approximation to the gradi-
ent of the Contrastive Divergence (CD) objective (Hin-
ton, 2002).

3. Multimodal Deep Belief Network

We illustrate the construction of a multimodal DBN
using an image-text bi-modal DBN as our running ex-
ample. Let vm ∈ RD denote an image and vt ∈ NK

denote a text input. Consider modelling each data
modality using a separate two-layer DBN (see Fig. 3).
The probability that each DBN model assigns to a vis-
ible vector is:

P (vm) =
∑

h(1),h(2)

P (h(2),h(1))P (vm|h(1)) (4)

P (vt) =
∑

h(1),h(2)

P (h(2),h(1))P (vt|h(1)) (5)

The image-specific DBN uses Gaussian RBM to
model the distribution over real-valued image features,
whereas text-specific DBN uses Replicated Softmaxes
to model the distribution over word count vectors. The
conditional probabilities of the visibles given hiddens
used in Eqs 4, 5 are as shown in Eqs 2, 3 respectively.

To form a multimodal DBN, we combine the two mod-
els by learning a joint RBM on top of them. The re-
sulting graphical model is shown in Fig. 3, right panel.
The joint distribution can be written as:

P (vm,vt) =
∑

h
(2)
m ,h

(2)
t ,h(3)

P (h(2)
m ,h

(2)
t ,h(3))×

∑
h

(1)
m

P (vm|h(1)
m )P (h(1)

m |h(2)
m )×

∑
h

(1)
t

P (vt|h(1)
t )P (h

(1)
t |h

(2)
t ). (6)

The parameters of this mulitmodal DBN can be
learned approximately by greedy layer-wise training
using CD.

Note that the Multimodal DBN can be described as a
composition of unimodal pathways. Each pathway is
learned separately in a completely unsupervised fash-
ion, which allows us to leverage a large supply of un-
labeled data. Any number of pathways each with any
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Image-specific
DBN

Text-specific
DBN

Multimodal DBN

Figure 3. Left: Image-specific two-layer DBN that uses a Gaussian model to model the distribution over real-valued
image features. Middle: Text-specific two-layer DBN that uses a Replicated Softmax model to model its distribution
over the word count vectors. Right: A Multimodal DBN that models the joint distribution over image and text inputs.

number of layers could potentially be used. The type
of lower RBMs in each layer could be different, ac-
counting for different kinds of input distributions, as
long as the final hidden representations at the end of
each pathway are of the same type.

The intuition behind our model is as follows. Each
data modality may have very different statistical prop-
erties which make it difficult for a shallow model to di-
rectly find correlations across modalities. The purpose
of the independent modality-friendly models (Eq 4, 5)
is to learn higher-level representations that remove
such modality-specific correlations so that the top level
RBM is presented with features that are relatively
“modality-free”, i.e., they are more alike in terms
of their statistical properties than the original inputs
were. In other words, given the original inputs, it is
easy to say which represents images and which repre-
sents text using their sparsity and correlational struc-
ture. But, looking at the higher-level hidden features
in the DBNs, it is more difficult to make such a dis-
tinction. Hence, the top-level joint RBM can pick up
cross-modal relationships easily.

3.1. Generative Tasks

As argued in the introduction, many real-world appli-
cations will often have one or more of its modalities
missing. We can infer missing values by drawing sam-
ples from the conditional model, which would allow us
to properly use all input channels.

As an example, consider generating text conditioned
on a given image1 vm. We first infer the values of the

hidden variables h
(2)
m in the image pathway by forward

propagating vm through to the last hidden layer. Con-

ditioned on h
(2)
m at the top level RBM, we can perform

alternating Gibbs sampling using the following condi-

1Generating image features conditioned on text can be
done in a similar way.

tional distributions:

P (h(3)|h(2)
m ,h

(2)
t ) = σ

(
W (3)

m h(2)
m +W

(3)
t h

(2)
t + b

)
,(7)

P (h
(2)
t |h(3)) = σ

(
W

(3)>
t h(3) + at

)
, (8)

where σ(x) = 1/(1 + e−x). The sample h
(2)
t can then

be propagated back through the text pathway to gen-
erate a distribution over the softmax vocabulary. This
distribution can then be used to sample words.

3.2. Discriminative Tasks

The model can also be used for classification tasks by
adding a discriminative layer of weights on top of the
Multimodal DBN and finetuning the network to opti-
mize a cross-entropy objective. In our experiments we
use a simple logistic classifier to do 1-vs-all classifica-
tion and finetune the model with stochastic gradient
descent.

4. Experiments

4.1. Dataset and Feature Extraction

The MIR Flickr Data set (Huiskes & Lew, 2008) was
used in our experiments. The data set consists of
1 million images retrieved from the social photogra-
phy website Flickr along with their user assigned tags.
The collection includes images released under the Cre-
ative Commons License. Among the 1 million images,
25,000 have been annotated for 24 concepts including
object categories such as bird, tree, people and scene
categories like indoor, sky and night. For 14 of them,
a stricter labelling was done in which an image was
assigned an annotation only if the corresponding cate-
gory was salient in the image. This leads to a total of
38 classes. Each image may belong to several classes.
The unlabeled 975,000 images were used only for pre-
training the DBN. We use 15,000 images for training
and 10,000 for testing, following (Huiskes et al., 2010).
Mean Average Precision (MAP) is used as the perfor-
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mance metric. Results are averaged over 10 random
splits of training and test sets.

There are more than 800,000 distinct tags in the
dataset. In order to keep the text representation man-
ageable, each text input was represented using a vo-
cabulary of the 2000 most frequent tags. After re-
stricting to this vocabulary, the average number of
tags associated with an image is 5.15 with a stan-
dard deviation of 5.13. There are 128,501 images
which do not have any tags out of which 4,551 are
in the labelled set. Hence about 18% of the labelled
data does not have any tags. Word counts w were re-
placed with dlog(1 + w)e. We concatenated Pyramid
Histogram of Words (PHOW) features (Bosch et al.,
2007), Gist (Oliva & Torralba, 2001) and MPEG-7 de-
scriptors (Manjunath et al., 2001) (EHD, HTD, CSD,
CLD, SCD) to get a 3857 dimensional representa-
tion of images. Each dimension was mean-centered.
PHOW features are bags of image words obtained by
extracting dense SIFT features over multiple scales
and clustering them.

4.2. Model Architecture and Learning

The image pathway consists of a Gaussian RBM with
3857 visible and 1000 hidden units, followed by another
layer of 1000 hidden units. The text pathway consists
of a Replicated Softmax Model with 2000 visible and
1000 hidden units followed by another layer of 1000
hidden units. The joint layer also contains 1000 hidden
units. The model was not found to be very sensitive
to the choice of these hyperparameters.

We pretrained each pathway with greedy layer-wise
CD1. The variance of each Gaussian unit was fixed
to be its empirical variance in the training set. For
discriminative tasks, we perform 1-vs-all classification
using logistic regression on the last layer of hidden
units in the joint model. The entire network was fine-
tuned with stochastic gradient descent for each of the
38 classes separately since the class labels overlap. We
split the 15K training set into 10,000 for training and
5,000 for validation.

4.3. Discriminative Aspect

In our first set of experiments, we evaluate the multi-
modal DBN as a discriminative model. Table 1 shows
the results of our comparison with Linear Discrimi-
nant Analysis (LDA) and Support Vector Machines
(SVMs) (Huiskes et al., 2010). The LDA and SVM
models were trained using the labelled data on con-
catenated image and text features. Moreover, SIFT-
based features were not used. Hence, to make a fair
comparison, we first trained our model without us-

ing unlabeled data and using a similar set of features
(i.e., excluding our SIFT-based features). We call this
model DBN-Lab. Table 1 shows that the DBN-Lab
model already outperforms its competitor SVM and
LDA models across many classes. DBN-Lab achieves
a MAP (mean Average Precision over 38 classes) of
0.503. This is compared to 0.475 and 0.492 achieved
by SVM and LDA models.

To quantify the effect of using unlabeled data, we
next trained a Multimodal DBN that used all of
975,000 unlabeled examples. We call this model
DBN-Unlab. The only difference between the DBN-
Unlab and DBN-Lab models is that DBN-Unlab used
unlabeled data during its pretraining stage. The in-
put representation for both models remained the same.
Not surprisingly, the DBN-Unlab model significantly
improved upon DBN-Lab almost across all classes,
achieving a MAP of 0.532. Next, we trained a third
model, called DBN, that used SIFT-based features
along with unlabeled data. Table 1 shows that using
SIFT features provided additional gains in model per-
formance, achieving a MAP of 0.563.

We also compare to an autoencoder that was initial-
ized with the DBN weights and finetuned as proposed
in Ngiam et al. (2011) AUTOENCODER. It per-
forms much better than SVM and LDA getting a MAP
of 0.547. It does better than the DBN model on some
categories, however, on average it does not do as well.
Notice that the autoencoder model does quite well on
object-level categories such as bird, car and food.

There are several scenarios in which one may want
to use the multimodal DBN for classification. The
simplest is the case where images and associated tags
are available for both training and testing. However,
it is often the case that some training and test cases
may not have tags at all. For example, in our setting,
18% of the labelled data has no text input. One way
to deal with this problem is to simply use a text input
of 0 in cases where there are no tags. All the models
discussed till now correspond to this scenario. i.e., the
training and test sets are used as given, (with a zero
text input when no tags are present).
There is an alternative way of dealing with missing
text. The generative model defined by the DBN can
be used to infer a text input conditioned on the image
input. This reconstructed text can then be used to
fill in the missing text. To see whether this method
of completing missing data is useful for classification,
we train discriminative models using the training set
as given but at test time, missing text data is filled in
using the method described in section 3.1. We call this
model DBN-Recon. Mean-field inference was used in
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Table 1. Comparison of AP scores of various Mutlimodal DBNs with SVM and LDA models on the MIR Flickr Dataset.

Labels animals baby baby* bird bird* car car* clouds clouds* dog
Random 0.129 0.010 0.005 0.030 0.019 0.047 0.015 0.148 0.054 0.027
LDA 0.537 0.285 0.308 0.426 0.500 0.297 0.389 0.651 0.528 0.621
SVM 0.531 0.200 0.165 0.443 0.520 0.339 0.434 0.695 0.434 0.607
DBN-lab 0.498 0.129 0.134 0.184 0.255 0.309 0.354 0.759 0.691 0.342
DBN-unlab 0.633 0.096 0.088 0.431 0.499 0.310 0.422 0.730 0.658 0.568
Autoencoder 0.602 0.156 0.121 0.461 0.547 0.366 0.526 0.735 0.684 0.605
DBN 0.625 0.115 0.128 0.382 0.459 0.341 0.486 0.772 0.739 0.457
DBN-recon 0.632 0.135 0.190 0.412 0.506 0.346 0.440 0.796 0.730 0.513
Labels dog* female female* flower flower* food indoor lake male male*
Random 0.024 0.247 0.159 0.073 0.043 0.040 0.333 0.032 0.243 0.146
LDA 0.663 0.494 0.454 0.560 0.623 0.439 0.663 0.258 0.434 0.354
SVM 0.641 0.465 0.451 0.480 0.717 0.308 0.683 0.207 0.413 0.335
DBN-lab 0.376 0.540 0.478 0.593 0.679 0.447 0.750 0.262 0.503 0.406
DBN-unlab 0.598 0.555 0.505 0.645 0.718 0.484 0.745 0.246 0.479 0.395
Autoencoder 0.642 0.557 0.542 0.613 0.723 0.558 0.730 0.271 0.491 0.388
DBN 0.515 0.588 0.564 0.643 0.765 0.491 0.754 0.281 0.522 0.436
DBN-recon 0.567 0.588 0.545 0.616 0.757 0.482 0.757 0.266 0.529 0.442
Labels night night* people people* plant life portrait portrait* river river* sea
Random 0.108 0.027 0.415 0.314 0.351 0.157 0.153 0.036 0.006 0.053
LDA 0.615 0.420 0.731 0.664 0.703 0.543 0.541 0.317 0.134 0.477
SVM 0.588 0.450 0.748 0.565 0.691 0.480 0.558 0.158 0.109 0.529
DBN-lab 0.655 0.483 0.800 0.730 0.791 0.642 0.635 0.263 0.110 0.586
DBN-unlab 0.674 0.467 0.826 0.764 0.791 0.630 0.627 0.244 0.051 0.588
Autoencoder 0.657 0.464 0.791 0.742 0.769 0.655 0.656 0.240 0.016 0.608
DBN 0.698 0.567 0.837 0.788 0.823 0.691 0.690 0.351 0.103 0.647
DBN-recon 0.684 0.585 0.836 0.780 0.819 0.696 0.693 0.296 0.077 0.644
Labels sea* sky structures sunset transport tree tree* water MEAN
Random 0.009 0.316 0.400 0.085 0.116 0.187 0.027 0.133 0.124
LDA 0.197 0.800 0.709 0.528 0.411 0.515 0.342 0.575 0.492
SVM 0.201 0.823 0.695 0.613 0.369 0.559 0.321 0.527 0.475
DBN-lab 0.259 0.873 0.787 0.648 0.406 0.660 0.483 0.629 0.503
DBN-unlab 0.245 0.860 0.786 0.636 0.421 0.596 0.511 0.675 0.532
Autoencoder 0.357 0.836 0.761 0.625 0.460 0.641 0.513 0.683 0.547
DBN 0.359 0.888 0.811 0.679 0.464 0.679 0.539 0.703 0.563
DBN-recon 0.419 0.885 0.811 0.670 0.443 0.679 0.546 0.712 0.566

Figure 4. Visual comparison of LDA, SVM, Autoencoder,
DBN and DBN-Recon models from Table 1

place of Gibbs Sampling to reduce noise. Table 1 shows
that on average, the DBN-Recon model slightly out-
performs the DBN model, achieving an average MAP
of 0.566 compared to DBN’s 0.563. Our best models
give significant improvements over SVMs and LDA for
almost all classes. For some classes they outperform
them by a very large margin e.g., class sea* goes from
0.201 (SVM) to 0.419 (DBN-Recon), tree* from 0.321
to 0.546 and clouds* from 0.434 to 0.739). Figure 4
shows the difference in AP scores of all the models in
Table 1 with respect to the SVM model. The DBN
and DBN-Recon curves outperform other models over

majority of classes.

4.4. Multimodal Aspect

While the above experiments showed that DBNs out-
perform other multimodal methods, it is not obvi-
ous that learning multimodal features helps over us-
ing only one input modality. In this set of experi-
ments, we focus on evaluating the ability of our model
to learn multimodal features that are better for dis-
criminative tasks than unimodal features. In Table 2
we compare our model with an SVM over Image fea-
tures alone (Image-SVM) (Huiskes et al., 2010), a
DBN over image features alone (Image-DBN) and a
DBN over text features alone (Text-DBN). The uni-
modal DBNs were constructed by adding one extra
layer to the unimodal pathways used for the multi-
modal DBNs, so that the number of hidden layers in
all the DBNs is the same. The best multimodal DBN
(DBN-Recon) clearly achieves far better overall per-
formance. However, one may not find this to be very
impressive given that the multimodal model had more
data available to it at test time than any of the other
models which used either image or text features only.

Therefore, to make a fair comparison, we conducted
the following experiment. We take a multimodal DBN
model that was pretrained and finetuned with both
image and text features. However, at test time only
image features are provided as input and the text input
is replaced by zeros. This model is shown as DBN-
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Table 2. Evaluation of the multimodal aspect of the model. Multimodal DBNs outperform unimodal models even when
only one modality is given at test time.

Labels animals baby baby* bird bird* car car* clouds clouds* dog
Image-SVM 0.278 0.084 0.088 0.128 0.129 0.179 0.227 0.651 0.511 0.155
Image-DBN 0.348 0.343 0.245 0.424 0.384 0.486 0.407 0.601 0.403 0.106
Text-DBN 0.650 0.044 0.017 0.512 0.598 0.322 0.463 0.543 0.382 0.615
DBN-NoText 0.372 0.130 0.117 0.146 0.222 0.293 0.437 0.770 0.707 0.228
DBN-NoText-Recon 0.400 0.101 0.089 0.115 0.175 0.271 0.453 0.768 0.713 0.281
DBN-Recon 0.632 0.135 0.190 0.412 0.506 0.346 0.440 0.796 0.730 0.513
Labels dog* female female* flower flower* food indoor lake male male*
Image-SVM 0.156 0.461 0.389 0.469 0.519 0.293 0.605 0.188 0.407 0.294
Image-DBN 0.301 0.351 0.625 0.595 0.590 0.364 0.617 0.225 0.470 0.334
Text-DBN 0.651 0.531 0.476 0.576 0.662 0.488 0.672 0.234 0.474 0.378
DBN-NoText 0.280 0.551 0.509 0.487 0.621 0.437 0.716 0.264 0.494 0.397
DBN-NoText-Recon 0.311 0.560 0.527 0.524 0.636 0.433 0.720 0.245 0.493 0.396
DBN-Recon 0.567 0.588 0.545 0.616 0.757 0.482 0.757 0.266 0.529 0.442
Labels night night* people people* plant life portrait portrait* river river* sea
Image-SVM 0.554 0.390 0.631 0.558 0.687 0.493 0.493 0.179 0.102 0.366
Image-DBN 0.337 0.240 0.420 0.389 0.481 0.415 0.609 0.372 0.116 0.318
Text-DBN 0.425 0.316 0.769 0.691 0.672 0.485 0.481 0.273 0.042 0.460
DBN-NoText 0.647 0.463 0.769 0.707 0.782 0.638 0.639 0.235 0.104 0.533
DBN-NoText-Recon 0.665 0.489 0.776 0.730 0.795 0.652 0.655 0.206 0.131 0.577
DBN-Recon 0.684 0.585 0.836 0.780 0.819 0.696 0.693 0.296 0.077 0.644
Labels sea* sky structures sunset transport tree tree* water MEAN
Image-SVM 0.126 0.775 0.626 0.588 0.298 0.514 0.205 0.448 0.375
Image-DBN 0.363 0.622 0.586 0.579 0.352 0.600 0.218 0.457 0.413
Text-DBN 0.147 0.726 0.759 0.480 0.475 0.480 0.299 0.612 0.471
DBN-NoText 0.258 0.863 0.745 0.656 0.410 0.666 0.537 0.567 0.484
DBN-NoText-Recon 0.300 0.877 0.760 0.673 0.394 0.675 0.542 0.579 0.492
DBN-Recon 0.419 0.885 0.811 0.670 0.443 0.679 0.546 0.712 0.566

NoText in Table 2. Observe that the DBN-NoText
model performs significantly better than both SVM
and DBN image only models. This result suggests that
learning multimodal features helps even when some
modalities are absent at test time. Having multiple
modalities regularizes the model and makes it learn
much better features. Moreover, this means that we
do not need to learn separate models to handle each
possible combination of missing data modalities. One
joint model can be deployed at test time and used for
any situation that may arise.

We can further improve performance if missing text
input is inferred using the generative model and pro-
vided as input to the discriminative model at test time.
This model is shown as DBN-NoText-Recon. Fig-
ure 5 shows the difference in AP scores of all the
models in Table 2 with respect to an Image-SVM.
The DBN-Recon curve outperforms other models over
all classes. The DBNs that use only unimodal in-
puts (DBN-NoText and DBN-NoText-Recon) do bet-
ter than other unimodal models.

4.5. Generative Aspect

To evaluate the generative aspect of our model qual-
itatively, we look at samples of text generated from
the multimodal DBN by conditioning on images taken
from the test set. The images were chosen so as to
cover a large number of the 38 categories. They are
shown along with generated text in Figure 6. The
model is extremely good at inferring text for images
belonging to scene level categories such as clouds,
night*, sea*, and water. Looking at the AP scores

Figure 5. Visual comparison of models in Table 2

in Table 1 and comparing DBN-Recon with DBN, we
see that for these classes significant gains in AP scores
were made, e.g., sea* goes from 0.359 to 0.419 (a rel-
ative improvement of 16%). For finer categories like
food and transport it does not help improve classifica-
tion accuracy.

We also look at images that were retrieved based on
features generated from the model conditioned on text.
Figure 2 shows some results where we retrieve images
from a subset of the test set consisting of 4000 ran-
domly chosen images. We start with a manually cho-
sen piece of text and infer image features conditioned
on it. Then we find the nearest neighbors to these fea-
tures and retrieve the corresponding images. We used
the L2 distance between the feature vectors to find
nearest neighbors where all features were normalized
to have zero mean and unit variance.
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Figure 6. Examples of text generated by the DBN conditioned on images

5. Conclusions and Future Work
We proposed a Deep Belief Network architecture for
learning multimodal data representations. The model
fuses multiple data modalities into a joint hidden rep-
resentation. The model defines a joint density model
over multimodal input space that can be used for fill-
ing in missing inputs. It also performs well on dis-
criminative tasks. When only one data modality is
present at test time, it fills in the missing data and per-
forms better than unimodal models which were trained
on one modality alone. Qualitative evaluation of the
model for image annotation and retrieval suggests that
it learns meaningful conditional distributions. Large
amounts of unlabeled data can be effectively utilized
by the model. Pathways for each modality can be
trained independently and “plugged in” together when
learning multimodal features.

Our method benefits from the fact that the statistical
properties of the final hidden representations across all
pathways are similar. However, we did not explicitly
impose any explicit objective to achieve this. It would
be interesting to explore how this method can be im-
proved by having an explicit penalty or constraint on
certain properties of the hidden representations such
as sparsity and entropy.
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