CSC304 Lecture 21
Complete your course evaluations...

Check your e-mail for a link to your evaluations, or log-in to www.portal.utoronto.ca and click the Course Evals tab!
REVIEW
(Of most concepts)
Part I: Game Theory

• Normal (matrix) form games

• Strategies: pure & mixed

• Weak/strict dominance
 ➢ Strategy A dominates strategy B
 ➢ Iterated elimination of dominated strategy
 ➢ Strategy A is dominant

• Nash equilibrium: pure and mixed
 ➢ Nash’s theorem
Part I: Game Theory

• Price of anarchy and stability
 ➢ Anarchy: Worst NE vs social optimum
 ➢ Stability: Best NE vs social optimum
 ➢ PoA ≥ PoS ≥ 1

• Potential functions
 ➢ Cost-sharing games
 ➢ Braess’ paradox

• Zero-sum games
 ➢ The minimax theorem

• Stackelberg games, Stackelberg equilibrium
Part II: Mech Design w/ Money

• Goals: social welfare or revenue

• Incentive guarantees:
 ➢ Dominant strategy incentive compatibility (DSIC)
 ➢ Bayes-Nash incentive compatibility (BNIC)

• VCG mechanism
 ➢ DSIC + maximizes social welfare on every instance
 ➢ Sponsored search, comparison to GSP

• Myerson’s auction
 ➢ BNIC + maximizes expected revenue among all BNIC mechanisms
Part II: Mech Design w/ Money

• Revelation principle
• Revenue equivalence principle
• 1st price auction and its equilibrium
• Ascending auction
Part III: Mech Design w/o Money

• Facility location
• Social cost
 ➢ The median mechanism
• Maximum cost
 ➢ The left-right-middle mechanism

• Stable matching
 ➢ Gale-Shapley deferred acceptance algorithm
Part IV: Voting

- Ranked voting
- Voting rules
- Gibbard-Satterthwaite theorem
- Axiomatic approach to voting
 - Strategyproofness
 - Strong / weak monotonicity
 - Consistency
 - Condorcet consistency
- Impartial selection
Part V: Fair Division

• Cake-cutting
 ➢ Proportionality and envy-freeness
 ➢ Robertson-Webb model

• 2-players
 ➢ Cut-and-choose

• 3+ players proportional
 ➢ Dubins-Spanier protocol
 ➢ Even-Paz protocol

• Pareto optimality

• Strategyproofness via perfect partition
Part V: Fair Division

• Indivisible goods
 ➢ Envy-freeness up to one good
 ➢ Maximum Nash Welfare allocation

• Computational resource allocation
 ➢ Dominant Resource Fairness (DRF)

• Classroom allocation
 ➢ The leximin mechanism

• Rent division
 ➢ Utilitarian allocation