CSC304 Lecture 15

Voting 2: Gibbard-Satterthwaite Theorem
Recap

• We introduced a plethora of voting rules
 - Plurality
 - Borda
 - Veto
 - k-Approval
 - STV
 - Plurality with runoff
 - Kemeny
 - Copeland
 - Maximin

• All these rules do something reasonable on a given preference profile
 - Only makes sense if preferences are truthfully reported
Recap

• Set of voters $N = \{1, \ldots, n\}$
• Set of alternatives A, $|A| = m$
• Voter i has a preference ranking \succ_i over the alternatives

• Preference profile $\succ = \text{collection of all voter rankings}$
• Voting rule (social choice function) f
 - Takes as input a preference profile \succ
 - Returns an alternative $a \in A$

\[
\begin{array}{|c|c|c|}
\hline
1 & 2 & 3 \\
\hline
a & c & b \\
\hline
b & a & a \\
\hline
c & b & c \\
\hline
\end{array}
\]
Strategyproofness

• Would any of these rules incentivize voters to report their preferences truthfully?

• A voting rule f is strategyproof if for every
 - preference profiles \succ,
 - voter i, and
 - preference profile \succ' such that $\succ'_j = \succ_j$ for all $j \neq i$

 it is not the case that $f(\succ') >_i f(\succ)$
Strategyproofness

• None of the rules we saw are strategyproof!

• Example: Borda Count
 - In the true profile, b wins
 - Voter 3 can make a win by pushing b to the end

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>

Winner: b

Winner: a
Borda’s Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude
Strategyproofness

• Are there any strategyproof rules?
 ➢ Sure

• Dictatorial voting rule
 ➢ The winner is always the most preferred alternative of voter i

• Constant voting rule
 ➢ The winner is always the same

• Not satisfactory (for most cases)
Three Properties

• **Strategyproof**: Already defined. No voter has an incentive to misreport.

• **Onto**: Every alternative can win under some preference profile.

• **Nondictatorial**: There is no voter i such that $f(\rightarrow)$ is always the top alternative for voter i.
Gibbard-Satterthwaite

• **Theorem:** For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof:** We will prove this for $n = 2$ voters.

 ➢ Step 1: Show that SP is equivalent to “strong monotonicity” [HW 3?]

 ➢ **Strong Monotonicity (SM):** If $f(\succ) = a$, and \succ' is such that $\forall i \in N, x \in A: a \succ_i x \Rightarrow a \succ'_i x$, then $f(\succ') = a$.
 o If a still defeats every alternative it defeated in every vote in \succ, it should still win.
Gibbard-Satterthwaite

• **Theorem**: For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof**: We will prove this for $n = 2$ voters.

 ➢ Step 2: Show that SP+onto implies “Pareto optimality” [HW 3?]

 ➢ **Pareto Optimality (PO)**: If $a \succ_i b$ for all $i \in N$, then $f(\succ) \neq b$.
 - If there is a different alternative that everyone prefers, your choice is not Pareto optimal (PO).
Gibbard-Satterthwaite

- **Proof for n=2:** Consider problem instance $I(a, b)$

<table>
<thead>
<tr>
<th>\succ_1</th>
<th>\succ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Say $f(\succ_1, \succ_2) = a$

- PO: $f(\succ_1, \succ_2) \in \{a, b\}$

<table>
<thead>
<tr>
<th>\succ_1</th>
<th>\succ'_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>a</td>
</tr>
</tbody>
</table>

- PO: $f(\succ_1, \succ'_2) \in \{a, b\}$
- SP: $f(\succ_1, \succ'_2) \neq b$

<table>
<thead>
<tr>
<th>\succ''_1</th>
<th>\succ''_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Due to strong monotonicity

$I(a, b)$
Gibbard-Satterthwaite

• Proof for n=2:
 ➢ If \(f \) outputs \(a \) on instance \(I(a, b) \), voter 1 can get \(a \) elected whenever she puts \(a \) first.
 o In other words, voter 1 becomes dictatorial for \(a \).
 o Denote this by \(D(1, a) \).
 ➢ If \(f \) outputs \(b \) on \(I(a, b) \)
 o Voter 2 becomes dictatorial for \(b \), i.e., we have \(D(2, b) \).

• For every \(I(a, b) \), we have \(D(1, a) \) or \(D(2, b) \).
Gibbard-Satterthwaite

• Proof for $n=2$:
 ➢ On some $I(a^*, b^*)$, suppose $D(1, a^*)$ holds.
 ➢ Then, we show that voter 1 is a dictator. That is, $D(1, b)$ must hold for every other b as well.
 ➢ Take $b \neq a$. Because $|A| \geq 3$, there exists $c \in A \setminus \{a^*, b\}$.
 ➢ Consider $I(b, c)$. We either have $D(1, b)$ or $D(2, c)$.
 ➢ But $D(2, c)$ is incompatible with $D(1, a^*)$
 o Who would win if voter 1 puts a^* first and voter 2 puts c first?
 ➢ Thus, we have $D(1, b)$, as required.
 ➢ QED!
Circumventing G-S

• Randomization
 ➢ Gibbard characterized all randomized strategyproof rules
 ➢ Somewhat better, but still too restrictive

• Restricted preferences
 ➢ Median for facility location (more generally, for single-peaked preferences on a line)
 ➢ Will see other such settings later

• Money
 ➢ E.g., VCG is nondictatorial, onto, and strategyproof, but charges payments to agents
Circumventing G-S

• Equilibrium analysis
 ➢ Maybe good alternatives still win under Nash equilibria?

• Lack of information
 ➢ Maybe voters don’t know how other voters will vote?
Circumventing G-S

• Computational complexity (Bartholdi et al.)
 ➢ Maybe the rule is manipulable, but it is NP-hard to find a successful manipulation?
 ➢ Groundbreaking idea! NP-hardness can be good!!

• Not NP-hard: plurality, Borda, veto, Copeland, maximin, ...

• NP-hard: Copeland with a peculiar tie-breaking, STV, ranked pairs, ...
Circumventing G-S

• Computational complexity
 ➢ Unfortunately, NP-hardness just says it is hard for some worst-case instances.
 ➢ What if it is actually easy for most practical instances?
 ➢ Many rules admit polynomial time manipulation algorithms for fixed #alternatives (m)
 ➢ Many rules admit polynomial time algorithms that find a successful manipulation on almost all profiles (the fraction of profiles converges to 1)

• Interesting open problem to design voting rules that are hard to manipulate on average
Social Choice

• Let’s forget incentives for now.
• Even if voters reveal their preferences truthfully, we do not have a “right” way to choose the winner.

• Who is the right winner?
 ➢ On profiles where the prominent voting rules have different outputs, all answers seem reasonable [HW3].
Axiomatic Approach

• Define axiomatic properties we may want from a voting rule

• We already defined some:
 ➢ Majority consistent
 ➢ Condorcet consistent
 ➢ Onto
 ➢ Strategyproof
 ➢ Strongly monotonic
 ➢ Pareto optimal
Axiomatic Approach

• We will see four more:
 ➢ Unanimity
 ➢ Weak monotonicity
 ➢ Consistency (!)
 ➢ Independence of irrelevant alternatives (IIA)

• Problem?
 ➢ Cannot satisfy many interesting combinations of properties
 ➢ Arrow’s impossibility result
 ➢ Other similar impossibility results
Other Approaches?

• Statistical
 ➢ There exists an objectively true answer
 o E.g., say the question is: “Sort the candidates by the #votes they will receive in an upcoming election.”
 ➢ Every voter is trying to estimate the true ranking
 ➢ Goal is to find the most likely ground truth given votes

• Utilitarian
 ➢ Back to “numerical” welfare maximization, but we still ask voters to only report ranked preferences
 o $a \succ_i b \succ_i c$ simply means $v_i(a) \geq v_i(b) \geq v_i(c)$
 ➢ How well can we maximize welfare subject to such partial information?