
CSC373

Randomized	Algorithms

373F23 - Nisarg Shah 1

NOT IN SYLLABUS

Randomized	Algorithms

373F23 - Nisarg Shah 2

Deterministic AlgorithmInput Output

Randomized Algorithm
Input

Output
Randomness

Randomized	Algorithms

373F23 - Nisarg Shah 3

• Running time
Ø Harder goal: the running time should always be small
o Regardless of both the input and the random coin flips

Ø Easier goal: the running time should be small in expectation
o Expectation over random coin flips
o But it should still be small for every input (i.e. worst-case)

• Approximation Ratio
Ø The objective value of the solution returned should, in expectation,

be close to the optimum objective value
o Once again, the expectation is over random coin flips
o The approximation ratio should be small for every input

Derandomization

373F23 - Nisarg Shah 4

• After coming up with a randomized approximation
algorithm, one might ask if it can be “derandomized”
Ø Informally, the randomized algorithm is making random choices that,

in expectation, turn out to be good
Ø Can we make these “good” choices deterministically?

• For some problems…
Ø It may be easier to first design a simple randomized approximation

algorithm and then de-randomize it…
Ø Than to try to directly design a deterministic approximation

algorithm

Recap:	Probability	Theory

373F23 - Nisarg Shah 5

• Random variable 𝑋
Ø Discrete
o Takes value 𝑣! with probability 𝑝!, 𝑣" w.p. 𝑝", …
o Expected value 𝐸 𝑋 = 𝑝! ⋅ 𝑣! + 𝑝" ⋅ 𝑣" +⋯
o Examples: coin toss, the roll of a six-sided die, …

Ø Continuous
o Has a probability density function (pdf) 𝑓
o Its integral is the cumulative density function (cdf) 𝐹
• 𝐹 𝑥 = Pr 𝑋 ≤ 𝑥 = ∫#$

% 𝑓 𝑡 𝑑𝑡
o Expected value 𝐸 𝑋 = ∫#$

$ 𝑥 𝑓 𝑥 𝑑𝑥
o Examples: normal distribution, exponential distribution, uniform

distribution over [0,1], …

Recap:	Probability	Theory

373F23 - Nisarg Shah 6

• Things you should be aware of…
Ø Conditional probabilities
Ø Conditional expectations
Ø Independence among random variables
Ø Moments of random variables
Ø Standard discrete distributions: uniform over a finite set, Bernoulli,

binomial, geometric, Poisson, …
Ø Standard continuous distributions: uniform over intervals,

Gaussian/normal, exponential, …

Three	Pillars

373F23 - Nisarg Shah 7

• Deceptively simple, but incredibly powerful!
• Many many many many probabilistic results are just

interesting applications of these three results

Linearity of Expectation Union Bound Chernoff Bound

Three	Pillars

373F23 - Nisarg Shah 8

• Linearity of expectation
Ø 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]

Ø This does not require any independence assumptions about 𝑋 and 𝑌

Ø E.g. if you want to find out how many people will attend your party
on average, just ask each person the probability with which they will
attend and sum up the probabilities
o It does not matter whether some of them are friends and either

all will attend together or none will attend

Three	Pillars

373F23 - Nisarg Shah 9

• Union bound
Ø For any two events 𝐴 and 𝐵, Pr 𝐴 ∪ 𝐵 ≤ Pr 𝐴 + Pr[𝐵]
Ø “Probability that at least one of the 𝑛 events 𝐴!, … , 𝐴& will occur is at

most ∑' Pr 𝐴' ”
Ø Typically, 𝐴!, … , 𝐴& are “bad events”
o You do not want any of them to occur
o If you can individually bound Pr 𝐴' ≤ ⁄! "& for each 𝑖, then

probability that at least one them occurs ≤ ⁄1 2
o Thus, with probability ≥ ⁄! ", none of the bad events will occur

• Chernoff bound & Hoeffding’s inequality
Ø Read up!

373F23 - Nisarg Shah 10

Exact Max-𝑘-SAT

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 11

• Problem (recall)
Ø Input: An exact 𝑘-SAT formula 𝜑 = 𝐶! ∧ 𝐶" ∧ ⋯∧ 𝐶(,

where each clause 𝐶' has exactly 𝑘 literals, and a weight 𝑤' ≥ 0 of
each clause 𝐶'

Ø Output: A truth assignment 𝜏 maximizing the number (or total
weight) of clauses satisfied under 𝜏

Ø Let us denote by 𝑊(𝜏) the total weight of clauses satisfied under 𝜏

Ø Recall that with local search, we could obtain a "
!#!
"!

-approximation
for Exact Max-𝑘-SAT but with a LOT of effort!

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 12

• The most naïve randomized algorithm
Ø Set each variable to TRUE with probability ½ and to FALSE with

probability ½

• Let 𝜏 be the random assignment produced
Ø For each clause 𝐶', Pr[𝐶' is not satisRied] = U! "! (WHY?)

o Hence, Pr[𝐶' is satisRied] = U"!#!
"!

Ø 𝐸 𝑊 𝜏 = ∑')!(𝑤' ⋅ Pr[𝐶' is satisRied] (WHY?)

Ø 𝐸 𝑊 𝜏 = "!#!
"!

⋅ ∑')!(𝑤' ≥
"!#!
"!

⋅ 𝑂𝑃𝑇 (WHY?)

Derandomization

373F23 - Nisarg Shah 13

• Can we derandomize this algorithm?
Ø What are the choices made by the algorithm?
o Setting the values of 𝑥!, 𝑥", … , 𝑥&

Ø How do we know which set of choices is good?

• Idea:
Ø Derandomize one by one!

Ø Goal: Gradually convert the random assignment 𝜏 to a deterministic
assignment �̂� such that 𝑊 �̂� ≥ 𝐸 𝑊 𝜏

o Combining with 𝐸 𝑊 𝜏 ≥ "!#!
"!

⋅ 𝑂𝑃𝑇 will give the desired
approximation ratio via a deterministic algorithm

Derandomization

373F23 - Nisarg Shah 14

• Derandomize 𝑥!:

𝐸 𝑊 𝜏 = Pr 𝑥! = 𝑇 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝑇 + Pr 𝑥! = 𝐹 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝐹
= -1 2 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝑇 + -1 2 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝐹

Ø max 𝐸 𝑊 𝜏 𝑥! = 𝑇 , 𝐸 𝑊 𝜏 𝑥! = 𝐹 ≥ 𝐸 𝑊 𝜏
o These are the expected weights achieved when setting 𝑥! = 𝑇 or
𝑥! = 𝐹 deterministically, but keeping 𝑥", … , 𝑥& random

Ø Compute both 𝐸 𝑊 𝜏 𝑥! = 𝑇 and 𝐸 𝑊 𝜏 𝑥! = 𝐹 , and
deterministically set 𝑥! to get whichever is higher

• Say we set 𝑥! = 𝑇
• Next, we can derandomize 𝑥0 similarly:

𝐸 𝑊 𝜏 |𝑥! = 𝑇 = -1 2 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝑇, 𝑥" = 𝑇
+ -1 2 ⋅ 𝐸 𝑊 𝜏 𝑥! = 𝑇, 𝑥" = 𝐹

Ø Compute both and set 𝑥" to get the higher of the two values

• Derandomized Algorithm:
Ø For 𝑖 = 1,… , 𝑛
o Let 𝑧' = 𝑇 if 𝐸 𝑊 𝜏 𝑥! = 𝑧!, … , 𝑥'#! = 𝑧'#!, 𝑥' = 𝑇 ≥
𝐸 𝑊 𝜏 𝑥! = 𝑧!, … , 𝑥'#! = 𝑧'#!, 𝑥' = 𝐹 , and 𝑧' = 𝐹 otherwise

o Set 𝑥' = 𝑧'

Derandomization

373F23 - Nisarg Shah 15

• This is called the method of conditional expectations

• Remaining question: How to compute
𝐸 𝑊 𝜏 𝑥! = 𝑧!, … , 𝑥3 = 𝑧3 ?

Ø Write as ∑*𝑤* ⋅ Pr[𝐶* is satisRied 𝑥! = 𝑧!, … , 𝑥' = 𝑧'
Ø Set the values of 𝑥!, … , 𝑥#
Ø If 𝐶$ resolves to TRUE already, the corresponding probability is 1
Ø Otherwise, if there are ℓ literals left in 𝐶$ after setting 𝑥!, … , 𝑥#, the

corresponding probability is
"ℓ#!
"ℓ

Derandomization

373F23 - Nisarg Shah 16

Max-SAT

373F23 - Nisarg Shah 17

• Simple randomized algorithm
Ø
"!#!
"!

−approximation for Max-𝑘-SAT
Ø Max-3-SAT ⇒ ⁄+ ,
o [Håstad]: This is the best possible assuming P ≠ NP

Ø Max-2-SAT ⇒ ⁄- . = 0.75
o The best known approximation is 0.9401 using semi-definite

programming and randomized rounding
Ø Max-SAT ⇒ ⁄! "
o Max-SAT = no restriction on the number of literals in each clause
o The best known approximation is 0.7968, also using semi-definite

programming and randomized rounding

Max-SAT

373F23 - Nisarg Shah 18

• Better approximations for Max-SAT
Ø Semi-definite programming is out of the scope
Ø But we will see the simpler “LP relaxation + randomized rounding”

approach that gives 1 − ⁄! / ≈ 0.6321 approximation

• Max-SAT:
Ø Input: 𝜑 = 𝐶! ∧ 𝐶" ∧ ⋯∧ 𝐶(, where each clause 𝐶' has weight 𝑤' ≥
0 (and can have any number of literals)

Ø Output: Truth assignment that approximately maximizes the weight
of clauses satisfied

LP	Formulation	of	Max-SAT

373F23 - Nisarg Shah 19

• First, IP formulation:
Ø Variables:
o 𝑦!, … , 𝑦& ∈ {0,1}
• 𝑦' = 1 iff variable 𝑥' = TRUE in Max-SAT

o 𝑧!, … , 𝑧(∈ {0,1}
• 𝑧0 = 1 iff clause 𝐶0 is satisfied in Max-SAT

o Program:

Maximize Σ0 𝑤0 ⋅ 𝑧0
s.t.
Σ%#∈2$ 𝑦' + Σ%̅#∈2$ 1 − 𝑦' ≥ 𝑧0 ∀𝑗 ∈ 1,… ,𝑚
𝑦', 𝑧0 ∈ 0,1 ∀𝑖 ∈ 1,… , 𝑛 , 𝑗 ∈ 1, … ,𝑚

LP	Formulation	of	Max-SAT

373F23 - Nisarg Shah 20

• LP relaxation:
Ø Variables:
o 𝑦!, … , 𝑦& ∈ [0,1]
• 𝑦' = 1 iff variable 𝑥' = TRUE in Max-SAT

o 𝑧!, … , 𝑧(∈ [0,1]
• 𝑧0 = 1 iff clause 𝐶0 is satisfied in Max-SAT

o Program:

Maximize Σ0 𝑤0 ⋅ 𝑧0
s.t.
Σ%#∈2$ 𝑦' + Σ%̅#∈2$ 1 − 𝑦' ≥ 𝑧0 ∀𝑗 ∈ 1,… ,𝑚
𝑦', 𝑧0 ∈ [0,1] ∀𝑖 ∈ 1,… , 𝑛 , 𝑗 ∈ 1, … ,𝑚

Randomized	Rounding

373F23 - Nisarg Shah 21

• Randomized rounding
Ø Find the optimal solution (𝑦∗, 𝑧∗) of the LP
Ø Compute a random IP solution q𝑦 such that
o Each q𝑦' = 1 with probability 𝑦'∗ and 0 with probability 1 − 𝑦'∗

o Independently of other q𝑦'’s
o The output of the algorithm is the corresponding truth assignment

Ø What is Pr[𝐶0 is satisfied] if 𝐶0 has 𝑘 literals?

1 − Π%#∈2$ 1 − 𝑦'∗ ⋅ Π%̅#∈2$ 𝑦'∗

≥ 1 −
Σ%#∈2$ 1 − 𝑦'∗ + Σ%̅#∈2$ 𝑦'∗

𝑘

5

≥ 1 −
𝑘 − 𝑧0∗

𝑘

5

AM-GM inequality LP constraint

Randomized	Rounding

373F23 - Nisarg Shah 22

• Claim

Ø 1 − 1 − 6
5

5
≥ 1 − 1 − !

5

5
⋅ 𝑧 for all 𝑧 ∈ [0,1] and 𝑘 ∈ ℕ

• Assuming the claim:

Pr 𝐶% is saHsfied ≥ 1 −
&'(!

∗

&

&
≥ 1 − 1 − !

&

&
⋅ 𝑧%∗ ≥ 1 − !

*
⋅ 𝑧%∗

• Hence,

𝔼[#weight of clauses satisfied] ≥ 1 − !
7
∑0𝑤0 ⋅ 𝑧0∗ ≥ 1 − !

/
⋅ 𝑂𝑃𝑇

Standard inequality

Optimal LP objective ≥ optimal ILP objective

Randomized	Rounding

373F23 - Nisarg Shah 23

• Claim

Ø 1 − 1 − 6
5

5
≥ 1 − 1 − !

5

5
⋅ 𝑧 for all 𝑧 ∈ [0,1] and 𝑘 ∈ ℕ

• Proof of claim:
Ø True at 𝑧 = 0 and 𝑧 = 1 (same quantity on both sides)
Ø For 0 ≤ 𝑧 ≤ 1:
o LHS is a convex function
o RHS is a linear function
o Hence, LHS ≥ RHS ∎

Improving	Max-SAT	Apx

373F23 - Nisarg Shah 24

• Best of both worlds:
Ø Run both “LP relaxation + randomized rounding” and “naïve

randomized algorithm”
Ø Return the best of the two solutions

Ø Claim without proof: This achieves a ⁄- . = 0.75 approximation!
o This algorithm can be derandomized.

Ø Recall:
o “naïve randomized” = independently set each variable to

TRUE/FALSE with probability 0.5 each, which only gives ⁄! " = 0.5
approximation by itself

373F23 - Nisarg Shah 25

Randomization for
Sublinear Running Time

Sublinear	Running	Time

373F23 - Nisarg Shah 26

• Given an input of length 𝑛, we want an algorithm that runs
in time 𝑜(𝑛)
Ø 𝑜(𝑛) examples: log 𝑛 , 𝑛, 𝑛8.:::, &

;<= &
, …

Ø The algorithm doesn’t even get to read the full input!

• There are four possibilities:
Ø Exact vs inexact: whether the algorithm always returns the

correct/optimal solution or only does so with high probability (or
gives some approximation)

Ø Worst-case versus expected running time: whether the algorithm
always takes 𝑜(𝑛) time or only does so in expectation (but still on
every instance)

373F23 - Nisarg Shah 27

Exact algorithms,
expected sublinear time

Searching	in	Sorted	List

373F23 - Nisarg Shah 28

• Input: A sorted doubly linked list with 𝑛 elements.
Ø Imagine you have an array 𝐴 with 𝑂(1) access to 𝐴[𝑖]
Ø 𝐴[𝑖] is a tuple (𝑥', 𝑝', 𝑛')
o Value, index of previous element, index of next element.

Ø Sorted: 𝑥># ≤ 𝑥' ≤ 𝑥&#

• Task: Given 𝑥, check if there exists 𝑖 s.t. 𝑥 = 𝑥3

• Goal: We will give a randomized + exact algorithm with
expected running time 𝑂 𝑛 !

Searching	in	Sorted	List

373F23 - Nisarg Shah 29

• Motivation:
Ø Often we deal with large datasets that are stored in a large file on

disk, or possibly broken into multiple files
Ø Creating a new, sorted version of the dataset is expensive
Ø It is often preferred to “implicitly sort” the data by simply adding

previous-next pointers along with each element

Ø Would like algorithms that can operate on such implicitly sorted
versions and yet achieve sublinear running time
o Just like binary search achieves for an explicitly sorted array

Searching	in	Sorted	List

373F23 - Nisarg Shah 30

Algorithm:
Ø Select 𝑛 random indices 𝑅
Ø Access 𝑥0 for each 𝑗 ∈ 𝑅
Ø Find “accessed 𝑥0 nearest to 𝑥 in either direction”
o either the largest among all 𝑥0 ≤ 𝑥…
o or the smallest among all 𝑥0 ≥ 𝑥

Ø If you take the largest 𝑥0 ≤ 𝑥, start from there and keep going “next”
until you find 𝑥 or go past its value

Ø If you take the smallest 𝑥0 ≥ 𝑥, start from there and keep going
“previous” until you find 𝑥 or go past its value

Searching	in	Sorted	List

373F23 - Nisarg Shah 31

• Analysis sketch:
Ø Suppose you find the largest 𝑥0 ≤ 𝑥 and keep going “next”
Ø Let 𝑥' be smallest value ≥ 𝑥
Ø Algorithm stops when it hits 𝑥'
Ø Algorithm throws 𝑛 random “darts” on the sorted list
Ø Chernoff bound:
o Expected distance of 𝑥# to the closest dart to its left is 𝑂 𝑛
o We’ll assume this without proof!

Ø Hence, the algorithm only does “next” 𝑂 𝑛 times in expectation

Searching	in	Sorted	List

373F23 - Nisarg Shah 32

• Note:
Ø We don’t really require the list to be doubly linked. Just “next”

pointer suffices if we have a pointer to the first element of the list
(a.k.a. “anchored list”).

• This algorithm is optimal!
• Theorem: No algorithm that always returns the correct

answer can run in 𝑜 𝑛 expected time.
Ø Can be proved using “Yao’s minimax principle”
Ø Beyond the scope of the course, but this is a fundamental result with

wide-ranging applications

Sublinear	Geometric	Algorithms

373F23 - Nisarg Shah 33

• Chazelle, Liu, and Magen [2003] proved the Θ 𝑛 bound
for searching in a sorted linked list
Ø Their main focus was to generalize these ideas to come up with

sublinear algorithms for geometric problems

Ø Polygon intersection: Given two convex polyhedra, check if they
intersect.

Ø Point location: Given a Delaunay triangulation (or Voronoi diagram)
and a point, find the cell in which the point lies.

Ø They provided optimal 𝑂 𝑛 algorithms for both these problems.

373F23 - Nisarg Shah 34

Inexact algorithms,
expected sublinear time

Estimating	Avg Degree	in	Graph

373F23 - Nisarg Shah 35

• Input:
Ø Undirected graph 𝐺 with 𝑛 vertices
Ø 𝑂 1 access to the degree of any queried vertex

• Output:
Ø Estimate the average degree of all vertices
Ø More precisely, we want to find a (2 + 𝜖)-approximation in expected

time 𝑂 𝜖#? ! 𝑛
• Wait!

Ø Isn’t this equivalent to “given an array of 𝑛 numbers between 1 and
𝑛 − 1, estimate their average”?

Ø No! That requires Ω(𝑛) time for any constant approximation!

o Consider an instance with constantly many 𝑛 − 1’s, and all other
1’s: you may not discover any 𝑛 − 1 until you query Ω(𝑛) numbers

Estimating	Avg Degree	in	Graph

373F23 - Nisarg Shah 36

• Why are degree sequences more special?

• Erdős–Gallai theorem:
Ø 𝑑! ≥ ⋯ ≥ 𝑑& is a degree sequence iff their sum is even and
∑')!5 𝑑' ≤ 𝑘 𝑘 − 1 + ∑')5@!& 𝑑'

• Intuitively, we will sample 𝑂 𝑛 vertices
Ø We may not discover the few high degree vertices but we’ll find their

neighbors and thus account for their edges anyway!

Estimating	Avg Degree	in	Graph

373F23 - Nisarg Shah 37

• Algorithm:
Ø Take ⁄, A random subsets 𝑆' ⊆ 𝑉 with 𝑆' = 𝑂 &

A
Ø Compute the average degree 𝑑B# in each 𝑆'.
Ø Return �𝑑 = min' 𝑑B#

• Analysis beyond the scope of this course
Ø This gets the approximation right with probability at least C

D
Ø By repeating the experiment Ω log 𝑛 times and reporting the

median answer, we can get the approximation right with probability
at least 1 − 1/𝑂 𝑛 and a bad approximation with the other 1/𝑂 𝑛
probability cannot hurt much

