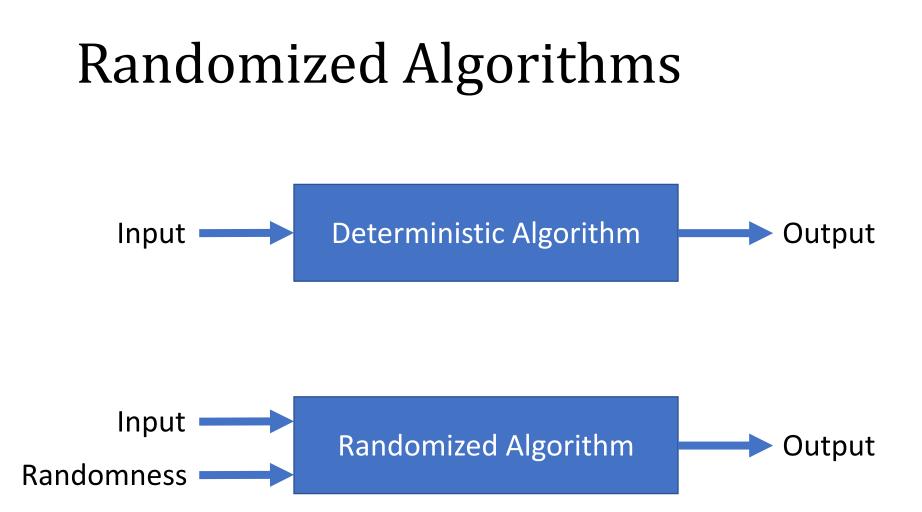
NOT IN SYLLABUS

CSC373

Randomized Algorithms



Randomized Algorithms

• Running time

- Harder goal: the running time should *always* be small
 Regardless of both the input and the random coin flips
- Easier goal: the running time should be small *in expectation* Expectation over random coin flips
 But it should still be small for every input (i.e. worst-case)

Approximation Ratio

- The objective value of the solution returned should, in expectation, be close to the optimum objective value
 - $\,\circ\,$ Once again, the expectation is over random coin flips
 - \circ The approximation ratio should be small for every input

- After coming up with a randomized approximation algorithm, one might ask if it can be "derandomized"
 - Informally, the randomized algorithm is making random choices that, in expectation, turn out to be good
 - > Can we make these "good" choices deterministically?
- For some problems...
 - It may be easier to first design a simple randomized approximation algorithm and then de-randomize it...
 - Than to try to directly design a deterministic approximation algorithm

Recap: Probability Theory

• Random variable X

> Discrete

 \circ Takes value v_1 with probability p_1 , v_2 w.p. p_2 , ...

- Expected value $E[X] = p_1 \cdot v_1 + p_2 \cdot v_2 + \cdots$
- Examples: coin toss, the roll of a six-sided die, ...

Continuous

- \circ Has a probability density function (pdf) f
- \circ Its integral is the cumulative density function (cdf) F

•
$$F(x) = \Pr[X \le x] = \int_{-\infty}^{x} f(t) dt$$

- Expected value $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- Examples: normal distribution, exponential distribution, uniform distribution over [0,1], ...

Recap: Probability Theory

• Things you should be aware of...

- Conditional probabilities
- Conditional expectations
- > Independence among random variables
- Moments of random variables
- Standard discrete distributions: uniform over a finite set, Bernoulli, binomial, geometric, Poisson, ...
- Standard continuous distributions: uniform over intervals, Gaussian/normal, exponential, ...

Three Pillars

Linearity of Expectation Union Bound

Chernoff Bound

- Deceptively simple, but incredibly powerful!
- Many many many many probabilistic results are just interesting applications of these three results

Three Pillars

- Linearity of expectation
 - $\succ E[X+Y] = E[X] + E[Y]$
 - > This does *not* require any independence assumptions about X and Y
 - E.g. if you want to find out how many people will attend your party on average, just ask each person the probability with which they will attend and sum up the probabilities
 - It does not matter whether some of them are friends and either all will attend together or none will attend

Three Pillars

Union bound

- ▶ For any two events A and B, $Pr[A \cup B] \leq Pr[A] + Pr[B]$
- > "Probability that at least one of the *n* events $A_1, ..., A_n$ will occur is at most $\sum_i \Pr[A_i]$ "
- > Typically, A_1, \dots, A_n are "bad events"
 - $\,\circ\,$ You do not want any of them to occur
 - If you can individually bound $Pr[A_i] \leq \frac{1}{2n}$ for each *i*, then probability that at least one them occurs $\leq 1/2$

 \circ Thus, with probability $\geq 1/2$, none of the bad events will occur

- Chernoff bound & Hoeffding's inequality
 - Read up!

Exact Max-*k*-SAT

Exact Max-*k*-SAT

Problem (recall)

- Input: An exact k-SAT formula φ = C₁ ∧ C₂ ∧ ··· ∧ C_m, where each clause C_i has exactly k literals, and a weight w_i ≥ 0 of each clause C_i
- > Output: A truth assignment τ maximizing the number (or total weight) of clauses satisfied under τ
- > Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
- > Recall that with local search, we could obtain a $\frac{2^{k}-1}{2^{k}}$ -approximation for Exact Max-k-SAT but with a LOT of effort!

Exact Max-*k*-SAT

The most naïve randomized algorithm

 \succ Set each variable to TRUE with probability $1\!\!\!/_2$ and to FALSE with probability $1\!\!\!/_2$

- Let τ be the random assignment produced
 - > For each clause C_i , $\Pr[C_i \text{ is not satisfied}] = \frac{1}{2^k}$ (WHY?)

• Hence, $\Pr[C_i \text{ is satisfied}] = \frac{\binom{2^k - 1}{2^k}}{2^k}$

>
$$E[W(\tau)] = \sum_{i=1}^{m} w_i \cdot \Pr[C_i \text{ is satisfied}] \text{ (WHY?)}$$

> $E[W(\tau)] = \frac{2^{k-1}}{2^k} \cdot \sum_{i=1}^{m} w_i \ge \frac{2^{k-1}}{2^k} \cdot OPT \text{ (WHY?)}$

- Can we derandomize this algorithm?
 - > What are the choices made by the algorithm?
 - \circ Setting the values of x_1, x_2, \dots, x_n
 - > How do we know which set of choices is good?

• Idea:

- > Derandomize one by one!
- ▶ Goal: Gradually convert the random assignment τ to a deterministic assignment $\hat{\tau}$ such that $W(\hat{\tau}) \ge E[W(\tau)]$
 - Combining with $E[W(\tau)] \ge \frac{2^{k}-1}{2^{k}} \cdot OPT$ will give the desired approximation ratio via a deterministic algorithm

• Derandomize *x*₁:

 $E[W(\tau)] = \Pr[x_1 = T] \cdot E[W(\tau)|x_1 = T] + \Pr[x_1 = F] \cdot E[W(\tau)|x_1 = F]$ = $\frac{1}{2} \cdot E[W(\tau)|x_1 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = F]$

> $\max(E[W(\tau)|x_1 = T], E[W(\tau)|x_1 = F]) \ge E[W(\tau)]$

• These are the expected weights achieved when setting $x_1 = T$ or $x_1 = F$ deterministically, but keeping $x_2, ..., x_n$ random

> Compute both $E[W(\tau)|x_1 = T]$ and $E[W(\tau)|x_1 = F]$, and deterministically set x_1 to get whichever is higher

- Say we set $x_1 = T$
- Next, we can derandomize x_2 similarly:

$$E[W(\tau)|x_1 = T] = \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = T] + \frac{1}{2} \cdot E[W(\tau)|x_1 = T, x_2 = F]$$

> Compute both and set x_2 to get the higher of the two values

• Derandomized Algorithm:

- This is called the method of conditional expectations
- Remaining question: How to compute $E[W(\tau)|x_1 = z_1, ..., x_i = z_i]$?
 - ▶ Write as $\sum_r w_r \cdot \Pr[C_r \text{ is satisfied } | x_1 = z_1, \dots, x_i = z_i]$
 - > Set the values of x_1, \dots, x_i
 - > If C_r resolves to TRUE already, the corresponding probability is 1
 - > Otherwise, if there are ℓ literals left in C_r after setting $x_1, ..., x_i$, the corresponding probability is $\frac{2^{\ell}-1}{2^{\ell}}$

Max-SAT

- Simple randomized algorithm
 - > $\frac{2^{k}-1}{2^{k}}$ –approximation for Max-k-SAT
 - ≻ Max-3-SAT \Rightarrow ⁷/₈

 \circ [Håstad]: This is the best possible assuming P ≠ NP

> Max-2-SAT
$$\Rightarrow 3/_4 = 0.75$$

- The best known approximation is 0.9401 using semi-definite programming and randomized rounding
- > Max-SAT $\Rightarrow 1/_2$
 - \circ Max-SAT = no restriction on the number of literals in each clause
 - The best known approximation is 0.7968, also using semi-definite programming and randomized rounding

Max-SAT

Better approximations for Max-SAT

- Semi-definite programming is out of the scope
- > But we will see the simpler "LP relaxation + randomized rounding" approach that gives $1 \frac{1}{e} \approx 0.6321$ approximation

• Max-SAT:

- ▶ Input: $\varphi = C_1 \land C_2 \land \dots \land C_m$, where each clause C_i has weight $w_i \ge 0$ (and can have any number of literals)
- Output: Truth assignment that approximately maximizes the weight of clauses satisfied

LP Formulation of Max-SAT

- First, IP formulation:
 - > Variables:

 $\begin{array}{l} \circ \ y_1, \ldots, y_n \in \{0, 1\} \\ \bullet \ y_i = 1 \ \text{iff variable} \ x_i = \mathsf{TRUE} \ \text{in Max-SAT} \\ \circ \ z_1, \ldots, z_m \in \{0, 1\} \\ \bullet \ z_j = 1 \ \text{iff clause} \ C_j \ \text{is satisfied in Max-SAT} \end{array}$

○ **Program:**

$$\begin{aligned} & \text{Maximize } \Sigma_j \ w_j \cdot z_j \\ & \text{s.t.} \\ & \Sigma_{x_i \in C_j} \ y_i + \Sigma_{\bar{x}_i \in C_j} \ (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ & y_i, z_j \in \{0, 1\} \qquad \qquad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{aligned}$$

LP Formulation of Max-SAT

• LP relaxation:

> Variables:

 $○ y_1, ..., y_n \in [0,1]$ • $y_i = 1$ iff variable $x_i = \text{TRUE}$ in Max-SAT $○ z_1, ..., z_m \in [0,1]$ • $z_j = 1$ iff clause C_j is satisfied in Max-SAT

○ **Program:**

$$\begin{array}{l} \text{Maximize } \Sigma_j \; w_j \cdot z_j \\ \text{s.t.} \\ \Sigma_{x_i \in C_j} \; y_i + \Sigma_{\bar{x}_i \in C_j} \; (1 - y_i) \geq z_j \quad \forall j \in \{1, \dots, m\} \\ y_i, z_j \in [0, 1] \quad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, m\} \end{array}$$

Randomized Rounding

Randomized rounding

- > Find the optimal solution (y^*, z^*) of the LP
- \succ Compute a random IP solution \hat{y} such that
 - \circ Each $\hat{y}_i = 1$ with probability y_i^* and 0 with probability $1 y_i^*$
 - \circ Independently of other \hat{y}_i 's
 - $\,\circ\,$ The output of the algorithm is the corresponding truth assignment
- > What is $Pr[C_j \text{ is satisfied}]$ if C_j has k literals?

Randomized Rounding

• Claim

•

>
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

• Assuming the claim:

$$\Pr[C_{j} \text{ is satisfied}] \geq 1 - \left(\frac{k - z_{j}^{*}}{k}\right)^{k} \geq \left(1 - \left(1 - \frac{1}{k}\right)^{k}\right) \cdot z_{j}^{*} \geq \left(1 - \frac{1}{e}\right) \cdot z_{j}^{*}$$
Hence,
$$\operatorname{Standard inequality}$$

$$\mathbb{E}[\text{#weight of clauses satisfied}] \geq \left(1 - \frac{1}{e}\right) \sum_{j} w_{j} \cdot z_{j}^{*} \geq \left(1 - \frac{1}{e}\right) \cdot OPT$$

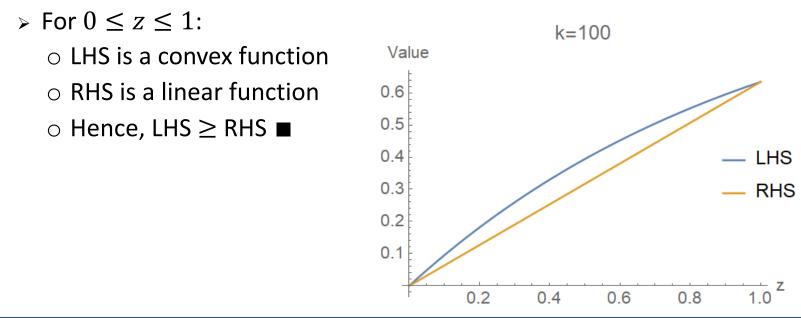
Optimal LP objective \geq optimal ILP objective

Randomized Rounding

Claim

▶
$$1 - \left(1 - \frac{z}{k}\right)^k \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot z$$
 for all $z \in [0, 1]$ and $k \in \mathbb{N}$

- Proof of claim:
 - > True at z = 0 and z = 1 (same quantity on both sides)



Improving Max-SAT Apx

• Best of both worlds:

- Run both "LP relaxation + randomized rounding" and "naïve randomized algorithm"
- Return the best of the two solutions
- Claim without proof: This achieves a ${}^{3}\!/_{4} = 0.75$ approximation!
 This algorithm can be derandomized.
- ➤ Recall:
 - "naïve randomized" = independently set each variable to TRUE/FALSE with probability 0.5 each, which only gives ¹/₂ = 0.5 approximation by itself

Randomization for Sublinear Running Time

Sublinear Running Time

- Given an input of length n, we want an algorithm that runs in time o(n)
 - > o(n) examples: $\log n$, \sqrt{n} , $n^{0.999}$, $\frac{n}{\log n}$, ...
 - > The algorithm doesn't even get to read the full input!
- There are four possibilities:
 - Exact vs inexact: whether the algorithm always returns the correct/optimal solution or only does so with high probability (or gives some approximation)
 - Worst-case versus expected running time: whether the algorithm always takes o(n) time or only does so in expectation (but still on every instance)

Exact algorithms, expected sublinear time

- Input: A sorted doubly linked list with *n* elements.
 - > Imagine you have an array A with O(1) access to A[i]
 - > A[i] is a tuple (x_i, p_i, n_i)
 - \circ Value, index of previous element, index of next element.
 - > Sorted: $x_{p_i} \le x_i \le x_{n_i}$
- Task: Given x, check if there exists i s.t. $x = x_i$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})!$

• Motivation:

- Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
- > Creating a new, sorted version of the dataset is expensive
- It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
- > Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 - Just like binary search achieves for an explicitly sorted array

Algorithm:

- > Select \sqrt{n} random indices R
- ≻ Access x_j for each $j \in R$
- > Find "accessed x_i nearest to x in either direction"

 \circ either the largest among all $x_j \leq x_{...}$

 \circ or the smallest among all $x_i \ge x$

- > If you take the largest $x_j \le x$, start from there and keep going "next" until you find x or go past its value
- > If you take the smallest $x_j \ge x$, start from there and keep going "previous" until you find x or go past its value

• Analysis sketch:

- > Suppose you find the largest $x_i \leq x$ and keep going "next"
- > Let x_i be smallest value $\ge x$
- > Algorithm stops when it hits x_i
- > Algorithm throws \sqrt{n} random "darts" on the sorted list
- > Chernoff bound:
 - Expected distance of x_i to the closest dart to its left is $O(\sqrt{n})$
 - o We'll assume this without proof!
- > Hence, the algorithm only does "next" $O(\sqrt{n})$ times in expectation

• Note:

- > We don't really require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").
- This algorithm is optimal!
- Theorem: No algorithm that always returns the correct answer can run in $o(\sqrt{n})$ expected time.
 - > Can be proved using "Yao's minimax principle"
 - Beyond the scope of the course, but this is a fundamental result with wide-ranging applications

Sublinear Geometric Algorithms

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
 - Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
 - Polygon intersection: Given two convex polyhedra, check if they intersect.
 - Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
 - > They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Inexact algorithms, expected sublinear time

Estimating Avg Degree in Graph

• Input:

- > Undirected graph G with n vertices
- > O(1) access to the degree of any queried vertex

• Output:

- > Estimate the average degree of all vertices
- > More precisely, we want to find a $(2 + \epsilon)$ -approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$

• Wait!

- > Isn't this equivalent to "given an array of n numbers between 1 and n-1, estimate their average"?
- > No! That requires $\Omega(n)$ time for any constant approximation!
 - \circ Consider an instance with constantly many n 1's, and all other 1's: you may not discover any n 1 until you query $\Omega(n)$ numbers

Estimating Avg Degree in Graph

- Why are degree sequences more special?
- Erdős–Gallai theorem:
 - > $d_1 \ge \cdots \ge d_n$ is a degree sequence iff their sum is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n d_i$
- Intuitively, we will sample $O(\sqrt{n})$ vertices
 - > We may not discover the few high degree vertices but we'll find their neighbors and thus account for their edges anyway!

Estimating Avg Degree in Graph

• Algorithm:

- > Take $\frac{8}{\epsilon}$ random subsets $S_i \subseteq V$ with $|S_i| = O\left(\frac{\sqrt{n}}{\epsilon}\right)$
- > Compute the average degree d_{S_i} in each S_i .
- > Return $\widehat{d} = \min_i d_{S_i}$

Analysis beyond the scope of this course

- > This gets the approximation right with probability at least $\frac{5}{6}$
- By repeating the experiment Ω(log n) times and reporting the median answer, we can get the approximation right with probability at least 1 − 1/O(n) and a bad approximation with the other 1/O(n) probability cannot hurt much