
CSC373

Approximation	Algorithms	

373F23 - Nisarg Shah 1

NP-Completeness

373F23 - Nisarg Shah 2

• NP-complete problems
Ø Unlikely to have polynomial time algorithms to solve them
Ø What do we do?

• One idea: approximation
Ø Instead of solving them exactly, solve them approximately
Ø Sometimes, we might want to use an approximation algorithm even

when we can compute an exact solution in polynomial time (WHY?)

Approximation	Algorithms

373F23 - Nisarg Shah 3

• Decision versus optimization problems

Ø Decision variant: “Does there exist a solution with objective ≥ 𝑘?”
o E.g., “Is there an assignment which satisfies at least 𝑘 clauses of a

given CNF formula 𝜑?”

Ø Optimization variant: “Find a solution maximizing objective”
o E.g., “Find an assignment which satisfies the maximum possible

number of clauses of a given CNF formula 𝜑.”

Ø If a decision problem is hard, then its optimization version is hard too

Ø We’ll focus on optimization variants

Approximation	Algorithms

373F23 - Nisarg Shah 4

• Objectives
Ø Maximize (e.g., “profit”) or minimize (e.g., “cost”)

• Given problem instance 𝐼:
Ø 𝐴𝐿𝐺(𝐼) = solution returned by our algorithm
Ø 𝑂𝑃𝑇(𝐼) = some optimal solution

Ø Approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

!"#$%& '() *
!"#$%& +,- * or .#/& +,- *

.#/& '() *

Ø Convention: approximation ratio ≥ 1
o “2-approximation” = half the optimal profit / twice the optimal cost

Approximation	Algorithms

373F23 - Nisarg Shah 5

• Worst-case approximation ratio
Ø Worst approximation ratio across all possible problem instances 𝐼

Ø 𝐴𝐿𝐺 has worst-case 𝑐-approximation if for each problem instance 𝐼…

𝑝𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼 ≥
1
𝑐 ⋅ 𝑝𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼 𝑜𝑟

𝑐𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼 ≤ 𝑐 ⋅ 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

Ø By default, we will always refer to approximation ratios in the worst
case

Ø Note: In some textbooks, you might see the approximation ratio
flipped (e.g., 0.5-approximation instead of 2-approximation)

PTAS	and	FPTAS

373F23 - Nisarg Shah 6

• Arbitrarily close to 1 approximations

• PTAS: Polynomial time approximation scheme
Ø For every 𝜖 > 0, there is a 1 + 𝜖 -approximation algorithm that

runs in time 𝑝𝑜𝑙𝑦 𝑛 on instances of size 𝑛
o Note: Could have exponential dependence on ⁄1 𝜖

• FPTAS: Fully polynomial time approximation scheme
Ø For every 𝜖 > 0, there is a 1 + 𝜖 -approximation algorithm that

runs in time 𝑝𝑜𝑙𝑦 𝑛, ⁄1 𝜖 on instances of size 𝑛

Approximation	Landscape

373F23 - Nisarg Shah 7

Ø An FPTAS
o E.g., the knapsack problem

Ø A PTAS but no FPTAS
o E.g., the makespan problem (we’ll see)

Ø 𝑐-approximation for a constant 𝑐 > 1 but no PTAS

o E.g., vertex cover and JISP (we’ll see)

Ø Θ log 𝑛 -approximation but no constant approximation

o E.g., set cover

Ø No 𝑛!"#-approximation for any 𝜖 > 0
o E.g., graph coloring and maximum independent set

Impossibility of better approximations
assuming widely held beliefs like P ≠ NP

𝑛 = parameter of problem at hand

Approximation	Techniques

373F23 - Nisarg Shah 8

• Greedy algorithms
Ø Make decision on one element at a time in a greedy fashion without

considering future decisions

• LP relaxation
Ø Formulate the problem as an integer linear program (ILP)
Ø “Relax” it to an LP by allowing variables to take real values
Ø Find an optimal solution of the LP, “round” it to a feasible solution of

the original ILP, and prove its approximate optimality

• Local search
Ø Start with an arbitrary solution
Ø Keep making “local” adjustments to improve the objective

373F23 - Nisarg Shah 9

Greedy Approximation

373F23 - Nisarg Shah 10

Makespan Minimization

Makespan

373F23 - Nisarg Shah 11

• Problem
Ø Input: 𝑚 identical machines, 𝑛 jobs, job 𝑗 requires processing time 𝑡$
Ø Output: Assign jobs to machines to minimize makespan

Ø Let 𝑆 𝑖 = set of jobs assigned to machine 𝑖 in a solution

Ø Constraints:
o Each job must run contiguously on one machine
o Each machine can process at most one job at a time

Ø Load on machine 𝑖: 𝐿% = ∑$∈' % 𝑡$
Ø Goal: minimize the maximum load, i.e., makespan 𝐿 = max

%
𝐿%

• Even the special case of 𝑚 = 2 machines is already NP-hard by
reduction from PARTITION

• PARTITION
Ø Input: Set 𝑆 containing 𝑛 integers
Ø Question: Does there exist a partition of 𝑆 into two sets with equal sum?

(A partition of 𝑆 into 𝑆!, 𝑆(means 𝑆! ∩ 𝑆(= ∅ and 𝑆! ∪ 𝑆(= 𝑆)

• Exercise!
Ø Show that PARTITION is NP-complete by reduction from SUBSET-SUM
Ø Show that Makespan with 𝑚 = 2 is NP-hard by reduction from

PARTITION

Makespan

373F23 - Nisarg Shah 12

Makespan

373F23 - Nisarg Shah 13

• Greedy list-scheduling algorithm
Ø Consider the 𝑛 jobs in some “nice” sorted order
Ø Assign each job 𝑗 to a machine with the smallest load so far

• Note: Implementable in 𝑂 𝑛 log𝑚 using priority queue

• Back to greedy…?
Ø But this time, we can’t hope that greedy will be optimal
Ø We can still hope that it is approximately optimal

• Which order?

Makespan

373F23 - Nisarg Shah 14

• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.
Ø This was one of the first worst-case approximation analyses

• Let optimal makespan = 𝐿∗

• To show that makespan under the greedy solution is not much
worse than 𝐿∗, we need to show that 𝐿∗ cannot be too low

Makespan

373F23 - Nisarg Shah 15

• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Fact 1: 𝐿∗ ≥ maxD 𝑡D
Ø Some machine must process job with highest processing time

• Fact 2: 𝐿∗ ≥ E
F
∑D 𝑡D

Ø Total processing time is ∑$ 𝑡$
Ø At least one machine must do at least 1/𝑚 of this work (the pigeonhole

principle)

Makespan

373F23 - Nisarg Shah 16

• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Proof:
Ø Suppose machine 𝑖 is the bottleneck under greedy (so 𝐿 = 𝐿%)
Ø Let 𝑗∗ be the last job scheduled on machine 𝑖 by greedy
Ø Right before 𝑗∗ was assigned to 𝑖, 𝑖 had the smallest load
o Load of the other machines could have only increased from then
o 𝐿% − 𝑡$∗ ≤ 𝐿*, ∀𝑘

Ø Average over all 𝑘 : 𝐿% − 𝑡$∗ ≤
!
+
∑$ 𝑡$

Ø 𝐿% ≤ 𝑡$∗ +
!
+
∑$ 𝑡$ ≤ 𝐿∗ + 𝐿∗ = 2𝐿∗

Fact 1 Fact 2

Makespan

373F23 - Nisarg Shah 17

• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
Ø Essentially.
Ø By averaging over 𝑘 ≠ 𝑖 in the previous slide, one can show a slightly

better 2 − 1/𝑚 approximation
Ø There is an example where greedy has approximation as bad as 2 − 1/𝑚
Ø So, 2 − 1/𝑚 is exactly tight.

Makespan

373F23 - Nisarg Shah 18

• Tight example:
Ø 𝑚(𝑚 − 1) jobs of length 1, followed by one job of length 𝑚

Ø Greedy evenly distributes unit length jobs on all 𝑚 machines, and
assigning the last heavy job makes makespan 𝑚 − 1 +𝑚 = 2𝑚 − 1

Ø Optimal makespan is 𝑚 by evenly distributing unit length jobs among 𝑚 −
1 machines and putting the single heavy job on the remaining

• Idea:
Ø It seems keeping heavy jobs at the end is bad.
Ø So, let’s just start with them first!

Makespan	Revisited

373F23 - Nisarg Shah 19

• Greedy LPT (Longest Processing Time First)
Ø Run the greedy algorithm but consider jobs in a non-increasing order

of their processing time
Ø Suppose 𝑡! ≥ 𝑡(≥ ⋯ ≥ 𝑡,

• Fact 3: If the bottleneck machine 𝑖 has only one job 𝑗, then
the solution is optimal
Ø Current solution has 𝐿 = 𝐿% = 𝑡$
Ø We know 𝐿∗ ≥ 𝑡$ from Fact 1

• Fact 4: If there are more than 𝑚 jobs, then 𝐿∗ ≥ 2 ⋅ 𝑡FGE
Ø The first 𝑚 + 1 jobs each have processing time at least 𝑡+-!
Ø By the pigeonhole principle, the optimal solution must put at least

two of them on the same machine

Makespan	Revisited

373F23 - Nisarg Shah 20

• Theorem
Ø Greedy LPT achieves ⁄. (-approximation

• Proof:
Ø Similar to the proof for arbitrary ordering

Ø Consider a bottleneck machine 𝑖 and the job 𝑗∗ that was last
scheduled on this machine by the greedy algorithm

Ø Case 1: Machine 𝑖 has only one job 𝑗∗
o By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Makespan	Revisited

373F23 - Nisarg Shah 21

• Theorem
Ø Greedy LPT achieves 3/2-approximation

• Proof:
Ø Similar to the proof for arbitrary ordering

Ø Consider a bottleneck machine 𝑖 and the job 𝑗∗ that was last
scheduled on this machine by the greedy algorithm

Ø Case 2: Machine 𝑖 has at least two jobs
o Job 𝑗∗ must have 𝑡$∗ ≤ 𝑡+-!
o As before, 𝐿 = 𝐿% = 𝐿% − 𝑡$∗ + 𝑡$∗ ≤ 1.5 𝐿∗

Same as before ≤ 𝐿∗ ≤ 𝐿∗/2 𝑡"∗ ≤ 𝑡#$% and Fact 4

Makespan	Revisited

373F23 - Nisarg Shah 22

• Theorem
Ø Greedy LPT achieves 3/2-approximation
Ø Is our analysis tight? No!

• Theorem [Graham 1966]
Ø Greedy LPT achieves /

.
− !
.0

-approximation

Ø Is Graham’s approximation tight?
o Yes.

o In the upcoming example, greedy LPT is as bad as /
.
− !
.+

Makespan	Revisited

373F23 - Nisarg Shah 23

• Tight example for Greedy LPT:
Ø 2 jobs each of lengths 𝑚,𝑚 + 1,… , 2𝑚 − 1

Ø One more job of length 𝑚

Ø Greedy-LPT has makespan 4𝑚 − 1 (verify!)

Ø OPT has makespan 3𝑚 (verify!)

Ø Thus, approximation ratio is at least as bad as /+"!
.+

= /
.
− !
.+

373F23 - Nisarg Shah 30

Unweighted Vertex Cover

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 31

• Problem
Ø Input: Undirected graph 𝐺 = (𝑉, 𝐸)
Ø Output: Vertex cover 𝑆 of minimum cardinality

Ø Recall: 𝑆 is vertex cover if every edge has at least one of its two
endpoints in 𝑆

Ø We already saw that this problem is NP-hard

• Q: What would be a good greedy algorithm for this
problem?

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 32

• Greedy edge-selection algorithm:
Ø Start with 𝑆 = ∅
Ø While there exists an edge whose both endpoints are not in 𝑆, add

both its endpoints to 𝑆

• Hmm…
Ø Why are we selecting edges rather than vertices?
Ø Why are we adding both endpoints?
Ø We’ll see..

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 33

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 34

• Theorem:
Ø Greedy edge-selection algorithm for unweighted vertex cover

achieves 2-approximation.

• Observation 1:
Ø For any vertex cover 𝑆∗ and any matching 𝑀, 𝑆∗ ≥ 𝑀 , where
𝑀 = number of edges in 𝑀

Ø Proof: 𝑆∗ must contain at least one endpoint of each edge in 𝑀

• Observation 2:
Ø Greedy algorithm finds a vertex cover of size 𝑆 = 2 ⋅ 𝑀

• Hence, 𝑆 ≤ 2 ⋅ 𝑆∗ , where 𝑆∗ = min vertex cover

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 35

• Corollary:
Ø If 𝑀∗ is a maximum matching, and 𝑀 is a maximal matching, then
𝑀 ≥ !

(
𝑀∗

• Proof:
Ø By design, 𝑀 = !

(
|𝑆|

Ø 𝑆 ≥ 𝑀∗ (Observation 1)
Ø Hence, 𝑀 ≥ !

(
𝑀∗ ∎

• This greedy algorithm is also a 2-approximation to the
problem of finding a maximum cardinality matching
Ø However, the max cardinality matching problem can be solved

exactly in polynomial time using a more complex algorithm

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 36

• What about a greedy vertex selection algorithm?
Ø Start with 𝑆 = ∅
Ø While 𝑆 is not a vertex cover:
o Choose a vertex 𝑣 which maximizes the number of uncovered

edges incident on it
o Add 𝑣 to 𝑆

Ø Gives 𝑂 log 𝑑012 approximation, where 𝑑012 is the maximum
degree of any vertex
o But unlike the edge-selection version, this generalizes to set cover
o For set cover, 𝑂 log 𝑑012 approximation ratio is the best possible

in polynomial time unless P=NP

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 37

• Theorem [Dinur-Safra 2004]:
Ø Unless P = NP, there is no polynomial-time 𝜌-approximation

algorithm for unweighted vertex cover for any constant 𝜌 < 1.3606.

NOT IN SYLLABUS

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 38

• Theorem [Khot-Regev 2008]:
Ø Unless the “unique games conjecture” is violated, there is no

polynomial-time 𝜌-approximation algorithm for unweighted vertex
cover for any constant 𝜌 < 2.

NOT IN SYLLABUS

Unweighted	Vertex	Cover

373F23 - Nisarg Shah 39

• How does one prove a lower bound on the approximation
ratio of any polynomial-time algorithm?
Ø We prove that if there is a polynomial-time 𝜌-approximation

algorithm for the problem with 𝜌 < some bound, then some widely
believed conjecture is violated

Ø For example, we can prove that given a polynomial time 𝜌-
approximation algorithm to vertex cover for any constant 𝜌 <
1.3606, we can use this algorithm as a subroutine to solve the 3SAT
decision problem in polynomial time, implying P=NP

Ø Similar technique can be used to reduce from other widely believed
conjectures, which may give different (sometimes better) bounds

Ø Beyond the scope of this course

NOT IN SYLLABUS

373F23 - Nisarg Shah 40

Weighted Vertex Cover

Weighted	Vertex	Cover

373F23 - Nisarg Shah 41

• Problem
Ø Input: Undirected graph 𝐺 = (𝑉, 𝐸), weights 𝑤 ∶ 𝑉 → 𝑅34
Ø Output: Vertex cover 𝑆 of minimum total weight

• The same greedy algorithm doesn’t work
Ø Gives arbitrarily bad approximation
Ø Obvious modifications which try to take weights into account also

don’t work
Ø Need another strategy…

373F23 - Nisarg Shah 42

LP Relaxation

ILP	Formulation

373F23 - Nisarg Shah 43

Ø For each vertex 𝑣, create a binary variable 𝑥5 ∈ {0,1} indicating
whether vertex 𝑣 is chosen in the vertex cover

Ø Then, computing min weight vertex cover is equivalent to solving the
following integer linear program

minΣ5 𝑤5 ⋅ 𝑥5
subject to

𝑥6 + 𝑥5 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥5 ∈ 0,1 , ∀𝑣 ∈ 𝑉

LP	Relaxation

373F23 - Nisarg Shah 44

• What if we solve the “LP relaxation” of the original ILP?
Ø Just convert all integer variables to real variables

min ΣK	𝑤K ⋅ 𝑥K
subject	to

𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

min ΣK	𝑤K ⋅ 𝑥K
subject	to

𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

ILP with binary variables LP with real variables

Rounding	LP	Solution

373F23 - Nisarg Shah 45

• What if we solve the “LP relaxation” of the original ILP?
Ø Let’s say we are minimizing objective 𝑐7𝑥

Ø Since the LP minimizes this over a larger feasible space than the ILP,
optimal LP objective value ≤ optimal ILP objective value

Ø Let 𝑥89∗ be an optimal LP solution (which we can compute efficiently) and
𝑥:89∗ be an optimal ILP solution (which we can’t compute efficiently)

o 𝑐7𝑥89∗ ≤ 𝑐7𝑥:89∗

o But 𝑥89∗ may have non-integer values

o Efficiently round 𝑥89∗ to an ILP feasible solution u𝑥 without increasing
the objective too much

o If we prove 𝑐7 u𝑥 ≤ 𝜌 ⋅ 𝑐7𝑥89∗ , then we will also have 𝑐7 u𝑥 ≤ 𝜌 ⋅ 𝑐7𝑥:89∗

o Thus, our algorithm will achieve 𝜌-approximation

Rounding	LP	Solution

373F23 - Nisarg Shah 46

• What if we solve the “LP relaxation” of the original ILP?

Ø If we are maximizing 𝑐7𝑥 instead of minimizing, then it’s reversed:

o Optimal LP objective value ≥ optimal ILP objective value, i.e.,
𝑐7𝑥89∗ ≥ 𝑐7𝑥:89∗

o Efficiently round 𝑥89∗ to an ILP feasible solution u𝑥 without decreasing
the objective too much

o If we prove 𝑐7 u𝑥 ≥ ⁄! ; ⋅ 𝑐7𝑥89∗ , then 𝑐7 u𝑥 ≥ ⁄! ; ⋅ 𝑐7𝑥:89∗

o Thus, our algorithm will achieve 𝜌-approximation

Weighted	Vertex	Cover

373F23 - Nisarg Shah 47

• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Claim 1: u𝑥 is a feasible solution of ILP (i.e., a vertex cover)
o For every edge 𝑢, 𝑣 ∈ 𝐸, at least one of 𝑥6∗ , 𝑥5∗ is at least 0.5
o So at least one of u𝑥6, u𝑥5 is 1 ∎

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables

Rounding	LP	Solution

373F23 - Nisarg Shah 48

• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Claim 2: ∑5𝑤5 ⋅ u𝑥5 ≤ 2 ∗ ∑5𝑤5 ⋅ 𝑥5∗

o Weight only increases when some 𝑥5∗ ∈ [0.5,1] is rounded up to 1
o At most doubling the variable, so at most doubling the weight ∎

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables

Rounding	LP	Solution

373F23 - Nisarg Shah 49

• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Hence, u𝑥 is a vertex cover with weight at most 2 ∗ LP optimal value ≤ 2 ∗
ILP optimal value

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables

General	LP	Relaxation	Strategy

373F23 - Nisarg Shah 50

• Your NP-complete problem amounts to solving
Ø Max 𝑐7𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℕ (need not be binary)

• Instead, solve:
Ø Max 𝑐7𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ34 (LP relaxation)
o LP optimal value ≥ ILP optimal value (for maximization)

Ø 𝑥∗ = LP optimal solution

Ø Round 𝑥∗ to u𝑥 such that 𝑐7 u𝑥 ≥ <"=∗

;
≥ >?@ ABCD01E F1EGH

;
Ø Gives 𝜌-approximation
o Info: Best 𝜌 you can hope to get via this approach for a particular

LP-ILP combination is called the integrality gap

373F23 - Nisarg Shah 51

Local Search Paradigm

Local	Search

373F23 - Nisarg Shah 52

• Heuristic paradigm
Ø Sometimes it might provably return an optimal solution
Ø But even if not, it might give a good approximation

• Template
Ø Start with some initial feasible solution 𝑆
Ø While there is a “better” solution 𝑆′ in the local neighborhood of 𝑆
Ø Switch to 𝑆’

• Need to define:
Ø Which initial feasible solution should we start from?
Ø What is “better”?
Ø What is “local neighborhood”?

Local	Search

373F23 - Nisarg Shah 53

• For some problems, local search provably returns an
optimal solution

• Example: network flow
Ø Initial solution: zero flow
Ø Local neighborhood: all flows that can be obtained by augmenting

the current flow along a path in the residual graph
Ø Better: Higher flow value

• Example: LP via simplex
Ø Initial solution: a vertex of the polytope
Ø Local neighborhood: neighboring vertices
Ø Better: better objective value

Local	Search

373F23 - Nisarg Shah 54

• But sometimes it doesn’t return an optimal solution, and
“gets stuck” in a local maxima

Local	Search

373F23 - Nisarg Shah 55

• In that case, we want to bound the worst-case ratio
between the global optimum and the worst local optimum
(the worst solution that local search might return)

Worst
ratio

373F23 - Nisarg Shah 56

Max-Cut

Max-Cut

373F23 - Nisarg Shah 57

• Problem
Ø Input: An undirected graph 𝐺 = (𝑉, 𝐸)
Ø Output: A partition (𝐴, 𝐵) of 𝑉 that maximizes the number of edges

going across the cut, i.e., maximizes |𝐸I| where 𝐸I = {
|

𝑢, 𝑣 ∈
𝐸 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}

Ø This is also known to be an NP-hard problem

Ø What is a natural local search algorithm for this problem?
o Given a current partition, what small change can you do to

improve the objective value?

Max-Cut

373F23 - Nisarg Shah 58

• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side

improves the objective value:
o Move 𝑢 to the other side.

• When does moving 𝑢, say from 𝐴 to 𝐵, improve the
objective value?
Ø When 𝑢 has more incident edges going within the cut than across

the cut, i.e., when 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐴 > 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐵

Max-Cut

373F23 - Nisarg Shah 59

• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side

improves the objective value:
o Move 𝑢 to the other side.

• Why does the algorithm stop?
Ø Every iteration increases the number of edges across the cut by at

least 1, so the algorithm must stop in at most |𝐸| iterations

Max-Cut

373F23 - Nisarg Shah 60

• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side

improves the objective value:
o Move 𝑢 to the other side.

• Approximation ratio?
Ø At the end, every vertex has at least as many edges going across the

cut as within the cut
Ø Hence, at least half of all edges must be going across the cut
o Exercise: Prove this formally by writing equations.

Weighted	Max-Cut

373F23 - Nisarg Shah 61

• Variant
Ø Now we’re given integral edge weights 𝑤:𝐸 → ℕ
Ø The goal is to maximize the total weight of edges going across the cut

• Algorithm
Ø The same algorithm works…
Ø But we move 𝑢 to the other side if the total weight of its incident

edges going within the cut is greater than the total weight of its
incident edges going across the cut

NOT IN SYLLABUS

Weighted	Max-Cut

373F23 - Nisarg Shah 62

• Number of iterations?
Ø Unweighted case: #edges going across the cut must increase by at

least 1, so it takes at most |𝐸| iterations

Ø Weighted case: total weight of edges going across the cut must
increase by at least 1, but this could take up to ∑J∈K𝑤J iterations,
which can be exponential in the input length
o There are examples where the local search actually takes

exponentially many steps
o Fun exercise: Design an example where the number of iterations is

exponential in the input length.

NOT IN SYLLABUS

Weighted	Max-Cut

373F23 - Nisarg Shah 63

• Number of iterations?
Ø But we can find a 2 + 𝜖 approximation in time polynomial in the

input length and !
#

Ø The idea is to only move vertices when it “sufficiently improves” the
objective value

NOT IN SYLLABUS

Weighted	Max-Cut

373F23 - Nisarg Shah 64

• Better approximations?
Ø Theorem [Goemans-Williamson 1995]:

There exists a polynomial time algorithm for max-cut with
approximation ratio (

L
⋅ min
4MNML

N
!"OAP N

≈ 0.878

o Uses “semidefinite programming” and “randomized rounding”
o Note: The literature from here on uses approximation ratios ≤ 1,

so we will follow that convention in the remaining slides.

Ø Assuming the “unique games conjecture”, this approximation ratio is
tight

NOT IN SYLLABUS

373F23 - Nisarg Shah 65

Exact Max-𝑘-SAT

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 66

• Problem
Ø Input: An exact 𝑘-SAT formula 𝜑 = 𝐶! ∧ 𝐶(∧ ⋯∧ 𝐶+,

where each clause 𝐶% has exactly 𝑘 literals, and a weight 𝑤% ≥ 0 of
each clause 𝐶%

Ø Output: A truth assignment 𝜏 maximizing the total weight of clauses
satisfied under 𝜏

Ø Let us denote by 𝑊(𝜏) the total weight of clauses satisfied under 𝜏

Ø What is a good definition of “local neighborhood”?

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 67

• Local neighborhood:
Ø 𝑁Q(𝜏) = set of all truth assignments 𝜏′ which differ from 𝜏 in the

values of at most 𝑑 variables

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 68

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø Let 𝜏 be a local optimum
o 𝑆4 = set of clauses not satisfied under 𝜏
o 𝑆! = set of clauses from which exactly one literal is true under 𝜏
o 𝑆(= set of clauses from which both literals are true under 𝜏
o 𝑊 𝑆4 ,𝑊 𝑆! ,𝑊 𝑆(be the corresponding total weights

o Goal: 𝑊 𝑆! +𝑊 𝑆(≥ ⁄(. ⋅ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(
• Equivalently, 𝑊 𝑆4 ≤ ⁄! . ⋅ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(

NOT IN SYLLABUS

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 69

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø We say that clause 𝐶 “involves” variable 𝑗 if it contains 𝑥$ or �𝑥$

Ø 𝐴$ = set of clauses in 𝑆4 involving variable 𝑗
o Let 𝑊 𝐴$ be the total weight of such clauses

Ø 𝐵$ = set of clauses in 𝑆! involving variable 𝑗 such that it is the literal
of variable 𝑗 that is true under 𝜏
o Let 𝑊 𝐵$ be the total weight of such clauses

NOT IN SYLLABUS

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 70

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø 2𝑊 𝑆4 = ∑$𝑊 𝐴$
o Every clause in 𝑆4 is counted twice on the RHS

Ø 𝑊 𝑆! = ∑$𝑊 𝐵$
o Every clause in 𝑆! is only counted once on the RHS for the variable

whose literal was true under 𝜏
Ø For each 𝑗 : 𝑊 𝐴$ ≤ 𝑊 𝐵$
o From local optimality of 𝜏, since otherwise flipping the truth value

of variable 𝑗 would have increased the total weight

NOT IN SYLLABUS

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 71

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø 2𝑊 𝑆4 ≤ 𝑊 𝑆!
o Summing the third equation on the last slide over all 𝑗, and then

using the first two equations on the last slide
Ø Hence:
o 3𝑊 𝑆4 ≤ 𝑊 𝑆4 +𝑊 𝑆! ≤ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(
o Precisely the condition we wanted to prove…
o QED!

NOT IN SYLLABUS

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 72

• Higher 𝑑?
Ø Searches over a larger neighborhood
Ø May get a better approximation ratio, but increases the running time

as we now need to check if any neighbor in a large neighborhood
provides a better objective

Ø The bound is still 2/3 for 𝑑 = 𝑜(𝑛)
Ø For 𝑑 = Ω 𝑛 , the neighborhood size is exponential
Ø But the approximation ratio is…
o At most 4/5 with 𝑑 < ⁄, (
o 1 (i.e. optimal solution is always reached) with 𝑑 = ⁄, (

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 73

• Better approximation ratio?
Ø We can learn something from our proof
Ø Note that we did not use anything about 𝑊 𝑆(, and simply added it

at the end

Ø If we could also guarantee that 𝑊 𝑆4 ≤ 𝑊 𝑆(…
o Then we would get 4𝑊 𝑆4 ≤ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(, which

would give a ⁄. / approximation

Ø Result (without proof):
o This can be done by including just one more assignment in the

neighborhood: 𝑁 𝜏 = 𝑁! 𝜏 ∪ 𝜏< , where 𝜏< = complement of 𝜏

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 74

• What if we do not want to modify the neighborhood?
Ø A slightly different tweak also works
Ø We want to weigh clauses in 𝑊(𝑆() more because when we get a

clause through 𝑆(, we get more robustness (it can withstand changes
in single variables)

• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 75

• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment

• Note:
Ø This is the first time that we’re using a definition of “better” in local

search paradigm that does not quite align with the ultimate objective
we want to maximize

Ø This is called “non-oblivious local search”

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 76

• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment

• Result (without proof):
Ø Modified local search gives ⁄. /-approximation to Exact Max-2-SAT

Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 77

• More generally:
Ø The same technique works for higher values of 𝑘

Ø Gives (
#"!
(#

approximation for Exact Max-𝑘-SAT
o In the next lecture, we will achieve the same approximation ratio

much more easily through a different technique

• Note: This ratio is ⁄O P for Exact Max-3-SAT
Ø Theorem [Håstad]: Achieving ⁄R S+ 𝜖 approximation where 𝜖 > 0 is

NP-hard.
o Uses PCP (probabilistically checkable proofs) technique

