CSC373

Approximation Algorithms

NP-Completeness

- NP-complete problems
> Unlikely to have polynomial time algorithms to solve them
> What do we do?
- One idea: approximation
> Instead of solving them exactly, solve them approximately
> Sometimes, we might want to use an approximation algorithm even when we can compute an exact solution in polynomial time (WHY?)

Approximation Algorithms

- Decision versus optimization problems
> Decision variant: "Does there exist a solution with objective $\geq k$?"
- E.g., "Is there an assignment which satisfies at least k clauses of a given CNF formula φ ?"
> Optimization variant: "Find a solution maximizing objective"
- E.g., "Find an assignment which satisfies the maximum possible number of clauses of a given CNF formula φ."
> If a decision problem is hard, then its optimization version is hard too
> We'll focus on optimization variants

Approximation Algorithms

- Objectives
> Maximize (e.g., "profit") or minimize (e.g., "cost")
- Given problem instance I:
> $A L G(I)=$ solution returned by our algorithm
> OPT $(I)=$ some optimal solution
- Approximation ratio of $A L G$ on instance I is

$$
\frac{\operatorname{profit}(\operatorname{OPT}(I))}{\operatorname{profit}(A L G(I))} \text { or } \frac{\operatorname{cost}(A L G(I))}{\operatorname{cost}(O P T(I))}
$$

> Convention: approximation ratio ≥ 1

- "2-approximation" = half the optimal profit / twice the optimal cost

Approximation Algorithms

- Worst-case approximation ratio
> Worst approximation ratio across all possible problem instances I
- $A L G$ has worst-case c-approximation if for each problem instance I...

$$
\begin{gathered}
\operatorname{profit}(A L G(I)) \geq \frac{1}{c} \cdot \operatorname{profit}(\text { OPT }(I)) \text { or } \\
\operatorname{cost}(A L G(I)) \leq c \cdot \operatorname{cost}(O P T(I))
\end{gathered}
$$

> By default, we will always refer to approximation ratios in the worst case
> Note: In some textbooks, you might see the approximation ratio flipped (e.g., 0.5 -approximation instead of 2 -approximation)

PTAS and FPTAS

- Arbitrarily close to 1 approximations
- PTAS: Polynomial time approximation scheme
> For every $\epsilon>0$, there is a $(1+\epsilon)$-approximation algorithm that runs in time $\operatorname{poly}(n)$ on instances of size n
- Note: Could have exponential dependence on $1 / \epsilon$
- FPTAS: Fully polynomial time approximation scheme
> For every $\epsilon>0$, there is a $(1+\epsilon)$-approximation algorithm that runs in time poly ($n, 1 / \epsilon$) on instances of size n

Approximation Landscape

> An FPTAS

- E.g., the knapsack problem
> A PTAS but no FPTAS

Impossibility of better approximations assuming widely held beliefs like $P \neq N P$
$n=$ parameter of problem at hand

- E.g., the makespan problem (we'll see)
> c-approximation for a constant $c>1$ but no PTAS
- E.g., vertex cover and JISP (we'll see)
> $\Theta(\log n)$-approximation but no constant approximation
- E.g., set cover
> No $n^{1-\epsilon}$-approximation for any $\epsilon>0$
- E.g., graph coloring and maximum independent set

Approximation Techniques

- Greedy algorithms
> Make decision on one element at a time in a greedy fashion without considering future decisions
- LP relaxation
> Formulate the problem as an integer linear program (ILP)
> "Relax" it to an LP by allowing variables to take real values
> Find an optimal solution of the LP, "round" it to a feasible solution of the original ILP, and prove its approximate optimality
- Local search
> Start with an arbitrary solution
> Keep making "local" adjustments to improve the objective

Greedy Approximation

Makespan Minimization

Makespan

- Problem

> Input: m identical machines, n jobs, job j requires processing time t_{j}
> Output: Assign jobs to machines to minimize makespan
> Let $S[i]=$ set of jobs assigned to machine i in a solution
> Constraints:

- Each job must run contiguously on one machine
- Each machine can process at most one job at a time
> Load on machine $i: L_{i}=\sum_{j \in S[i]} t_{j}$
> Goal: minimize the maximum load, i.e., makespan $L=\max _{i} L_{i}$

Makespan

- Even the special case of $m=2$ machines is already NP-hard by reduction from PARTITION

- PARTITION

> Input: Set S containing n integers
> Question: Does there exist a partition of S into two sets with equal sum? (A partition of S into S_{1}, S_{2} means $S_{1} \cap S_{2}=\emptyset$ and $S_{1} \cup S_{2}=S$)

- Exercise!
> Show that PARTITION is NP-complete by reduction from SUBSET-SUM
> Show that Makespan with $m=2$ is NP-hard by reduction from PARTITION

Makespan

- Greedy list-scheduling algorithm
> Consider the n jobs in some "nice" sorted order
> Assign each job j to a machine with the smallest load so far
- Note: Implementable in $O(n \log m)$ using priority queue
- Back to greedy...?
> But this time, we can't hope that greedy will be optimal
> We can still hope that it is approximately optimal
- Which order?

Makespan

- Theorem [Graham 1966]
> Regardless of the order, greedy gives a 2-approximation.
> This was one of the first worst-case approximation analyses
- Let optimal makespan $=L^{*}$
- To show that makespan under the greedy solution is not much worse than L^{*}, we need to show that L^{*} cannot be too low

Makespan

- Theorem [Graham 1966]
> Regardless of the order, greedy gives a 2-approximation.
- Fact 1: $L^{*} \geq \max _{j} t_{j}$
> Some machine must process job with highest processing time
- Fact 2 : $L^{*} \geq \frac{1}{m} \sum_{j} t_{j}$
> Total processing time is $\sum_{j} t_{j}$
> At least one machine must do at least $1 / m$ of this work (the pigeonhole principle)

Makespan

- Theorem [Graham 1966]
> Regardless of the order, greedy gives a 2-approximation.
- Proof:
> Suppose machine i is the bottleneck under greedy (so $L=L_{i}$)
> Let j^{*} be the last job scheduled on machine i by greedy
> Right before j^{*} was assigned to i, i had the smallest load
- Load of the other machines could have only increased from then
- $L_{i}-t_{j^{*}} \leq L_{k}, \forall k$
$>$ Average over all $k: L_{i}-t_{j^{*}} \leq \frac{1}{m} \sum_{j} t_{j}$
$>L_{i} \leq t_{j^{*}}+\frac{1}{m} \sum_{j} t_{j} \leq L^{*}+L^{*}=2 L^{*}$

Makespan

- Theorem [Graham 1966]
> Regardless of the order, greedy gives a 2-approximation.
- Is our analysis tight?
> Essentially.
> By averaging over $k \neq i$ in the previous slide, one can show a slightly better $2-1 / m$ approximation
$>$ There is an example where greedy has approximation as bad as $2-1 / m$
> So, $2-1 / m$ is exactly tight.

Makespan

- Tight example:
> $m(m-1)$ jobs of length 1 , followed by one job of length m
> Greedy evenly distributes unit length jobs on all m machines, and assigning the last heavy job makes makespan $m-1+m=2 m-1$
> Optimal makespan is m by evenly distributing unit length jobs among m 1 machines and putting the single heavy job on the remaining
- Idea:
> It seems keeping heavy jobs at the end is bad.
> So, let's just start with them first!

Makespan Revisited

- Greedy LPT (Longest Processing Time First)
> Run the greedy algorithm but consider jobs in a non-increasing order of their processing time
- Suppose $t_{1} \geq t_{2} \geq \cdots \geq t_{n}$
- Fact 3: If the bottleneck machine i has only one job j, then the solution is optimal
> Current solution has $L=L_{i}=t_{j}$
> We know $L^{*} \geq t_{j}$ from Fact 1
- Fact 4: If there are more than m jobs, then $L^{*} \geq 2 \cdot t_{m+1}$
> The first $m+1$ jobs each have processing time at least t_{m+1}
> By the pigeonhole principle, the optimal solution must put at least two of them on the same machine

Makespan Revisited

- Theorem
> Greedy LPT achieves $3 / 2$-approximation
- Proof:
> Similar to the proof for arbitrary ordering
> Consider a bottleneck machine i and the job j^{*} that was last scheduled on this machine by the greedy algorithm
> Case 1: Machine i has only one job j^{*}
- By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Makespan Revisited

- Theorem
> Greedy LPT achieves 3/2-approximation
- Proof:
> Similar to the proof for arbitrary ordering
> Consider a bottleneck machine i and the job j^{*} that was last scheduled on this machine by the greedy algorithm
> Case 2: Machine i has at least two jobs
\circ Job j^{*} must have $t_{j^{*}} \leq t_{m+1}$
○ As before, $L=L_{i}=\left(L_{i}-t_{j^{*}}\right)+t_{j^{*}} \leq 1.5 L^{*}$

Makespan Revisited

- Theorem
> Greedy LPT achieves 3/2-approximation
> Is our analysis tight? No!
- Theorem [Graham 1966]
> Greedy LPT achieves $\left(\frac{4}{3}-\frac{1}{3 m}\right)$-approximation
> Is Graham's approximation tight?
- Yes.
- In the upcoming example, greedy LPT is as bad as $\frac{4}{3}-\frac{1}{3 m}$

Makespan Revisited

- Tight example for Greedy LPT:
> 2 jobs each of lengths $m, m+1, \ldots, 2 m-1$
> One more job of length m
> Greedy-LPT has makespan $4 m-1$ (verify!)
> OPT has makespan $3 m$ (verify!)
> Thus, approximation ratio is at least as bad as $\frac{4 m-1}{3 m}=\frac{4}{3}-\frac{1}{3 m}$

Unweighted Vertex Cover

Unweighted Vertex Cover

- Problem
> Input: Undirected graph $G=(V, E)$
> Output: Vertex cover S of minimum cardinality
> Recall: S is vertex cover if every edge has at least one of its two endpoints in S
> We already saw that this problem is NP-hard
- Q: What would be a good greedy algorithm for this problem?

Unweighted Vertex Cover

- Greedy edge-selection algorithm:
> Start with $S=\emptyset$
> While there exists an edge whose both endpoints are not in S, add both its endpoints to S
- Hmm...
> Why are we selecting edges rather than vertices?
> Why are we adding both endpoints?
> We'll see..

Unweighted Vertex Cover

Greedy-Vertex-Cover (G)
$S \leftarrow \varnothing$.
$E^{\prime} \leftarrow E$.
While $\left(E^{\prime} \neq \varnothing\right)$
every vertex cover must take at least one of these; we take both

Let $(u, v) \in E^{\prime}$ be an arbitrary edge.
$M \leftarrow M \cup\{(u, v)\} . \quad \longleftarrow M$ is a matching
$S \leftarrow S \cup\{u\} \cup\{v\}$.
Delete from E^{\prime} all edges incident to either u or v.
RETURN S.

Unweighted Vertex Cover

- Theorem:
> Greedy edge-selection algorithm for unweighted vertex cover achieves 2-approximation.
- Observation 1:
> For any vertex cover S^{*} and any matching $M,\left|S^{*}\right| \geq|M|$, where $|M|=$ number of edges in M
> Proof: S^{*} must contain at least one endpoint of each edge in M
- Observation 2:
> Greedy algorithm finds a vertex cover of size $|S|=2 \cdot|M|$
- Hence, $|S| \leq 2 \cdot\left|S^{*}\right|$, where $S^{*}=$ min vertex cover

Unweighted Vertex Cover

- Corollary:
> If M^{*} is a maximum matching, and M is a maximal matching, then $|M| \geq \frac{1}{2}\left|M^{*}\right|$
- Proof:
> By design, $|M|=\frac{1}{2}|S|$
> $|S| \geq\left|M^{*}\right| \quad$ (Observation 1)
> Hence, $|M| \geq \frac{1}{2}\left|M^{*}\right|$ ■
- This greedy algorithm is also a 2-approximation to the problem of finding a maximum cardinality matching
> However, the max cardinality matching problem can be solved exactly in polynomial time using a more complex algorithm

Unweighted Vertex Cover

- What about a greedy vertex selection algorithm?
> Start with $S=\emptyset$
> While S is not a vertex cover:
- Choose a vertex v which maximizes the number of uncovered edges incident on it
- Add v to S
> Gives $O\left(\log d_{\max }\right)$ approximation, where $d_{\max }$ is the maximum degree of any vertex
- But unlike the edge-selection version, this generalizes to set cover
- For set cover, $O\left(\log d_{\text {max }}\right)$ approximation ratio is the best possible in polynomial time unless $\mathrm{P}=\mathrm{NP}$

Unweighted Vertex Cover

- Theorem [Dinur-Safra 2004]:
> Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial-time ρ-approximation algorithm for unweighted vertex cover for any constant $\rho<1.3606$.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur ${ }^{*} \quad$ Samuel Safra ${ }^{\dagger}$

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606 , extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and borrow and extend ideas from several fields.

Unweighted Vertex Cover

- Theorem [Khot-Regev 2008]:
> Unless the "unique games conjecture" is violated, there is no polynomial-time ρ-approximation algorithm for unweighted vertex cover for any constant $\rho<2$.

Vertex Cover Might be Hard to Approximate to within $2-\varepsilon$
Subhash Khot * Oded Regev ${ }^{\dagger}$

[^0]

Unweighted Vertex Cover

- How does one prove a lower bound on the approximation ratio of any polynomial-time algorithm?
$>$ We prove that if there is a polynomial-time ρ-approximation algorithm for the problem with $\rho<$ some bound, then some widely believed conjecture is violated
> For example, we can prove that given a polynomial time ρ approximation algorithm to vertex cover for any constant $\rho<$ 1.3606, we can use this algorithm as a subroutine to solve the 3SAT decision problem in polynomial time, implying $P=N P$
> Similar technique can be used to reduce from other widely believed conjectures, which may give different (sometimes better) bounds
> Beyond the scope of this course

Weighted Vertex Cover

Weighted Vertex Cover

- Problem
> Input: Undirected graph $G=(V, E)$, weights $w: V \rightarrow R_{\geq 0}$
> Output: Vertex cover S of minimum total weight
- The same greedy algorithm doesn't work
> Gives arbitrarily bad approximation
> Obvious modifications which try to take weights into account also don't work
> Need another strategy...

LP Relaxation

ILP Formulation

> For each vertex v, create a binary variable $x_{v} \in\{0,1\}$ indicating whether vertex v is chosen in the vertex cover
> Then, computing min weight vertex cover is equivalent to solving the following integer linear program

$$
\begin{array}{ll}
\min \Sigma_{v} w_{v} \cdot x_{v} & \\
\text { subject to } & \\
x_{u}+x_{v} \geq 1, & \forall(u, v) \in E \\
x_{v} \in\{0,1\}, \quad \forall v \in V
\end{array}
$$

LP Relaxation

- What if we solve the "LP relaxation" of the original ILP?
> Just convert all integer variables to real variables

ILP with binary variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1, \quad \forall(u, v) \in E$
$x_{v} \in\{0,1\}, \quad \forall v \in V$

LP with real variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1$,
$\forall(u, v) \in E$
$x_{v} \geq 0$,
$\forall v \in V$

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
> Let's say we are minimizing objective $c^{T} x$
> Since the LP minimizes this over a larger feasible space than the ILP, optimal LP objective value \leq optimal ILP objective value
> Let $x_{L P}^{*}$ be an optimal LP solution (which we can compute efficiently) and $x_{I L P}^{*}$ be an optimal ILP solution (which we can't compute efficiently)
$\circ c^{T} x_{L P}^{*} \leq c^{T} x_{I L P}^{*}$
- But $x_{L P}^{*}$ may have non-integer values
- Efficiently round $x_{L P}^{*}$ to an ILP feasible solution \hat{x} without increasing the objective too much
- If we prove $c^{T} \hat{x} \leq \rho \cdot c^{T} x_{L P}^{*}$, then we will also have $c^{T} \hat{x} \leq \rho \cdot c^{T} x_{I L P}^{*}$
- Thus, our algorithm will achieve ρ-approximation

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
- If we are maximizing $c^{T} x$ instead of minimizing, then it's reversed:
- Optimal LP objective value \geq optimal ILP objective value, i.e., $c^{T} x_{L P}^{*} \geq c^{T} x_{I L P}^{*}$
- Efficiently round $x_{L P}^{*}$ to an ILP feasible solution \hat{x} without decreasing the objective too much
- If we prove $c^{T} \hat{x} \geq(1 / \rho) \cdot c^{T} x_{L P}^{*}$, then $c^{T} \hat{x} \geq(1 / \rho) \cdot c^{T} x_{I L P}^{*}$
- Thus, our algorithm will achieve ρ-approximation

Weighted Vertex Cover

- Consider LP optimal solution x^{*}
$>$ Let $\hat{x}_{v}=1$ whenever $x_{v}^{*} \geq 0.5$ and $\hat{x}_{v}=0$ otherwise
> Claim 1: \hat{x} is a feasible solution of ILP (i.e., a vertex cover)
- For every edge $(u, v) \in E$, at least one of $\left\{x_{u}^{*}, x_{v}^{*}\right\}$ is at least 0.5
- So at least one of $\left\{\hat{x}_{u}, \hat{x}_{v}\right\}$ is 1

ILP with binary variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1, \quad \forall(u, v) \in E$
$x_{v} \in\{0,1\}, \quad \forall v \in V$

LP with real variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to

$$
\begin{array}{ll}
x_{u}+x_{v} \geq 1, & \forall(u, v) \in E \\
x_{v} \geq 0, & \forall v \in V
\end{array}
$$

Rounding LP Solution

- Consider LP optimal solution x^{*}
> Let $\hat{x}_{v}=1$ whenever $x_{v}^{*} \geq 0.5$ and $\hat{x}_{v}=0$ otherwise
\Rightarrow Claim 2: $\sum_{v} w_{v} \cdot \hat{x}_{v} \leq 2 * \sum_{v} w_{v} \cdot x_{v}^{*}$
- Weight only increases when some $x_{v}^{*} \in[0.5,1]$ is rounded up to 1
- At most doubling the variable, so at most doubling the weight ■

ILP with binary variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1, \quad \forall(u, v) \in E$
$x_{v} \in\{0,1\}, \quad \forall v \in V$

LP with real variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to

$$
\begin{array}{ll}
x_{u}+x_{v} \geq 1, & \forall(u, v) \in E \\
x_{v} \geq 0, & \forall v \in V
\end{array}
$$

Rounding LP Solution

- Consider LP optimal solution x^{*}
> Let $\hat{x}_{v}=1$ whenever $x_{v}^{*} \geq 0.5$ and $\hat{x}_{v}=0$ otherwise
> Hence, \hat{x} is a vertex cover with weight at most $2 *$ LP optimal value $\leq 2 *$ ILP optimal value

ILP with binary variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1, \quad \forall(u, v) \in E$
$x_{v} \in\{0,1\}, \quad \forall v \in V$

LP with real variables

$\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
$x_{u}+x_{v} \geq 1, \quad \forall(u, v) \in E$
$x_{v} \geq 0$,
$\forall v \in V$

General LP Relaxation Strategy

- Your NP-complete problem amounts to solving
$>\operatorname{Max} c^{T} x$ subject to $A x \leq b, x \in \mathbb{N}$ (need not be binary)
- Instead, solve:
> $\operatorname{Max} c^{T} x$ subject to $A x \leq b, x \in \mathbb{R}_{\geq 0}$ (LP relaxation)
- LP optimal value \geq ILP optimal value (for maximization)
> $x^{*}=\mathrm{LP}$ optimal solution
> Round x^{*} to \hat{x} such that $c^{T} \hat{x} \geq \frac{c^{T} x^{*}}{\rho} \geq \frac{\text { ILP optimal value }}{\rho}$
> Gives ρ-approximation
- Info: Best ρ you can hope to get via this approach for a particular LP-ILP combination is called the integrality gap

Local Search Paradigm

Local Search

- Heuristic paradigm
> Sometimes it might provably return an optimal solution
> But even if not, it might give a good approximation
- Template
> Start with some initial feasible solution S
$>$ While there is a "better" solution S^{\prime} in the local neighborhood of S
$>\quad$ Switch to S^{\prime}
- Need to define:
> Which initial feasible solution should we start from?
> What is "better"?
> What is "local neighborhood"?

Local Search

- For some problems, local search provably returns an optimal solution
- Example: network flow
> Initial solution: zero flow
> Local neighborhood: all flows that can be obtained by augmenting the current flow along a path in the residual graph
> Better: Higher flow value
- Example: LP via simplex
> Initial solution: a vertex of the polytope
> Local neighborhood: neighboring vertices
> Better: better objective value

Local Search

- But sometimes it doesn't return an optimal solution, and "gets stuck" in a local maxima

Local Search

- In that case, we want to bound the worst-case ratio between the global optimum and the worst local optimum (the worst solution that local search might return)

Max-Cut

Max-Cut

- Problem
> Input: An undirected graph $G=(V, E)$
> Output: A partition (A, B) of V that maximizes the number of edges going across the cut, i.e., maximizes $\left|E^{\prime}\right|$ where $E^{\prime}=\{(u, v) \in$ $E \mid u \in A, v \in B\}$
> This is also known to be an NP-hard problem
> What is a natural local search algorithm for this problem?
- Given a current partition, what small change can you do to improve the objective value?

Max-Cut

- Local Search
> Initialize (A, B) arbitrarily.
> While there is a vertex u such that moving u to the other side improves the objective value:
- Move u to the other side.
- When does moving u, say from A to B, improve the objective value?
> When u has more incident edges going within the cut than across the cut, i.e., when $|\{(u, v) \in E \mid v \in A\}|>|\{(u, v) \in E \mid v \in B\}|$

Max-Cut

- Local Search
> Initialize (A, B) arbitrarily.
> While there is a vertex u such that moving u to the other side improves the objective value:
- Move u to the other side.
- Why does the algorithm stop?
> Every iteration increases the number of edges across the cut by at least 1 , so the algorithm must stop in at most $|E|$ iterations

Max-Cut

- Local Search
> Initialize (A, B) arbitrarily.
> While there is a vertex u such that moving u to the other side improves the objective value:
- Move u to the other side.
- Approximation ratio?
> At the end, every vertex has at least as many edges going across the cut as within the cut
> Hence, at least half of all edges must be going across the cut
- Exercise: Prove this formally by writing equations.

Weighted Max-Cut

- Variant
> Now we're given integral edge weights w: $E \rightarrow \mathbb{N}$
> The goal is to maximize the total weight of edges going across the cut
- Algorithm
> The same algorithm works...
> But we move u to the other side if the total weight of its incident edges going within the cut is greater than the total weight of its incident edges going across the cut

Weighted Max-Cut

- Number of iterations?
> Unweighted case: \#edges going across the cut must increase by at least 1 , so it takes at most $|E|$ iterations
> Weighted case: total weight of edges going across the cut must increase by at least 1 , but this could take up to $\sum_{e \in E} w_{e}$ iterations, which can be exponential in the input length
- There are examples where the local search actually takes exponentially many steps
o Fun exercise: Design an example where the number of iterations is exponential in the input length.

Weighted Max-Cut

- Number of iterations?
> But we can find a $2+\epsilon$ approximation in time polynomial in the input length and $\frac{1}{\epsilon}$
> The idea is to only move vertices when it "sufficiently improves" the objective value

Weighted Max-Cut

- Better approximations?
> Theorem [Goemans-Williamson 1995]:
There exists a polynomial time algorithm for max-cut with approximation ratio $\frac{2}{\pi} \cdot \min _{0 \leq \theta \leq \pi} \frac{\theta}{1-\cos \theta} \approx 0.878$
- Uses "semidefinite programming" and "randomized rounding"
- Note: The literature from here on uses approximation ratios ≤ 1, so we will follow that convention in the remaining slides.
> Assuming the "unique games conjecture", this approximation ratio is tight

Exact Max-k-SAT

Exact Max- k-SAT

- Problem
$>$ Input: An exact k-SAT formula $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, where each clause C_{i} has exactly k literals, and a weight $w_{i} \geq 0$ of each clause C_{i}
> Output: A truth assignment τ maximizing the total weight of clauses satisfied under τ
> Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
> What is a good definition of "local neighborhood"?

Exact Max- k-SAT

- Local neighborhood:
> $N_{d}(\tau)=$ set of all truth assignments τ^{\prime} which differ from τ in the values of at most d variables
- Theorem: The local search with $d=1$ gives a $2 / 3$ approximation to Exact Max-2-SAT.

Exact Max- k-SAT

- Theorem: The local search with $d=1$ gives a $2 / 3$ approximation to Exact Max-2-SAT.
- Proof:
> Let τ be a local optimum
- $S_{0}=$ set of clauses not satisfied under τ
- $S_{1}=$ set of clauses from which exactly one literal is true under τ
- $S_{2}=$ set of clauses from which both literals are true under τ
- $W\left(S_{0}\right), W\left(S_{1}\right), W\left(S_{2}\right)$ be the corresponding total weights
- Goal: $W\left(S_{1}\right)+W\left(S_{2}\right) \geq 2 / 3 \cdot\left(W\left(S_{0}\right)+W\left(S_{1}\right)+W\left(S_{2}\right)\right)$
- Equivalently, $W\left(S_{0}\right) \leq 1 / 3 \cdot\left(W\left(S_{0}\right)+W\left(S_{1}\right)+W\left(S_{2}\right)\right)$

Exact Max- k-SAT

- Theorem: The local search with $d=1$ gives a $2 / 3$ approximation to Exact Max-2-SAT.
- Proof:
> We say that clause C "involves" variable j if it contains x_{j} or $\overline{x_{j}}$
> $A_{j}=$ set of clauses in S_{0} involving variable j
- Let $W\left(A_{j}\right)$ be the total weight of such clauses
> $B_{j}=$ set of clauses in S_{1} involving variable j such that it is the literal of variable j that is true under τ
- Let $W\left(B_{j}\right)$ be the total weight of such clauses

Exact Max- k-SAT

- Theorem: The local search with $d=1$ gives a $2 / 3$ approximation to Exact Max-2-SAT.
- Proof:
$>2 W\left(S_{0}\right)=\sum_{j} W\left(A_{j}\right)$
- Every clause in S_{0} is counted twice on the RHS
> $W\left(S_{1}\right)=\sum_{j} W\left(B_{j}\right)$
- Every clause in S_{1} is only counted once on the RHS for the variable whose literal was true under τ
> For each $j: W\left(A_{j}\right) \leq W\left(B_{j}\right)$
- From local optimality of τ, since otherwise flipping the truth value of variable j would have increased the total weight

Exact Max- k-SAT

- Theorem: The local search with $d=1$ gives a $2 / 3$ approximation to Exact Max-2-SAT.
- Proof:
> $2 W\left(S_{0}\right) \leq W\left(S_{1}\right)$
- Summing the third equation on the last slide over all j, and then using the first two equations on the last slide
> Hence:
- $3 W\left(S_{0}\right) \leq W\left(S_{0}\right)+W\left(S_{1}\right) \leq W\left(S_{0}\right)+W\left(S_{1}\right)+W\left(S_{2}\right)$
- Precisely the condition we wanted to prove...
- QED!

Exact Max- k-SAT

- Higher d?
> Searches over a larger neighborhood
> May get a better approximation ratio, but increases the running time as we now need to check if any neighbor in a large neighborhood provides a better objective
> The bound is still $2 / 3$ for $d=o(n)$
> For $d=\Omega(n)$, the neighborhood size is exponential
> But the approximation ratio is...
- At most $4 / 5$ with $d<n / 2$
- 1 (i.e. optimal solution is always reached) with $d=n / 2$

Exact Max- k-SAT

- Better approximation ratio?
> We can learn something from our proof
> Note that we did not use anything about $W\left(S_{2}\right)$, and simply added it at the end
> If we could also guarantee that $W\left(S_{0}\right) \leq W\left(S_{2}\right)$...
- Then we would get $4 W\left(S_{0}\right) \leq W\left(S_{0}\right)+W\left(S_{1}\right)+W\left(S_{2}\right)$, which would give a $3 / 4$ approximation
> Result (without proof):
- This can be done by including just one more assignment in the neighborhood: $N(\tau)=N_{1}(\tau) \cup\left\{\tau^{c}\right\}$, where $\tau^{c}=$ complement of τ

Exact Max- k-SAT

- What if we do not want to modify the neighborhood?
> A slightly different tweak also works
> We want to weigh clauses in $W\left(S_{2}\right)$ more because when we get a clause through S_{2}, we get more robustness (it can withstand changes in single variables)
- Modified local search:
> Start at arbitrary τ
> While there is an assignment in $N_{1}(\tau)$ that improves the potential $1.5 W\left(S_{1}\right)+2 W\left(S_{2}\right)$
- Switch to that assignment

Exact Max-k-SAT

- Modified local search:
> Start at arbitrary τ
> While there is an assignment in $N_{1}(\tau)$ that improves the potential $1.5 W\left(S_{1}\right)+2 W\left(S_{2}\right)$
- Switch to that assignment
- Note:
> This is the first time that we're using a definition of "better" in local search paradigm that does not quite align with the ultimate objective we want to maximize
> This is called "non-oblivious local search"

Exact Max-k-SAT

- Modified local search:
> Start at arbitrary τ
> While there is an assignment in $N_{1}(\tau)$ that improves the potential $1.5 W\left(S_{1}\right)+2 W\left(S_{2}\right)$
- Switch to that assignment
- Result (without proof):
> Modified local search gives $3 / 4$-approximation to Exact Max-2-SAT

Exact Max- k-SAT

- More generally:
> The same technique works for higher values of k
> Gives $\frac{2^{k}-1}{2^{k}}$ approximation for Exact Max- k-SAT
- In the next lecture, we will achieve the same approximation ratio much more easily through a different technique
- Note: This ratio is $7 / 8$ for Exact Max-3-SAT
> Theorem [Håstad]: Achieving $7 / 8+\epsilon$ approximation where $\epsilon>0$ is NP-hard.
- Uses PCP (probabilistically checkable proofs) technique

[^0]: Abstract
 Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [Khot02], we show that vertex cover is hard to approximate within any constant factor better than 2 . We actually show a stronger result, namely, based on the same conjecture, vertex cover on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

