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• NP-complete problems
Ø Unlikely to have polynomial time algorithms to solve them
Ø What do we do?

• One idea: approximation
Ø Instead of solving them exactly, solve them approximately
Ø Sometimes, we might want to use an approximation algorithm even 

when we can compute an exact solution in polynomial time (WHY?)



Approximation	Algorithms
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• Decision versus optimization problems

Ø Decision variant: “Does there exist a solution with objective ≥ 𝑘?”
o E.g., “Is there an assignment which satisfies at least 𝑘 clauses of a 

given CNF formula 𝜑?”

Ø Optimization variant: “Find a solution maximizing objective”
o E.g., “Find an assignment which satisfies the maximum possible 

number of clauses of a given CNF formula 𝜑.”

Ø If a decision problem is hard, then its optimization version is hard too

Ø We’ll focus on optimization variants



Approximation	Algorithms
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• Objectives
Ø Maximize (e.g., “profit”) or minimize (e.g., “cost”)

• Given problem instance 𝐼:
Ø 𝐴𝐿𝐺(𝐼) = solution returned by our algorithm
Ø 𝑂𝑃𝑇(𝐼) = some optimal solution

Ø Approximation ratio of 𝐴𝐿𝐺 on instance 𝐼 is

!"#$%& '() *
!"#$%& +,- * or   .#/& +,- *

.#/& '() *

Ø Convention: approximation ratio ≥ 1
o “2-approximation” = half the optimal profit / twice the optimal cost
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• Worst-case approximation ratio
Ø Worst approximation ratio across all possible problem instances 𝐼

Ø 𝐴𝐿𝐺 has worst-case 𝑐-approximation if for each problem instance 𝐼… 

𝑝𝑟𝑜𝑓𝑖𝑡 𝐴𝐿𝐺 𝐼 ≥
1
𝑐 ⋅ 𝑝𝑟𝑜𝑓𝑖𝑡 𝑂𝑃𝑇 𝐼 𝑜𝑟

𝑐𝑜𝑠𝑡 𝐴𝐿𝐺 𝐼 ≤ 𝑐 ⋅ 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇 𝐼

Ø By default, we will always refer to approximation ratios in the worst 
case

Ø Note: In some textbooks, you might see the approximation ratio 
flipped (e.g., 0.5-approximation instead of 2-approximation)



PTAS	and	FPTAS
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• Arbitrarily close to 1 approximations

• PTAS: Polynomial time approximation scheme
Ø For every 𝜖 > 0, there is a 1 + 𝜖 -approximation algorithm that 

runs in time 𝑝𝑜𝑙𝑦 𝑛 on instances of size 𝑛
o Note: Could have exponential dependence on ⁄1 𝜖

• FPTAS: Fully polynomial time approximation scheme
Ø For every 𝜖 > 0, there is a 1 + 𝜖 -approximation algorithm that 

runs in time 𝑝𝑜𝑙𝑦 𝑛, ⁄1 𝜖 on instances of size 𝑛



Approximation	Landscape
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Ø An FPTAS
o E.g., the knapsack problem

Ø A PTAS but no FPTAS
o E.g., the makespan problem (we’ll see)

Ø 𝑐-approximation for a constant 𝑐 > 1 but no PTAS

o E.g., vertex cover and JISP (we’ll see)

Ø Θ log 𝑛 -approximation but no constant approximation

o E.g., set cover

Ø No 𝑛!"#-approximation for any 𝜖 > 0
o E.g., graph coloring and maximum independent set

Impossibility of better approximations 
assuming widely held beliefs like P ≠ NP

𝑛 = parameter of problem at hand
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• Greedy algorithms
Ø Make decision on one element at a time in a greedy fashion without 

considering future decisions

• LP relaxation
Ø Formulate the problem as an integer linear program (ILP)
Ø “Relax” it to an LP by allowing variables to take real values
Ø Find an optimal solution of the LP, “round” it to a feasible solution of 

the original ILP, and prove its approximate optimality

• Local search 
Ø Start with an arbitrary solution
Ø Keep making “local” adjustments to improve the objective
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Greedy Approximation
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Makespan Minimization



Makespan
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• Problem
Ø Input: 𝑚 identical machines, 𝑛 jobs, job 𝑗 requires processing time 𝑡$
Ø Output: Assign jobs to machines to minimize makespan

Ø Let 𝑆 𝑖 = set of jobs assigned to machine 𝑖 in a solution

Ø Constraints:
o Each job must run contiguously on one machine
o Each machine can process at most one job at a time

Ø Load on machine 𝑖: 𝐿% = ∑$∈' % 𝑡$
Ø Goal: minimize the maximum load, i.e., makespan 𝐿 = max

%
𝐿%



• Even the special case of 𝑚 = 2 machines is already NP-hard by 
reduction from PARTITION

• PARTITION
Ø Input: Set 𝑆 containing 𝑛 integers 
Ø Question: Does there exist a partition of 𝑆 into two sets with equal sum?

(A partition of 𝑆 into 𝑆!, 𝑆( means 𝑆! ∩ 𝑆( = ∅ and 𝑆! ∪ 𝑆( = 𝑆)

• Exercise!
Ø Show that PARTITION is NP-complete by reduction from SUBSET-SUM
Ø Show that Makespan with 𝑚 = 2 is NP-hard by reduction from 

PARTITION

Makespan
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Makespan
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• Greedy list-scheduling algorithm
Ø Consider the 𝑛 jobs in some “nice” sorted order
Ø Assign each job 𝑗 to a machine with the smallest load so far

• Note: Implementable in 𝑂 𝑛 log𝑚 using priority queue

• Back to greedy…?
Ø But this time, we can’t hope that greedy will be optimal
Ø We can still hope that it is approximately optimal

• Which order?



Makespan
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• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.
Ø This was one of the first worst-case approximation analyses 

• Let optimal makespan = 𝐿∗

• To show that makespan under the greedy solution is not much 
worse than 𝐿∗, we need to show that 𝐿∗ cannot be too low



Makespan
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• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Fact 1: 𝐿∗ ≥ maxD 𝑡D
Ø Some machine must process job with highest processing time

• Fact 2: 𝐿∗ ≥ E
F
∑D 𝑡D

Ø Total processing time is ∑$ 𝑡$
Ø At least one machine must do at least 1/𝑚 of this work (the pigeonhole 

principle)
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• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Proof:
Ø Suppose machine 𝑖 is the bottleneck under greedy (so 𝐿 = 𝐿%)
Ø Let 𝑗∗ be the last job scheduled on machine 𝑖 by greedy
Ø Right before 𝑗∗ was assigned to 𝑖, 𝑖 had the smallest load
o Load of the other machines could have only increased from then
o 𝐿% − 𝑡$∗ ≤ 𝐿*, ∀𝑘

Ø Average over all 𝑘 : 𝐿% − 𝑡$∗ ≤
!
+
∑$ 𝑡$

Ø 𝐿% ≤ 𝑡$∗ +
!
+
∑$ 𝑡$ ≤ 𝐿∗ + 𝐿∗ = 2𝐿∗

Fact 1 Fact 2



Makespan
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• Theorem [Graham 1966]
Ø Regardless of the order, greedy gives a 2-approximation.

• Is our analysis tight?
Ø Essentially. 
Ø By averaging over 𝑘 ≠ 𝑖 in the previous slide, one can show a slightly 

better 2 − 1/𝑚 approximation
Ø There is an example where greedy has approximation as bad as 2 − 1/𝑚
Ø So, 2 − 1/𝑚 is exactly tight.



Makespan
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• Tight example: 
Ø 𝑚(𝑚 − 1) jobs of length 1, followed by one job of length 𝑚

Ø Greedy evenly distributes unit length jobs on all 𝑚 machines, and 
assigning the last heavy job makes makespan 𝑚 − 1 +𝑚 = 2𝑚 − 1

Ø Optimal makespan is 𝑚 by evenly distributing unit length jobs among 𝑚 −
1 machines and putting the single heavy job on the remaining

• Idea:
Ø It seems keeping heavy jobs at the end is bad. 
Ø So, let’s just start with them first!



Makespan	Revisited
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• Greedy LPT (Longest Processing Time First)
Ø Run the greedy algorithm but consider jobs in a non-increasing order 

of their processing time
Ø Suppose 𝑡! ≥ 𝑡( ≥ ⋯ ≥ 𝑡,

• Fact 3: If the bottleneck machine 𝑖 has only one job 𝑗, then 
the solution is optimal
Ø Current solution has 𝐿 = 𝐿% = 𝑡$
Ø We know 𝐿∗ ≥ 𝑡$ from Fact 1

• Fact 4: If there are more than 𝑚 jobs, then 𝐿∗ ≥ 2 ⋅ 𝑡FGE
Ø The first 𝑚 + 1 jobs each have processing time at least 𝑡+-!
Ø By the pigeonhole principle, the optimal solution must put at least 

two of them on the same machine



Makespan	Revisited
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• Theorem
Ø Greedy LPT achieves ⁄. (-approximation

• Proof:
Ø Similar to the proof for arbitrary ordering

Ø Consider a bottleneck machine 𝑖 and the job 𝑗∗ that was last 
scheduled on this machine by the greedy algorithm

Ø Case 1: Machine 𝑖 has only one job 𝑗∗
o By Fact 3, greedy is optimal in this case (i.e. 1-approximation)



Makespan	Revisited
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• Theorem
Ø Greedy LPT achieves 3/2-approximation

• Proof:
Ø Similar to the proof for arbitrary ordering

Ø Consider a bottleneck machine 𝑖 and the job 𝑗∗ that was last 
scheduled on this machine by the greedy algorithm

Ø Case 2: Machine 𝑖 has at least two jobs
o Job 𝑗∗ must have 𝑡$∗ ≤ 𝑡+-!
o As before, 𝐿 = 𝐿% = 𝐿% − 𝑡$∗ + 𝑡$∗ ≤ 1.5 𝐿∗

Same as before ≤ 𝐿∗ ≤ 𝐿∗/2 𝑡"∗ ≤ 𝑡#$% and Fact 4



Makespan	Revisited
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• Theorem
Ø Greedy LPT achieves 3/2-approximation
Ø Is our analysis tight? No!

• Theorem [Graham 1966]
Ø Greedy LPT achieves /

.
− !
.0

-approximation

Ø Is Graham’s approximation tight?
o Yes. 

o In the upcoming example, greedy LPT is as bad as /
.
− !
.+
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• Tight example for Greedy LPT:
Ø 2 jobs each of lengths 𝑚,𝑚 + 1,… , 2𝑚 − 1

Ø One more job of length 𝑚

Ø Greedy-LPT has makespan 4𝑚 − 1 (verify!)

Ø OPT has makespan 3𝑚 (verify!)

Ø Thus, approximation ratio is at least as bad as /+"!
.+

= /
.
− !
.+
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Unweighted Vertex Cover



Unweighted	Vertex	Cover
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• Problem
Ø Input: Undirected graph 𝐺 = (𝑉, 𝐸)
Ø Output: Vertex cover 𝑆 of minimum cardinality

Ø Recall: 𝑆 is vertex cover if every edge has at least one of its two 
endpoints in 𝑆

Ø We already saw that this problem is NP-hard

• Q: What would be a good greedy algorithm for this 
problem?



Unweighted	Vertex	Cover
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• Greedy edge-selection algorithm:
Ø Start with 𝑆 = ∅
Ø While there exists an edge whose both endpoints are not in 𝑆, add 

both its endpoints to 𝑆

• Hmm…
Ø Why are we selecting edges rather than vertices?
Ø Why are we adding both endpoints? 
Ø We’ll see..



Unweighted	Vertex	Cover
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Unweighted	Vertex	Cover
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• Theorem:
Ø Greedy edge-selection algorithm for unweighted vertex cover 

achieves 2-approximation.

• Observation 1: 
Ø For any vertex cover 𝑆∗ and any matching 𝑀, 𝑆∗ ≥ 𝑀 , where 
𝑀 = number of edges in 𝑀

Ø Proof: 𝑆∗ must contain at least one endpoint of each edge in 𝑀

• Observation 2:
Ø Greedy algorithm finds a vertex cover of size 𝑆 = 2 ⋅ 𝑀

• Hence, 𝑆 ≤ 2 ⋅ 𝑆∗ , where 𝑆∗ = min vertex cover



Unweighted	Vertex	Cover
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• Corollary: 
Ø If 𝑀∗ is a maximum matching, and 𝑀 is a maximal matching, then 
𝑀 ≥ !

(
𝑀∗

• Proof:
Ø By design, 𝑀 = !

(
|𝑆|

Ø 𝑆 ≥ 𝑀∗ (Observation 1)
Ø Hence, 𝑀 ≥ !

(
𝑀∗ ∎

• This greedy algorithm is also a 2-approximation to the 
problem of finding a maximum cardinality matching
Ø However, the max cardinality matching problem can be solved 

exactly in polynomial time using a more complex algorithm



Unweighted	Vertex	Cover

373F23 - Nisarg Shah 36

• What about a greedy vertex selection algorithm?
Ø Start with 𝑆 = ∅
Ø While 𝑆 is not a vertex cover:
o Choose a vertex 𝑣 which maximizes the number of uncovered 

edges incident on it
o Add 𝑣 to 𝑆

Ø Gives 𝑂 log 𝑑012 approximation, where 𝑑012 is the maximum 
degree of any vertex
o But unlike the edge-selection version, this generalizes to set cover
o For set cover, 𝑂 log 𝑑012 approximation ratio is the best possible 

in polynomial time unless P=NP



Unweighted	Vertex	Cover
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• Theorem [Dinur-Safra 2004]:
Ø Unless P = NP, there is no polynomial-time 𝜌-approximation 

algorithm for unweighted vertex cover for any constant 𝜌 < 1.3606.

NOT IN SYLLABUS



Unweighted	Vertex	Cover
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• Theorem [Khot-Regev 2008]:
Ø Unless the “unique games conjecture” is violated, there is no 

polynomial-time 𝜌-approximation algorithm for unweighted vertex 
cover for any constant 𝜌 < 2.

NOT IN SYLLABUS



Unweighted	Vertex	Cover
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• How does one prove a lower bound on the approximation 
ratio of any polynomial-time algorithm?
Ø We prove that if there is a polynomial-time 𝜌-approximation 

algorithm for the problem with 𝜌 < some bound, then some widely 
believed conjecture is violated

Ø For example, we can prove that given a polynomial time 𝜌-
approximation algorithm to vertex cover for any constant 𝜌 <
1.3606, we can use this algorithm as a subroutine to solve the 3SAT 
decision problem in polynomial time, implying P=NP

Ø Similar technique can be used to reduce from other widely believed 
conjectures, which may give different (sometimes better) bounds

Ø Beyond the scope of this course

NOT IN SYLLABUS
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Weighted Vertex Cover



Weighted	Vertex	Cover
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• Problem
Ø Input: Undirected graph 𝐺 = (𝑉, 𝐸), weights 𝑤 ∶ 𝑉 → 𝑅34
Ø Output: Vertex cover 𝑆 of minimum total weight

• The same greedy algorithm doesn’t work
Ø Gives arbitrarily bad approximation
Ø Obvious modifications which try to take weights into account also 

don’t work
Ø Need another strategy…
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LP Relaxation



ILP	Formulation
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Ø For each vertex 𝑣, create a binary variable 𝑥5 ∈ {0,1} indicating 
whether vertex 𝑣 is chosen in the vertex cover 

Ø Then, computing min weight vertex cover is equivalent to solving the 
following integer linear program

minΣ5 𝑤5 ⋅ 𝑥5
subject to

𝑥6 + 𝑥5 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥5 ∈ 0,1 , ∀𝑣 ∈ 𝑉



LP	Relaxation
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• What if we solve the “LP relaxation” of the original ILP?
Ø Just convert all integer variables to real variables

min ΣK	𝑤K ⋅ 𝑥K
subject	to

𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

min ΣK	𝑤K ⋅ 𝑥K
subject	to

𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸

𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

ILP with binary variables LP with real variables



Rounding	LP	Solution
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• What if we solve the “LP relaxation” of the original ILP?
Ø Let’s say we are minimizing objective 𝑐7𝑥

Ø Since the LP minimizes this over a larger feasible space than the ILP, 
optimal LP objective value ≤ optimal ILP objective value

Ø Let 𝑥89∗ be an optimal LP solution (which we can compute efficiently) and 
𝑥:89∗ be an optimal ILP solution (which we can’t compute efficiently)

o 𝑐7𝑥89∗ ≤ 𝑐7𝑥:89∗

o But 𝑥89∗ may have non-integer values

o Efficiently round 𝑥89∗ to an ILP feasible solution u𝑥 without increasing 
the objective too much

o If we prove 𝑐7 u𝑥 ≤ 𝜌 ⋅ 𝑐7𝑥89∗ , then we will also have 𝑐7 u𝑥 ≤ 𝜌 ⋅ 𝑐7𝑥:89∗

o Thus, our algorithm will achieve 𝜌-approximation
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• What if we solve the “LP relaxation” of the original ILP?

Ø If we are maximizing 𝑐7𝑥 instead of minimizing, then it’s reversed:

o Optimal LP objective value ≥ optimal ILP objective value, i.e., 
𝑐7𝑥89∗ ≥ 𝑐7𝑥:89∗

o Efficiently round 𝑥89∗ to an ILP feasible solution u𝑥 without decreasing
the objective too much

o If we prove 𝑐7 u𝑥 ≥ ⁄! ; ⋅ 𝑐7𝑥89∗ , then 𝑐7 u𝑥 ≥ ⁄! ; ⋅ 𝑐7𝑥:89∗

o Thus, our algorithm will achieve 𝜌-approximation



Weighted	Vertex	Cover
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• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Claim 1: u𝑥 is a feasible solution of ILP (i.e., a vertex cover)
o For every edge 𝑢, 𝑣 ∈ 𝐸, at least one of 𝑥6∗ , 𝑥5∗ is at least 0.5
o So at least one of u𝑥6, u𝑥5 is 1 ∎

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Claim 2: ∑5𝑤5 ⋅ u𝑥5 ≤ 2 ∗ ∑5𝑤5 ⋅ 𝑥5∗

o Weight only increases when some 𝑥5∗ ∈ [0.5,1] is rounded up to 1
o At most doubling the variable, so at most doubling the weight ∎

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Consider LP optimal solution 𝑥∗
Ø Let u𝑥5 = 1 whenever 𝑥5∗ ≥ 0.5 and u𝑥5 = 0 otherwise

Ø Hence, u𝑥 is a vertex cover with weight at most 2 ∗ LP optimal value ≤ 2 ∗
ILP optimal value

min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ≥ 0, 	 ∀𝑣 ∈ 𝑉

LP with real variables
min ΣK	𝑤K ⋅ 𝑥K
subject	to
𝑥L + 𝑥K ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥K ∈ 0,1 , 	 ∀𝑣 ∈ 𝑉

ILP with binary variables
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• Your NP-complete problem amounts to solving
Ø Max 𝑐7𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℕ (need not be binary)

• Instead, solve:
Ø Max 𝑐7𝑥 subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝ34 (LP relaxation)
o LP optimal value ≥ ILP optimal value (for maximization)

Ø 𝑥∗ = LP optimal solution

Ø Round 𝑥∗ to u𝑥 such that 𝑐7 u𝑥 ≥ <"=∗

;
≥ >?@ ABCD01E F1EGH

;
Ø Gives 𝜌-approximation
o Info: Best 𝜌 you can hope to get via this approach for a particular 

LP-ILP combination is called the integrality gap
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Local Search Paradigm



Local	Search
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• Heuristic paradigm
Ø Sometimes it might provably return an optimal solution
Ø But even if not, it might give a good approximation

• Template
Ø Start with some initial feasible solution 𝑆
Ø While there is a “better” solution 𝑆′ in the local neighborhood of 𝑆
Ø Switch to 𝑆’

• Need to define:
Ø Which initial feasible solution should we start from?
Ø What is “better”?
Ø What is “local neighborhood”?



Local	Search
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• For some problems, local search provably returns an 
optimal solution

• Example: network flow
Ø Initial solution: zero flow
Ø Local neighborhood: all flows that can be obtained by augmenting 

the current flow along a path in the residual graph
Ø Better: Higher flow value

• Example: LP via simplex
Ø Initial solution: a vertex of the polytope
Ø Local neighborhood: neighboring vertices
Ø Better: better objective value



Local	Search
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• But sometimes it doesn’t return an optimal solution, and 
“gets stuck” in a local maxima



Local	Search
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• In that case, we want to bound the worst-case ratio 
between the global optimum and the worst local optimum 
(the worst solution that local search might return)

Worst 
ratio
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Max-Cut



Max-Cut
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• Problem
Ø Input: An undirected graph 𝐺 = (𝑉, 𝐸)
Ø Output: A partition (𝐴, 𝐵) of 𝑉 that maximizes the number of edges 

going across the cut, i.e., maximizes |𝐸I| where 𝐸I = {
|

𝑢, 𝑣 ∈
𝐸 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}

Ø This is also known to be an NP-hard problem

Ø What is a natural local search algorithm for this problem?
o Given a current partition, what small change can you do to 

improve the objective value?



Max-Cut
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• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side 

improves the objective value:
o Move 𝑢 to the other side. 

• When does moving 𝑢, say from 𝐴 to 𝐵, improve the 
objective value?
Ø When 𝑢 has more incident edges going within the cut than across 

the cut, i.e., when 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐴 > 𝑢, 𝑣 ∈ 𝐸 𝑣 ∈ 𝐵



Max-Cut
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• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side 

improves the objective value:
o Move 𝑢 to the other side. 

• Why does the algorithm stop?
Ø Every iteration increases the number of edges across the cut by at 

least 1, so the algorithm must stop in at most |𝐸| iterations



Max-Cut
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• Local Search
Ø Initialize (𝐴, 𝐵) arbitrarily.
Ø While there is a vertex 𝑢 such that moving 𝑢 to the other side 

improves the objective value:
o Move 𝑢 to the other side. 

• Approximation ratio?
Ø At the end, every vertex has at least as many edges going across the 

cut as within the cut
Ø Hence, at least half of all edges must be going across the cut
o Exercise: Prove this formally by writing equations.
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• Variant
Ø Now we’re given integral edge weights 𝑤:𝐸 → ℕ
Ø The goal is to maximize the total weight of edges going across the cut

• Algorithm
Ø The same algorithm works…
Ø But we move 𝑢 to the other side if the total weight of its incident 

edges going within the cut is greater than the total weight of its 
incident edges going across the cut

NOT IN SYLLABUS
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• Number of iterations?
Ø Unweighted case: #edges going across the cut must increase by at 

least 1, so it takes at most |𝐸| iterations

Ø Weighted case: total weight of edges going across the cut must 
increase by at least 1, but this could take up to ∑J∈K𝑤J iterations, 
which can be exponential in the input length
o There are examples where the local search actually takes 

exponentially many steps
o Fun exercise: Design an example where the number of iterations is 

exponential in the input length.

NOT IN SYLLABUS
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• Number of iterations?
Ø But we can find a 2 + 𝜖 approximation in time polynomial in the 

input length and !
#

Ø The idea is to only move vertices when it “sufficiently improves” the 
objective value

NOT IN SYLLABUS
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• Better approximations?
Ø Theorem [Goemans-Williamson 1995]:

There exists a polynomial time algorithm for max-cut with 
approximation ratio  (

L
⋅ min
4MNML

N
!"OAP N

≈ 0.878

o Uses “semidefinite programming” and “randomized rounding”
o Note: The literature from here on uses approximation ratios ≤ 1, 

so we will follow that convention in the remaining slides.

Ø Assuming the “unique games conjecture”, this approximation ratio is 
tight

NOT IN SYLLABUS
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Exact Max-𝑘-SAT
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• Problem
Ø Input: An exact 𝑘-SAT formula 𝜑 = 𝐶! ∧ 𝐶( ∧ ⋯∧ 𝐶+,

where each clause 𝐶% has exactly 𝑘 literals, and a weight 𝑤% ≥ 0 of 
each clause 𝐶%

Ø Output: A truth assignment 𝜏 maximizing the total weight of clauses 
satisfied under 𝜏

Ø Let us denote by 𝑊(𝜏) the total weight of clauses satisfied under 𝜏

Ø What is a good definition of “local neighborhood”?
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• Local neighborhood:
Ø 𝑁Q(𝜏) = set of all truth assignments 𝜏′ which differ from 𝜏 in the 

values of at most 𝑑 variables

• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.
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• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø Let 𝜏 be a local optimum
o 𝑆4 = set of clauses not satisfied under 𝜏
o 𝑆! = set of clauses from which exactly one literal is true under 𝜏
o 𝑆( = set of clauses from which both literals are true under 𝜏
o 𝑊 𝑆4 ,𝑊 𝑆! ,𝑊 𝑆( be the corresponding total weights

o Goal: 𝑊 𝑆! +𝑊 𝑆( ≥ ⁄( . ⋅ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(
• Equivalently, 𝑊 𝑆4 ≤ ⁄! . ⋅ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(

NOT IN SYLLABUS
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• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø We say that clause 𝐶 “involves” variable 𝑗 if it contains 𝑥$ or �𝑥$

Ø 𝐴$ = set of clauses in 𝑆4 involving variable 𝑗
o Let 𝑊 𝐴$ be the total weight of such clauses

Ø 𝐵$ = set of clauses in 𝑆! involving variable 𝑗 such that it is the literal 
of variable 𝑗 that is true under 𝜏
o Let 𝑊 𝐵$ be the total weight of such clauses

NOT IN SYLLABUS
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• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø 2𝑊 𝑆4 = ∑$𝑊 𝐴$
o Every clause in 𝑆4 is counted twice on the RHS

Ø 𝑊 𝑆! = ∑$𝑊 𝐵$
o Every clause in 𝑆! is only counted once on the RHS for the variable 

whose literal was true under 𝜏
Ø For each 𝑗 : 𝑊 𝐴$ ≤ 𝑊 𝐵$
o From local optimality of 𝜏, since otherwise flipping the truth value 

of variable 𝑗 would have increased the total weight

NOT IN SYLLABUS
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• Theorem: The local search with 𝑑 = 1 gives a ⁄M N
approximation to Exact Max-2-SAT.

• Proof:
Ø 2𝑊 𝑆4 ≤ 𝑊 𝑆!
o Summing the third equation on the last slide over all 𝑗, and then 

using the first two equations on the last slide
Ø Hence:
o 3𝑊 𝑆4 ≤ 𝑊 𝑆4 +𝑊 𝑆! ≤ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆(
o Precisely the condition we wanted to prove…
o QED!

NOT IN SYLLABUS
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• Higher 𝑑? 
Ø Searches over a larger neighborhood
Ø May get a better approximation ratio, but increases the running time 

as we now need to check if any neighbor in a large neighborhood 
provides a better objective

Ø The bound is still 2/3 for 𝑑 = 𝑜(𝑛)
Ø For 𝑑 = Ω 𝑛 , the neighborhood size is exponential
Ø But the approximation ratio is…
o At most 4/5 with 𝑑 < ⁄, (
o 1 (i.e. optimal solution is always reached) with 𝑑 = ⁄, (
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• Better approximation ratio?
Ø We can learn something from our proof
Ø Note that we did not use anything about 𝑊 𝑆( , and simply added it 

at the end

Ø If we could also guarantee that 𝑊 𝑆4 ≤ 𝑊 𝑆( …
o Then we would get 4𝑊 𝑆4 ≤ 𝑊 𝑆4 +𝑊 𝑆! +𝑊 𝑆( , which 

would give a ⁄. / approximation

Ø Result (without proof): 
o This can be done by including just one more assignment in the 

neighborhood: 𝑁 𝜏 = 𝑁! 𝜏 ∪ 𝜏< , where 𝜏< = complement of 𝜏



Exact	Max-𝑘-SAT

373F23 - Nisarg Shah 74

• What if we do not want to modify the neighborhood?
Ø A slightly different tweak also works
Ø We want to weigh clauses in 𝑊(𝑆() more because when we get a 

clause through 𝑆(, we get more robustness (it can withstand changes 
in single variables)

• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential 
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment
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• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential 
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment

• Note:
Ø This is the first time that we’re using a definition of “better” in local 

search paradigm that does not quite align with the ultimate objective 
we want to maximize

Ø This is called “non-oblivious local search”
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• Modified local search:
Ø Start at arbitrary 𝜏
Ø While there is an assignment in 𝑁! 𝜏 that improves the potential 
1.5 𝑊 𝑆! + 2𝑊(𝑆()
o Switch to that assignment

• Result (without proof):
Ø Modified local search gives ⁄. /-approximation to Exact Max-2-SAT
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• More generally:
Ø The same technique works for higher values of 𝑘

Ø Gives (
#"!
(#

approximation for Exact Max-𝑘-SAT
o In the next lecture, we will achieve the same approximation ratio 

much more easily through a different technique

• Note: This ratio is ⁄O P for Exact Max-3-SAT
Ø Theorem [Håstad]: Achieving ⁄R S+ 𝜖 approximation where 𝜖 > 0 is 

NP-hard.
o Uses PCP (probabilistically checkable proofs) technique


