CSC373

Approximation Algorithms

NP-Completeness

- NP-complete problems
 - > Unlikely to have polynomial time algorithms to solve them
 - > What do we do?
- One idea: approximation
 - > Instead of solving them exactly, solve them approximately
 - Sometimes, we might want to use an approximation algorithm even when we can compute an exact solution in polynomial time (WHY?)

Approximation Algorithms

- Decision versus optimization problems
 - > Decision variant: "Does there exist a solution with objective $\geq k$?"
 - $\,\circ\,$ E.g., "Is there an assignment which satisfies at least k clauses of a given CNF formula φ ?"
 - > Optimization variant: "Find a solution maximizing objective"
 - \circ E.g., "Find an assignment which satisfies the maximum possible number of clauses of a given CNF formula φ ."
 - > If a decision problem is hard, then its optimization version is hard too
 - > We'll focus on optimization variants

Approximation Algorithms

Objectives

Maximize (e.g., "profit") or minimize (e.g., "cost")

- Given problem instance *I*:
 - > ALG(I) = solution returned by our algorithm
 - > OPT(I) = some optimal solution
 - Approximation ratio of ALG on instance I is

 $\frac{profit(OPT(I))}{profit(ALG(I))} \text{ or } \frac{cost(ALG(I))}{cost(OPT(I))}$

> Convention: approximation ratio ≥ 1

"2-approximation" = half the optimal profit / twice the optimal cost

Approximation Algorithms

- Worst-case approximation ratio
 - > Worst approximation ratio across all possible problem instances I
 - > ALG has worst-case c-approximation if for each problem instance I... $profit(ALG(I)) \ge \frac{1}{c} \cdot profit(OPT(I))$ or $cost(ALG(I)) \le c \cdot cost(OPT(I))$
 - By default, we will always refer to approximation ratios in the worst case
 - Note: In some textbooks, you might see the approximation ratio flipped (e.g., 0.5-approximation instead of 2-approximation)

PTAS and FPTAS

- Arbitrarily close to 1 approximations
- **PTAS**: Polynomial time approximation scheme
 - For every ε > 0, there is a (1 + ε)-approximation algorithm that runs in time poly(n) on instances of size n
 Note: Could have exponential dependence on 1/ε
- FPTAS: Fully polynomial time approximation scheme
 - > For every $\epsilon > 0$, there is a $(1 + \epsilon)$ -approximation algorithm that runs in time $poly(n, 1/\epsilon)$ on instances of size n

Approximation Landscape

- > An FPTAS
 - \circ E.g., the knapsack problem
- > A PTAS but no FPTAS
 - E.g., the makespan problem (we'll see)
- > *c*-approximation for a constant c > 1 but no PTAS
 - E.g., vertex cover and JISP (we'll see)
- > $\Theta(\log n)$ -approximation but no constant approximation
 - $\,\circ\,$ E.g., set cover
- > No $n^{1-\epsilon}$ -approximation for any $\epsilon > 0$
 - E.g., graph coloring and maximum independent set

Impossibility of better approximations assuming widely held beliefs like $P \neq NP$

n = parameter of problem at hand

Approximation Techniques

Greedy algorithms

Make decision on one element at a time in a greedy fashion without considering future decisions

• LP relaxation

- Formulate the problem as an integer linear program (ILP)
- "Relax" it to an LP by allowing variables to take real values
- Find an optimal solution of the LP, "round" it to a feasible solution of the original ILP, and prove its approximate optimality

• Local search

- Start with an arbitrary solution
- Keep making "local" adjustments to improve the objective

Greedy Approximation

Makespan Minimization

• Problem

- > Input: *m* identical machines, *n* jobs, job *j* requires processing time t_j
- > Output: Assign jobs to machines to minimize makespan
- > Let S[i] = set of jobs assigned to machine *i* in a solution
- Constraints:
 - Each job must run contiguously on one machine
 - Each machine can process at most one job at a time
- ≻ Load on machine $i: L_i = \sum_{j \in S[i]} t_j$
- > Goal: minimize the *maximum* load, i.e., makespan $L = \max_{i} L_i$

- Even the special case of m=2 machines is already NP-hard by reduction from PARTITION

• PARTITION

- Input: Set S containing n integers
- ▶ Question: Does there exist a partition of S into two sets with equal sum? (A partition of S into S_1, S_2 means $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = S$)

• Exercise!

- > Show that PARTITION is NP-complete by reduction from SUBSET-SUM
- > Show that Makespan with m = 2 is NP-hard by reduction from PARTITION

- Greedy list-scheduling algorithm
 - Consider the n jobs in some "nice" sorted order
 - > Assign each job *j* to a machine with the smallest load so far
- Note: Implementable in $O(n \log m)$ using priority queue
- Back to greedy...?
 - > But this time, we can't hope that greedy will be optimal
 - > We can still hope that it is approximately optimal
- Which order?

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
 - > This was one of the first worst-case approximation analyses
- Let optimal makespan = L^*
- To show that makespan under the greedy solution is not much worse than L^* , we need to show that L^* cannot be too low

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Fact 1: $L^* \ge \max_j t_j$

> Some machine must process job with highest processing time

• Fact 2:
$$L^* \ge \frac{1}{m} \sum_j t_j$$

- ▹ Total processing time is $\sum_j t_j$
- > At least one machine must do at least 1/m of this work (the pigeonhole principle)

• Theorem [Graham 1966]

> Regardless of the order, greedy gives a 2-approximation.

• Proof:

- > Suppose machine *i* is the bottleneck under greedy (so $L = L_i$)
- > Let j^* be the last job scheduled on machine *i* by greedy
- Right before j^{*} was assigned to i, i had the smallest load
 Load of the other machines could have only increased from then
 L_i t_{j^{*}} ≤ L_k, ∀k
- > Average over all $k : L_i t_{j^*} \le \frac{1}{m} \sum_j t_j$

$$\succ L_i \le t_{j^*} + \frac{1}{m} \sum_j t_j \le L^* + L^* = 2L^*$$
Fact 1
Fact 2

- Theorem [Graham 1966]
 - > Regardless of the order, greedy gives a 2-approximation.
- Is our analysis tight?
 - > Essentially.
 - > By averaging over $k \neq i$ in the previous slide, one can show a slightly better 2 1/m approximation
 - > There is an example where greedy has approximation as bad as 2 1/m
 - > So, 2 1/m is exactly tight.

• Tight example:

- > m(m-1) jobs of length 1, followed by one job of length m
- > Greedy evenly distributes unit length jobs on all m machines, and assigning the last heavy job makes makespan m 1 + m = 2m 1
- Optimal makespan is m by evenly distributing unit length jobs among m 1 machines and putting the single heavy job on the remaining

• Idea:

- > It seems keeping heavy jobs at the end is bad.
- So, let's just start with them first!

• Greedy LPT (Longest Processing Time First)

- Run the greedy algorithm but consider jobs in a non-increasing order of their processing time
- Suppose $t_1 ≥ t_2 ≥ \cdots ≥ t_n$
- Fact 3: If the bottleneck machine *i* has only one job *j*, then the solution is optimal
 - > Current solution has $L = L_i = t_j$
 - > We know $L^* \ge t_j$ from Fact 1
- Fact 4: If there are more than m jobs, then $L^* \ge 2 \cdot t_{m+1}$
 - > The first m + 1 jobs each have processing time at least t_{m+1}
 - By the pigeonhole principle, the optimal solution must put at least two of them on the same machine

• Theorem

> Greedy LPT achieves $\frac{3}{2}$ -approximation

• Proof:

- Similar to the proof for arbitrary ordering
- Consider a bottleneck machine *i* and the job *j** that was last scheduled on this machine by the greedy algorithm

> Case 1: Machine *i* has only one job j^*

• By Fact 3, greedy is optimal in this case (i.e. 1-approximation)

Theorem

Greedy LPT achieves 3/2-approximation

• Proof:

- Similar to the proof for arbitrary ordering
- Consider a bottleneck machine *i* and the job *j** that was last scheduled on this machine by the greedy algorithm
- > Case 2: Machine *i* has at least two jobs

o Job
$$j^*$$
 must have $t_{j^*} \leq t_{m+1}$
o As before, $L = L_i = (L_i - t_{j^*}) + t_{j^*} \leq 1.5 L^*$
Same as before $\leq L^* \leq L^*/2$ t_{j*} ≤ t_{m+1} and Fact 4

Theorem

- > Greedy LPT achieves 3/2-approximation
- Is our analysis tight? No!
- Theorem [Graham 1966]
 - > Greedy LPT achieves $\left(\frac{4}{3} \frac{1}{3m}\right)$ -approximation
 - > Is Graham's approximation tight?

 \circ Yes.

• In the upcoming example, greedy LPT is as bad as $\frac{4}{3} - \frac{1}{3m}$

- Tight example for Greedy LPT:
 - > 2 jobs each of lengths m, m + 1, ..., 2m 1
 - \succ One more job of length m
 - > Greedy-LPT has makespan 4m 1 (verify!)
 - > OPT has makespan 3*m* (verify!)
 - > Thus, approximation ratio is at least as bad as $\frac{4m-1}{3m} = \frac{4}{3} \frac{1}{3m}$

• Problem

- > Input: Undirected graph G = (V, E)
- Output: Vertex cover S of minimum cardinality
- Recall: S is vertex cover if every edge has at least one of its two endpoints in S
- > We already saw that this problem is NP-hard
- Q: What would be a good greedy algorithm for this problem?

- Greedy edge-selection algorithm:
 - > Start with $S = \emptyset$
 - While there exists an edge whose both endpoints are not in S, add both its endpoints to S
- Hmm...
 - > Why are we selecting edges rather than vertices?
 - > Why are we adding both endpoints?
 - > We'll see..

GREEDY-VERTEX-COVER(G)

- $S \leftarrow \emptyset$.
- $E' \leftarrow E$.

WHILE $(E' \neq \emptyset)$

every vertex cover must take at least one of these; we take both

Let $(u, v) \in E'$ be an arbitrary edge.

 $M \leftarrow M \cup \{(u, v)\}$. $\leftarrow M$ is a matching

 $S \leftarrow S \cup \{u\} \cup \{v\}. \leftarrow$

Delete from E' all edges incident to either u or v.

RETURN S.

• Theorem:

 Greedy edge-selection algorithm for unweighted vertex cover achieves 2-approximation.

• Observation 1:

- > For any vertex cover S^* and any matching M, $|S^*| \ge |M|$, where |M| = number of edges in M
- Proof: S* must contain at least one endpoint of each edge in M

• Observation 2:

- > Greedy algorithm finds a vertex cover of size $|S| = 2 \cdot |M|$
- Hence, $|S| \leq 2 \cdot |S^*|$, where S^* = min vertex cover

- Corollary:
 - ▶ If M^* is a maximum matching, and M is a maximal matching, then $|M| \ge \frac{1}{2}|M^*|$
- Proof:
 - > By design, $|M| = \frac{1}{2}|S|$
 - \succ |S| ≥ | M^* | (Observation 1)
 - ≻ Hence, $|M| \ge \frac{1}{2}|M^*|$
- This greedy algorithm is also a 2-approximation to the problem of finding a maximum cardinality matching
 - However, the max cardinality matching problem can be solved exactly in polynomial time using a more complex algorithm

- What about a greedy vertex selection algorithm?
 - > Start with $S = \emptyset$
 - > While *S* is not a vertex cover:
 - $\,\circ\,$ Choose a vertex v which maximizes the number of uncovered edges incident on it
 - \circ Add v to S
 - Gives O(log d_{max}) approximation, where d_{max} is the maximum degree of any vertex
 - But unlike the edge-selection version, this generalizes to set cover
 - \circ For set cover, $O(\log d_{\max})$ approximation ratio is the best possible in polynomial time unless P=NP

NOT IN SYLLABUS

• Theorem [Dinur-Safra 2004]:

> Unless P = NP, there is no polynomial-time ρ -approximation algorithm for unweighted vertex cover for any constant $\rho < 1.3606$.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur*

Samuel Safra[†]

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and borrow and extend ideas from several fields.

NOT IN SYLLABUS

• Theorem [Khot-Regev 2008]:

> Unless the "unique games conjecture" is violated, there is no polynomial-time ρ -approximation algorithm for unweighted vertex cover for any constant $\rho < 2$.

Vertex Cover Might be Hard to Approximate to within $2 - \varepsilon$

Subhash Khot *

Oded Regev[†]

Abstract

Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [Khot02], we show that vertex cover is hard to approximate within any constant factor better than 2. We actually show a stronger result, namely, based on the same conjecture, vertex cover on k-uniform hypergraphs is hard to approximate within any constant factor better than k.

NOT IN SYLLABUS

- How does one prove a lower bound on the approximation ratio of any polynomial-time algorithm?
 - > We prove that if there is a polynomial-time ρ -approximation algorithm for the problem with ρ < some bound, then some widely believed conjecture is violated
 - > For example, we can prove that given a polynomial time ρ approximation algorithm to vertex cover for any constant ρ < 1.3606, we can use this algorithm as a subroutine to solve the 3SAT decision problem in polynomial time, implying P=NP
 - Similar technique can be used to reduce from other widely believed conjectures, which may give different (sometimes better) bounds
 - > Beyond the scope of this course

• Problem

- > Input: Undirected graph G = (V, E), weights $w : V \to R_{\geq 0}$
- Output: Vertex cover S of minimum total weight
- The same greedy algorithm doesn't work
 - > Gives arbitrarily bad approximation
 - Obvious modifications which try to take weights into account also don't work
 - > Need another strategy...

LP Relaxation

ILP Formulation

- > For each vertex v, create a binary variable $x_v \in \{0,1\}$ indicating whether vertex v is chosen in the vertex cover
- Then, computing min weight vertex cover is equivalent to solving the following integer linear program

 $\min \Sigma_{v} w_{v} \cdot x_{v}$
subject to
 $x_{u} + x_{v} \ge 1, \qquad \forall (u, v) \in E$
 $x_{v} \in \{0, 1\}, \qquad \forall v \in V$

LP Relaxation

• What if we solve the "LP relaxation" of the original ILP?

> Just convert all integer variables to real variables

ILP with binary variables		LP with real variables	
$\min \Sigma_{v} w_{v} \cdot x_{v}$		$\min \Sigma_{v} w_{v} \cdot x_{v}$	
subject to		subject to	
$x_u + x_v \ge 1,$	$\forall (u,v) \in E$	$x_u + x_v \ge 1,$	$\forall (u,v) \in E$
$x_v \in \{0,1\},$	$\forall v \in V$	$x_v \ge 0$,	$\forall v \in V$
		1	

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
 - > Let's say we are minimizing objective $c^T x$
 - > Since the LP minimizes this over a larger feasible space than the ILP, optimal LP objective value \leq optimal ILP objective value
 - > Let x_{LP}^* be an optimal LP solution (which we can compute efficiently) and x_{ILP}^* be an optimal ILP solution (which we can't compute efficiently)

 $\circ c^T x_{LP}^* \leq c^T x_{ILP}^*$

- \circ But x_{LP}^* may have non-integer values
- $\,\circ\,$ Efficiently round x_{LP}^* to an ILP feasible solution \hat{x} without increasing the objective too much

○ If we prove $c^T \hat{x} \leq \rho \cdot c^T x_{LP}^*$, then we will also have $c^T \hat{x} \leq \rho \cdot c^T x_{ILP}^*$

 \circ Thus, our algorithm will achieve ho-approximation

Rounding LP Solution

- What if we solve the "LP relaxation" of the original ILP?
 - > If we are <u>maximizing</u> $c^T x$ instead of minimizing, then it's reversed:
 - Optimal LP objective value ≥ optimal ILP objective value, i.e., $c^T x_{LP}^* \ge c^T x_{ILP}^*$
 - Efficiently round x_{LP}^* to an ILP feasible solution \hat{x} without decreasing the objective too much
 - If we prove $c^T \hat{x} \ge (1/\rho) \cdot c^T x_{LP}^*$, then $c^T \hat{x} \ge (1/\rho) \cdot c^T x_{ILP}^*$

 \circ Thus, our algorithm will achieve ho-approximation

Consider LP optimal solution x^{*}

> Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise

Claim 1: x̂ is a feasible solution of ILP (i.e., a vertex cover)
 ○ For every edge (u, v) ∈ E, at least one of {x^{*}_u, x^{*}_v} is at least 0.5
 ○ So at least one of {x̂_u, x̂_v} is 1 ■

ILP with binary variables min $\Sigma_v w_v \cdot x_v$		LP with real variables min $\Sigma_v w_v \cdot x_v$	
$x_v \in \{0,1\},$	$\forall v \in V$	$x_v \ge 0$,	$\forall v \in V$

Rounding LP Solution

Consider LP optimal solution x^{*}

> Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise

 $\succ \text{ Claim 2: } \sum_{v} w_{v} \cdot \hat{x}_{v} \leq 2 * \sum_{v} w_{v} \cdot x_{v}^{*}$

• Weight only increases when some $x_v^* \in [0.5,1]$ is rounded *up* to 1 • At most doubling the variable, so at most doubling the weight

O At most doubling the variable, so at most doubling the weight ■

ILP with binary variables		LP with real variables	
$\min \Sigma_{v} w_{v} \cdot x_{v}$		$\min \Sigma_{v} w_{v} \cdot x_{v}$	
subject to		subject to	
$x_u + x_v \ge 1$,	$\forall (u,v) \in E$	$x_u + x_v \ge 1$,	$\forall (u,v) \in E$
$x_{v} \in \{0,1\},$	$\forall v \in V$	$x_{v} \geq 0$,	$\forall v \in V$

Rounding LP Solution

- Consider LP optimal solution x^{*}
 - > Let $\hat{x}_v = 1$ whenever $x_v^* \ge 0.5$ and $\hat{x}_v = 0$ otherwise
 - > Hence, \hat{x} is a vertex cover with weight at most 2 * LP optimal value \leq 2 * ILP optimal value

ILP with binary variables		LP with real variables	
$\min \Sigma_{v} w_{v} \cdot x_{v}$		$\min \Sigma_{v} w_{v} \cdot x_{v}$	
subject to		subject to	
$x_u + x_v \ge 1$,	$\forall (u, v) \in E$	$x_u + x_v \ge 1$,	$\forall (u, v) \in E$
$x_{v} \in \{0,1\},$	$\forall v \in V$	$x_{v} \geq 0$,	$\forall v \in V$

General LP Relaxation Strategy

- Your NP-complete problem amounts to solving
 - > Max $c^T x$ subject to $Ax \leq b, x \in \mathbb{N}$ (need not be binary)
- Instead, solve:
 - > Max c^Tx subject to Ax ≤ b, x ∈ ℝ_{≥0} (LP relaxation)
 LP optimal value ≥ ILP optimal value (for maximization)
 > x^{*} = LP optimal solution
 - > Round x^* to \hat{x} such that $c^T \hat{x} \ge \frac{c^T x^*}{\rho} \ge \frac{\text{ILP optimal value}}{\rho}$
 - > Gives ρ -approximation
 - \circ Info: Best ρ you can hope to get via this approach for a particular LP-ILP combination is called the *integrality gap*

Local Search Paradigm

Heuristic paradigm

- > Sometimes it might provably return an optimal solution
- > But even if not, it might give a good approximation

• Template

- > Start with some initial feasible solution S
- > While there is a "better" solution S' in the **local neighborhood** of S
- > Switch to S'

• Need to define:

- > Which initial feasible solution should we start from?
- > What is "better"?
- > What is "local neighborhood"?

- For some problems, local search provably returns an optimal solution
- Example: network flow
 - Initial solution: zero flow
 - Local neighborhood: all flows that can be obtained by augmenting the current flow along a path in the residual graph
 - Better: Higher flow value
- Example: LP via simplex
 - Initial solution: a vertex of the polytope
 - Local neighborhood: neighboring vertices
 - Better: better objective value

 But sometimes it doesn't return an optimal solution, and "gets stuck" in a local maxima

 In that case, we want to bound the worst-case ratio between the global optimum and the worst local optimum (the worst solution that local search might return)

• Problem

> Input: An undirected graph G = (V, E)

> Output: A partition (A, B) of V that maximizes the number of edges going across the cut, i.e., maximizes |E'| where $E' = \{(u, v) \in E \mid u \in A, v \in B\}$

- > This is also known to be an NP-hard problem
- > What is a natural local search algorithm for this problem?

 Given a current partition, what small change can you do to improve the objective value?

• Local Search

- > Initialize (A, B) arbitrarily.
- While there is a vertex u such that moving u to the other side improves the objective value:

 \circ Move u to the other side.

- When does moving *u*, say from *A* to *B*, improve the objective value?
 - > When u has more incident edges going within the cut than across the cut, i.e., when $|\{(u, v) \in E \mid v \in A\}| > |\{(u, v) \in E \mid v \in B\}|$

• Local Search

- > Initialize (A, B) arbitrarily.
- While there is a vertex u such that moving u to the other side improves the objective value:

 \circ Move u to the other side.

• Why does the algorithm stop?

Every iteration increases the number of edges across the cut by at least 1, so the algorithm must stop in at most |E| iterations

• Local Search

- > Initialize (A, B) arbitrarily.
- While there is a vertex u such that moving u to the other side improves the objective value:

 \circ Move u to the other side.

• Approximation ratio?

- At the end, every vertex has at least as many edges going across the cut as within the cut
- > Hence, at least half of all edges must be going across the cut

• Exercise: Prove this formally by writing equations.

• Variant

- > Now we're given integral edge weights $w: E \rightarrow \mathbb{N}$
- > The goal is to maximize the total *weight* of edges going across the cut

• Algorithm

- > The same algorithm works...
- But we move u to the other side if the total weight of its incident edges going within the cut is greater than the total weight of its incident edges going across the cut

- Number of iterations?
 - Unweighted case: #edges going across the cut must increase by at least 1, so it takes at most |E| iterations
 - > Weighted case: total *weight* of edges going across the cut must increase by at least 1, but this could take up to $\sum_{e \in E} w_e$ iterations, which can be *exponential* in the input length
 - There are examples where the local search actually takes exponentially many steps
 - Fun exercise: Design an example where the number of iterations is exponential in the input length.

- Number of iterations?
 - > But we can find a 2 + ϵ approximation in time polynomial in the input length and $\frac{1}{\epsilon}$
 - The idea is to only move vertices when it "sufficiently improves" the objective value

- Better approximations?
 - > Theorem [Goemans-Williamson 1995]:

There exists a polynomial time algorithm for max-cut with approximation ratio $\frac{2}{\pi} \cdot \min_{0 \le \theta \le \pi} \frac{\theta}{1 - \cos \theta} \approx 0.878$

- Uses "semidefinite programming" and "randomized rounding"
- Note: The literature from here on uses approximation ratios ≤ 1 , so we will follow that convention in the remaining slides.
- > Assuming the "unique games conjecture", this approximation ratio is tight

• Problem

- Input: An exact k-SAT formula φ = C₁ ∧ C₂ ∧ ··· ∧ C_m, where each clause C_i has exactly k literals, and a weight w_i ≥ 0 of each clause C_i
- > Output: A truth assignment τ maximizing the total weight of clauses satisfied under τ
- > Let us denote by $W(\tau)$ the total weight of clauses satisfied under τ
- > What is a good definition of "local neighborhood"?

- Local neighborhood:
 - > $N_d(\tau)$ = set of all truth assignments τ' which differ from τ in the values of at most d variables
- Theorem: The local search with d = 1 gives a $^{2}/_{3}$ approximation to Exact Max-2-SAT.

- Theorem: The local search with d = 1 gives a $^{2}/_{3}$ approximation to Exact Max-2-SAT.
- Proof:
 - \succ Let τ be a local optimum
 - \circ S₀ = set of clauses not satisfied under τ
 - $\odot~S_1$ = set of clauses from which exactly one literal is true under τ
 - \circ S₂ = set of clauses from which both literals are true under τ
 - $\circ W(S_0), W(S_1), W(S_2)$ be the corresponding total weights

• Goal: $W(S_1) + W(S_2) \ge \frac{2}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$

• Equivalently, $W(S_0) \le \frac{1}{3} \cdot (W(S_0) + W(S_1) + W(S_2))$

- Theorem: The local search with d = 1 gives a $^{2}/_{3}$ approximation to Exact Max-2-SAT.
- Proof:
 - > We say that clause C "involves" variable j if it contains x_i or $\overline{x_i}$

A_j = set of clauses in S₀ involving variable j
 Let W(A_j) be the total weight of such clauses

B_j = set of clauses in S₁ involving variable j such that it is the literal of variable j that is true under τ
 Let W(B_i) be the total weight of such clauses

- Theorem: The local search with d = 1 gives a $^{2}/_{3}$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) = \sum_j W(A_j)$

 \circ Every clause in S_0 is counted twice on the RHS

 $\succ W(S_1) = \sum_j W(B_j)$

 \odot Every clause in S_1 is only counted once on the RHS for the variable whose literal was true under τ

- > For each $j: W(A_j) \leq W(B_j)$
 - \circ From local optimality of τ , since otherwise flipping the truth value of variable j would have increased the total weight

- Theorem: The local search with d = 1 gives a $^{2}/_{3}$ approximation to Exact Max-2-SAT.
- Proof:
 - $> 2 W(S_0) \le W(S_1)$
 - Summing the third equation on the last slide over all j, and then using the first two equations on the last slide
 - > Hence:
 - $0 \ 3 \ W(S_0) \le W(S_0) + W(S_1) \le W(S_0) + W(S_1) + W(S_2)$
 - \circ Precisely the condition we wanted to prove...
 - QED!

• Higher *d*?

- > Searches over a larger neighborhood
- May get a better approximation ratio, but increases the running time as we now need to check if any neighbor in a large neighborhood provides a better objective
- > The bound is still 2/3 for d = o(n)
- > For $d = \Omega(n)$, the neighborhood size is exponential
- > But the approximation ratio is...
 - \circ At most 4/5 with d < n/2
 - \circ 1 (i.e. optimal solution is always reached) with d = n/2

- Better approximation ratio?
 - > We can learn something from our proof
 - > Note that we did not use anything about $W(S_2)$, and simply added it at the end
 - > If we could also guarantee that $W(S_0) ≤ W(S_2)$...
 Then we would get $4 W(S_0) ≤ W(S_0) + W(S_1) + W(S_2)$, which would give a 3/4 approximation
 - > Result (without proof):
 - This can be done by including just one more assignment in the neighborhood: $N(\tau) = N_1(\tau) \cup \{\tau^c\}$, where τ^c = complement of τ

- What if we do not want to modify the neighborhood?
 - > A slightly different tweak also works
 - > We want to weigh clauses in $W(S_2)$ more because when we get a clause through S_2 , we get more robustness (it can withstand changes in single variables)
- Modified local search:
 - \succ Start at arbitrary τ
 - > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5 W(S_1) + 2 W(S_2)$
 - \circ Switch to that assignment

- Modified local search:
 - \succ Start at arbitrary τ
 - > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5 W(S_1) + 2 W(S_2)$
 - Switch to that assignment

• Note:

- This is the first time that we're using a definition of "better" in local search paradigm that does not quite align with the ultimate objective we want to maximize
- > This is called "non-oblivious local search"

- Modified local search:
 - \succ Start at arbitrary τ
 - > While there is an assignment in $N_1(\tau)$ that improves the potential $1.5 W(S_1) + 2 W(S_2)$
 - Switch to that assignment
- Result (without proof):
 - > Modified local search gives $^{3}/_{4}$ -approximation to Exact Max-2-SAT

- More generally:
 - \succ The same technique works for higher values of k
 - > Gives $\frac{2^{k}-1}{2^{k}}$ approximation for Exact Max-k-SAT

 In the next lecture, we will achieve the same approximation ratio much more easily through a different technique

- Note: This ratio is $^{7}/_{8}$ for Exact Max-3-SAT
 - > Theorem [Håstad]: Achieving $^{7}/_{8} + \epsilon$ approximation where $\epsilon > 0$ is NP-hard.

 \circ Uses PCP (probabilistically checkable proofs) technique