CSC373

Linear Programming

Illustration Courtesy: Kevin Wayne & Denis Pankratov

Recap

Network flow

- Ford-Fulkerson algorithm
 - $\circ~$ Ways to make the running time polynomial
- Correctness using max-flow, min-cut
- > Applications:
 - Edge-disjoint paths
 - Multiple sources/sinks
 - Circulation
 - \circ Circulation with lower bounds
 - Survey design
 - Image segmentation
 - Profit maximization

Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
 - Per unit resource requirement and profit of the two items are as given below

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Brewery Example

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	object

- Suppose it produces *A* units of ale and *B* units of beer
- Then we want to solve this program:

Linear Function

- $f: \mathbb{R}^n \to \mathbb{R}$ is a linear function if $f(x) = a^T x$ for some $a \in \mathbb{R}^n$ > Example: $f(x_1, x_2) = 3x_1 - 5x_2 = \begin{pmatrix} 3 \\ -5 \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
- Linear objective: *f*
- Linear constraints:
 - ≻ g(x) = c, where $g: \mathbb{R}^n \to \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
 - > Line in the plane (or a hyperplane in \mathbb{R}^n)
 - > Example: $5x_1 + 7x_2 = 10$

Linear Function

• Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^T x = c$

Linear Inequality

• $a^T x \leq c$ represents a "half-space"

Linear Programming

Maximize/minimize a linear function subject to linear equality/inequality constraints

Geometrically...

Back to Brewery Example

Back to Brewery Example

Optimal Vertex

• Claim: Regardless of the objective function, there must be a vertex that is an optimal solution

Optimal Vertex

OUT OF SYLLABUS

- Convex set: *S* is convex if $x, y \in S, \lambda \in [0,1] \Rightarrow \lambda x + (1 - \lambda)y \in S$
- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set

Optimal Vertex

OUT OF SYLLABUS

• Intuitive proof of the claim:

- > Start at some point *x* in the feasible region
- If x is not a vertex:
 - Find a direction d such that points within a positive distance of ϵ from x in both d and -d directions are within the feasible region
 - Objective must not decrease in at least one of the two directions
 - Follow that direction until you reach a new point x for which at least one more constraint is "tight"
- > Repeat until we are at a vertex

LP, Standard Formulation

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - \succ There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_1, a_2, \dots, a_m \in \mathbb{R}^n, b \in \mathbb{R}^m$
 - \succ There are n variables and m constraints
- Goal:

LP Tricks I

- What if the LP is not in standard form?
 - ➤ Constraints that use ≥
 $a^T x \ge b \iff -a^T x \le -b$
 - ➤ Constraints that use equality
 $a^T x = b \iff a^T x \le b, a^T x \ge b$
 - > Objective function is a minimization ○ Minimize $c^T x \iff$ Maximize $-c^T x$
 - > Variable is unconstrained
 - x with no constraint \Leftrightarrow Replace x by two variables x'and x'', replace every occurrence of x with x' - x'', and add constraints $x' \ge 0$, $x'' \ge 0$

LP Transformation Example

LP Tricks II

- Constraint: $|x| \leq 3$
 - ▶ Replace with constraints $x \le 3$ and $-x \le 3$
 - > What if the constraint is $|x| \ge 3$?
- Objective: minimize 3|x| + y
 - > Add a variable t
 - > Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)
 - > Change the objective to minimize 3t + y
 - > What if the objective is to maximize 3|x| + y?
- Objective: minimize max(3x + y, x + 2y)
 - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing $\max(3x + y, -3x + y)$

Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:
 - 1. It is *infeasible*, i.e., $\{x | Ax \le b\} = \emptyset$

○ E.g., the set of constraints is $\{x_1 \le 1, -x_1 \le -2\}$

2. It is *unbounded*, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

○ E.g., "maximize x_1 subject to $x_1 \ge 0$ "

• But if the LP has an optimal solution, we know that there must be a vertex which is optimal

Simplex Algorithm

```
let v be any vertex of the feasible region while there is a neighbor v^\prime of v with better objective value: set v=v^\prime
```

- Simple algorithm
 - Easy to specify geometrically, but quite tricky to implement given just the LP in the standard form
- Worst-case running time
 - #vertices of feasible region can be exponential
 - Excellent performance in practice on many classes of LPs

Running Time for LPs

Year	Algorithm	Running Time
1947	Dantzig's Simplex	Exponential
1979	Khachiyan's Ellipsoid	$O(n^6L)$
1984	Karmarkar's projective method	$O(n^{3.5}L)$
1989	Vaidya's method	$O\left((n+m)^{1.5}nL\right)$
2019	Cohen, Lee, Song, Zhang	$\tilde{O}(n^{2+1/_6}L)$
2020	Jiang, Song, Weinstein, Zhang	$\tilde{O}(n^{2+1/_{18}}L)$

n = #variables

- m = #constraints
- L =#bits of input

Duality

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
 - Idea: They can give you very large LPs and you can quickly return the optimal solutions
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

- Suppose I tell you that $(x_1, x_2) = (100,300)$ is optimal with objective value 1900
- How can you check this?
 - Note: Can easily substitute (x₁, x₂), and verify that it is feasible, and its objective value is indeed 1900

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
 - E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- first_constraint + 6*second_constraint
 - $> x_1 + 6x_2 \le 200 + 6 * 300 = 2000$
 - > This shows that no feasible solution can beat 2000

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- 5*second_constraint + third_constraint
 - > $5x_2 + (x_1 + x_2) ≤ 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - $\,\circ\,$ No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - Note: These need not be integers. They can be reals.

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

• After multiplying and adding constraints, we get: $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

What do we want?

o y₁, y₂, y₃ ≥ 0 because otherwise direction of inequality flips o LHS to look like objective $x_1 + 6x_2$

- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 6$

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- $y_1, y_2, y_3 ≥ 0$ $○ y_1 + y_3 ≥ 1, y_2 + y_3 ≥ 6$
- Subject to these, we want to minimize the upper bound $200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 +$	x_2	\leq	400

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

 $\min \ 200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

PRIMAL

DUAL

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

min $200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- \circ For any (y_1, y_2, y_3) that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL

DUAL

 $\begin{array}{ll} \max \ x_1 + 6x_2 \\ x_1 \le 200 \\ x_2 \le 300 \\ x_1 + x_2 \le 400 \\ x_1, x_2 \ge 0 \end{array} \begin{array}{ll} \min \ 200y_1 + 300y_2 + 400y_3 \\ y_1 + y_3 \ge 1 \\ y_2 + y_3 \ge 6 \\ y_1, y_2, y_3 \ge 0 \end{array}$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x₁, x₂) and the corresponding (y₁, y₂, y₃) for proof of optimality
- Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - As we will see, this can't happen!

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

> General version, in our standard form for LPs

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

 $\circ c^T x$ for any feasible $x \leq y^T b$ for any feasible y

 $\circ \max_{\text{primal feasible } x} c^T x \le \min_{\text{dual feasible } y} y^T b$

• If there is (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both must be optimal

 \circ In fact, for optimal (x^* , y^*), we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:

> For any primal feasible x and dual feasible y, $c^T x \le y^T b$

• Proof:

$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

Strong duality theorem:

> For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$

Applications of Linear Programming

Network Flow via LP

• Problem

- ▶ Input: directed graph G = (V, E), edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- > Output: Value $v(f^*)$ of a maximum flow f^*
- Flow *f* is valid if:
 - ► Capacity constraints: $\forall(u, v) \in E: 0 \le f(u, v) \le c(u, v)$
 - ▶ Flow conservation: $\forall u: \sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$
- Maximize $v(f) = \sum_{(s,v) \in E} f(s,v)$

Linear constraints

Linear objective!

Network Flow via LP

Shortest Path via LP

• Problem

- ▶ Input: directed graph G = (V, E), edge weights $w: E \to \mathbb{R}_{\geq 0}$, source vertex *s*, target vertex *t*
- Output: weight of the shortest-weight path from s to t
- Variables: for each vertex v, we have variable d_v

could set all variables d_v to 0.

But...but...

- For these problems, we have different combinatorial algorithms that are much faster and run in strongly polynomial time
- Why would we use LP?
- For some problems, we don't have faster algorithms than solving them via LP

Multicommodity-Flow

• Problem:

- > Input: directed graph G = (V, E), edge capacities $c: E \to \mathbb{R}_{\geq 0}$, k commodities (s_i, t_i, d_i) , where s_i is source of commodity i, t_i is sink, and d_i is demand.
- Output: valid multicommodity flow (f₁, f₂, ..., f_k), where f_i has value d_i and all f_i jointly satisfy the constraints

The only known polynomial time algorithm for this problem is based on solving LP! $\sum_{v \in V} f_{iuv} - \sum_{v \in V} f_{ivu} = 0 \qquad \text{for each } i = 1, 2, \dots, k \text{ and for each } u \in V - \{s_i, t_i\},$ $\sum_{v \in V} f_{i,s_i,v} - \sum_{v \in V} f_{i,v,s_i} = d_i \qquad \text{for each } i = 1, 2, \dots, k \text{ ,}$ $f_{iuv} \geq 0 \qquad \text{for each } u \in V - \{s_i, t_i\},$

Integer Linear Programming

- Variable values are restricted to be integers
- Example:
 - > Input: $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
 - Goal:

Maximize $c^T x$ Subject to $Ax \le b$ $x \in \{0, 1\}^n$

• Does this make the problem easier or harder?

> Harder. We'll later prove that this is "NP-complete".

LPs are everywhere...

- > Microeconomics
- Manufacturing
- > VLSI (very large scale integration) design
- > Logistics/transportation
- Portfolio optimization
- > Bioengineering (flux balance analysis)
- Operations research more broadly: maximize profits or minimize costs, use linear models for simplicity
- > Design of approximation algorithms
- > Proving theorems, as a proof technique

≻ ...

- A canning company operates two canning plants (A and B).
- Three suppliers of fresh fruits: ---
- Shipping costs in \$/tonne: _____
- Plant capacities and labour costs:
 Capacity
 Capac

- S1: 200 tonnes at \$11/tonne
 S2: 210 tonnes at \$10/t
- S2: 310 tonnes at \$10/tonne
 - S3: 420 tonnes at \$9/tonne
- To: Plant A Plant B From: S1 3 3.5 S2 2 2.5 S3 6 4
- Plant A Plant B Capacity 460 tonnes 560 tonnes Labour cost \$26/tonne \$21/tonne
- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

- Similarly to the brewery example from earlier:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - The brewery cannot produce positive amounts of both A and B
 - Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - > The brewery can only produce *C* in integral quantities up to 100
 - Goal: maximize profit

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

- Similarly to the brewery example from the beginning:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - Goal: maximize profit, <u>but if there are multiple profit-maximizing</u> solutions, then...
 - Break ties to choose those with the largest quantity of A
 - Break any further ties to choose those with the largest quantity of *B*

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

