## CSC373

## Linear Programming

Illustration Courtesy:<br>Kevin Wayne \& Denis Pankratov

## Recap

- Network flow
> Ford-Fulkerson algorithm
- Ways to make the running time polynomial
> Correctness using max-flow, min-cut
> Applications:
- Edge-disjoint paths
- Multiple sources/sinks
- Circulation
- Circulation with lower bounds
- Survey design
- Image segmentation
- Profit maximization


## Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
> Per unit resource requirement and profit of the two items are as given below

| Beverage | Corn <br> (pounds) | Hops <br> (ounces) | Malt <br> (pounds) | Profit <br> $(\$)$ |
| :---: | :---: | :---: | :---: | :---: |
| Ale (barrel) | 5 | 4 | 35 | 13 |
| Beer (barrel) | 15 | 4 | 20 | 23 |
| constraint | 480 | 160 | 1190 |  |

## Brewery Example

| Beverage | Corn <br> (pounds) | Hops <br> (ounces) | Malt <br> (pounds) | Profit <br> $(\mathbf{)}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Ale (barrel) | 5 | 4 | 35 | 13 |
| Beer (barrel) | 15 | 4 | 20 | 23 |
| constraint | 480 | 160 | 1190 | objective function |

- Suppose it produces $A$ units of ale and $B$ units of beer
- Then we want to solve this program:



## Linear Function

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function if $f(x)=a^{T} x$ for some $a \in \mathbb{R}^{n}$ - Example: $f\left(x_{1}, x_{2}\right)=3 x_{1}-5 x_{2}=\binom{3}{-5}^{T}\binom{x_{1}}{x_{2}}$
- Linear objective: $f$
- Linear constraints:
$>g(x)=c$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
> Line in the plane (or a hyperplane in $\mathbb{R}^{n}$ )
$>$ Example: $5 x_{1}+7 x_{2}=10$



## Linear Function

- Geometrically, $a$ is the normal vector of the line(or hyperplane) represented by $a^{T} x=c$



## Linear Inequality

- $a^{T} x \leq c$ represents a "half-space"



## Linear Programming

- Maximize/minimize a linear function subject to linear equality/inequality constraints



## Geometrically...



## Back to Brewery Example



## Back to Brewery Example



## Optimal Vertex

- Claim: Regardless of the objective function, there must be a vertex that is an optimal solution



## Optimal Vertex

- Convex set: $S$ is convex if

$$
x, y \in S, \lambda \in[0,1] \Rightarrow \lambda x+(1-\lambda) y \in S
$$

- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set
vertex

not convex


## Optimal Vertex

- Intuitive proof of the claim:
> Start at some point $x$ in the feasible region
$>$ If $x$ is not a vertex:
- Find a direction $d$ such that points within a positive distance of $\epsilon$ from $x$ in both $d$ and $-d$ directions are within the feasible region
- Objective must not decrease in at least one of the two directions
- Follow that direction until you reach a new point $x$ for which at least one more constraint is "tight"
> Repeat until we are at a vertex



## LP, Standard Formulation

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are $n$ variables and $m$ constraints
- Goal:



## LP, Standard Matrix Form

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are $n$ variables and $m$ constraints
- Goal:



## LP Tricks I

- What if the LP is not in standard form?
> Constraints that use $\geq$
- $a^{T} x \geq b \Leftrightarrow-a^{T} x \leq-b$
> Constraints that use equality
○ $a^{T} x=b \Leftrightarrow a^{T} x \leq b, \quad a^{T} x \geq b$
> Objective function is a minimization
- Minimize $c^{T} x \Leftrightarrow$ Maximize $-c^{T} x$
> Variable is unconstrained
$\circ x$ with no constraint $\Leftrightarrow$ Replace $x$ by two variables $x^{\prime}$ and $x^{\prime \prime}$, replace every occurrence of $x$ with $x^{\prime}-x^{\prime \prime}$, and add constraints $x^{\prime} \geq 0, x^{\prime \prime} \geq 0$


## LP Transformation Example



## LP Tricks II

- Constraint: $|x| \leq 3$
> Replace with constraints $x \leq 3$ and $-x \leq 3$
$>$ What if the constraint is $|x| \geq 3$ ?
- Objective: minimize $3|x|+y$
> Add a variable $t$
> Add the constraints $t \geq x$ and $t \geq-x$ (so $t \geq|x|)$
> Change the objective to minimize $3 t+y$
> What if the objective is to maximize $3|x|+y$ ?
- Objective: minimize $\max (3 x+y, x+2 y)$
> Hint: minimizing $3|x|+y$ in the earlier bullet was equivalent to minimizing $\max (3 x+y,-3 x+y)$
- ...


## Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:

1. It is infeasible, i.e., $\{x \mid A x \leq b\}=\varnothing$

- E.g., the set of constraints is $\left\{x_{1} \leq 1,-x_{1} \leq-2\right\}$

2. It is unbounded, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

- E.g., "maximize $x_{1}$ subject to $x_{1} \geq 0$ "
- But if the LP has an optimal solution, we know that there must be a vertex which is optimal


## Simplex Algorithm

let $v$ be any vertex of the feasible region
while there is a neighbor $v^{\prime}$ of $v$ with better objective value: set $v=v^{\prime}$

- Simple algorithm
> Easy to specify geometrically, but quite tricky to implement given just the LP in the standard form
- Worst-case running time
> \#vertices of feasible region can be exponential
> Excellent performance in practice on many classes of LPs


## Running Time for LPs

| Year | Algorithm | Running Time |
| :--- | :--- | :---: |
| 1947 | Dantzig's Simplex | Exponential |
| 1979 | Khachiyan's Ellipsoid | $O\left(n^{6} L\right)$ |
| 1984 | Karmarkar's projective method | $O\left(n^{3.5} L\right)$ |
| 1989 | Vaidya's method | $O\left((n+m)^{1.5} n L\right)$ |
| 2019 | Cohen, Lee, Song, Zhang | $\tilde{O}\left(n^{2+1 / 6} L\right)$ |
| 2020 | Jiang, Song, Weinstein, Zhang | $\tilde{O}\left(n^{2+1 / 18} L\right)$ |

$n=$ \#variables
$m=$ \#constraints
$L=$ \#bits of input

## Duality

## Certificate of Optimality

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
> Idea: They can give you very large LPs and you can quickly return the optimal solutions
> Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?


## Certificate of Optimality

$$
\begin{aligned}
& \max x_{1} \\
&+6 x_{2} \\
& x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- Suppose I tell you that $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- How can you check this?
> Note: Can easily substitute ( $x_{1}, x_{2}$ ), and verify that it is feasible, and its objective value is indeed 1900


## Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- Any solution that satisfies these inequalities also satisfies their positive combinations
> E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
$>$ Try to take combinations which give you $x_{1}+6 x_{2}$ on LHS


## Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- first_constraint + 6*second_constraint
$>x_{1}+6 x_{2} \leq 200+6 * 300=2000$
> This shows that no feasible solution can beat 2000


## Certificate of Optimality

$\max x_{1}+6 x_{2}$
$x_{1} \leq 200$
$x_{2} \leq 300$
$x_{1}+x_{2} \leq 400$
$x_{1}, x_{2} \geq 0$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- 5*second_constraint + third_constraint
$>5 x_{2}+\left(x_{1}+x_{2}\right) \leq 5 * 300+400=1900$
> This shows that no feasible solution can beat 1900
- No need to proceed further
- We already know one solution that achieves 1900, so it must be optimal!


## Is There a General Algorithm?

- Introduce variables $y_{1}, y_{2}, y_{3}$ by which we will be multiplying the three constraints
> Note: These need not be integers. They can be reals.

| Multiplier | Inequality |  |
| :---: | :---: | :---: |
| $y_{1}$ | $x_{1}$ | $\leq 200$ |
| $y_{2}$ |  | $x_{2}$ |
| $y_{3}$ | $x_{1}+x_{2}$ | $\leq 400$ |

- After multiplying and adding constraints, we get:
$\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}$


## Is There a General Algorithm?

| Multiplier | Inequality |  |
| :---: | ---: | ---: |
| $y_{1}$ | $x_{1}$ | $\leq 200$ |
| $y_{2}$ |  | $x_{2} \leq 300$ |
| $y_{3}$ | $x_{1}+x_{2} \leq 400$ |  |

$>$ We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$ because otherwise direction of inequality flips
- LHS to look like objective $x_{1}+6 x_{2}$
- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want $y_{1}+y_{3} \geq 1$ and $y_{2}+y_{3} \geq 6$


## Is There a General Algorithm?

| Multiplier | Inequality |  |
| :---: | ---: | ---: |
| $y_{1}$ | $x_{1}$ | $\leq 200$ |
| $y_{2}$ |  | $x_{2}$ |
| $\leq 300$ |  |  |
| $y_{3}$ | $x_{1}+x_{2} \leq 400$ |  |

$>$ We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$
o $y_{1}+y_{3} \geq 1, y_{2}+y_{3} \geq 6$
- Subject to these, we want to minimize the upper bound $200 y_{1}+$ $300 y_{2}+400 y_{3}$


## Is There a General Algorithm?

| Multiplier | Inequality |  |
| :---: | ---: | ---: |
| $y_{1}$ | $x_{1}$ | $\leq 200$ |
| $y_{2}$ |  | $x_{2} \leq 300$ |
| $y_{3}$ | $x_{1}+x_{2} \leq 400$ |  |

$>$ We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

## Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

## DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP

- For any $\left(y_{1}, y_{2}, y_{3}\right)$ that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific $\left(y_{1}, y_{2}, y_{3}\right)$ for which this dual objective becomes equal to the primal objective for the ( $x_{1}, x_{2}$ ) given to you, then you would know that the given ( $x_{1}, x_{2}$ ) is optimal for primal (and your ( $y_{1}, y_{2}, y_{3}$ ) is optimal for dual)


## Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

## DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of $\left(x_{1}, x_{2}\right)$ given to me?
- You don't. Ask the other party to give you both $\left(x_{1}, x_{2}\right)$ and the corresponding ( $y_{1}, y_{2}, y_{3}$ ) for proof of optimality
- Issue 2: What if there are no $\left(y_{1}, y_{2}, y_{3}\right)$ for which dual objective matches primal objective under optimal solution $\left(x_{1}, x_{2}\right)$ ?
- As we will see, this can't happen!


## Is There a General Algorithm?

## Primal LP

$\max \mathbf{c}^{T} \mathbf{x}$
$\mathrm{Ax} \leq \mathrm{b}$
$x \geq 0$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

> General version, in our standard form for LPs

## Is There a General Algorithm?

## Primal LP

$$
\max \mathbf{c}^{T} \mathbf{x}
$$

$$
\mathbf{A x} \leq \mathbf{b}
$$

$$
x \geq 0
$$

## Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- $c^{T} x$ for any feasible $x \leq y^{T} b$ for any feasible $y$
$\bigcirc \max _{\text {primal feasible } x} c^{T} x \leq \min _{\text {dual feasible } y} y^{T} b$
- If there is $\left(x^{*}, y^{*}\right)$ with $c^{T} x^{*}=\left(y^{*}\right)^{T} b$, then both must be optimal
- In fact, for optimal $\left(x^{*}, y^{*}\right)$, we claim that this must happen!
- Does this remind you of something? Max-flow, min-cut...


## Weak Duality

## Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

## Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:
> For any primal feasible $x$ and dual feasible $y, c^{T} x \leq y^{T} b$
- Proof:

$$
c^{T} x \leq\left(y^{T} A\right) x=y^{T}(A x) \leq y^{T} b
$$

## Strong Duality

## Primal LP

$$
\max \mathbf{c}^{T} \mathbf{x}
$$

$$
\mathbf{A x} \leq \mathbf{b}
$$

$$
x \geq 0
$$

## Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Strong duality theorem:
> For any primal optimal $x^{*}$ and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$


This duality gap is zero

## Applications of Linear Programming

## Network Flow via LP

- Problem
> Input: directed graph $G=(V, E)$, edge capacities

$$
c: E \rightarrow \mathbb{R}_{\geq 0}
$$

> Output: Value $v\left(f^{*}\right)$ of a maximum flow $f^{*}$

- Flow $f$ is valid if:
> Capacity constraints: $\forall(u, v) \in E: 0 \leq f(u, v) \leq c(u, v)$
> Flow conservation: $\forall u: \sum_{(u, v) \in E} f(u, v)=\sum_{(v, u) \in E} f(v, u)$
- Maximize $v(f)=\sum_{(s, v) \in E} f(s, v)$


## Network Flow via LP

$$
\begin{array}{cc}
\operatorname{maximize} \sum_{(s, v) \in E} f_{s v} & \\
0 \leq f_{u v} \leq c(u, v) & \text { for all }(u, v) \in E \\
\sum_{(u, v) \in E} f_{u v}=\sum_{(v, w) \in E} f_{v, w} & \text { for all } v \in V \backslash\{s, t\}
\end{array}
$$

## Shortest Path via LP

- Problem
> Input: directed graph $G=(V, E)$, edge weights $w: E \rightarrow \mathbb{R}_{\geq 0}$, source vertex $s$, target vertex $t$
> Output: weight of the shortest-weight path from $s$ to $t$
- Variables: for each vertex $v$, we have variable $d_{v}$
Why max?
subject to
If objective was min., then we
could set all variables $d_{v}$ to 0.


## But...but...

- For these problems, we have different combinatorial algorithms that are much faster and run in strongly polynomial time
- Why would we use LP?
- For some problems, we don't have faster algorithms than solving them via LP


## Multicommodity-Flow

## - Problem:

> Input: directed graph $G=(V, E)$, edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$, $k$ commodities $\left(s_{i}, t_{i}, d_{i}\right)$, where $s_{i}$ is source of commodity $i, t_{i}$ is sink, and $d_{i}$ is demand.
> Output: valid multicommodity flow $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$, where $f_{i}$ has value $d_{i}$ and all $f_{i}$ jointly satisfy the constraints

The only known polynomial time algorithm for this problem
is based on solving LP!

$$
\begin{array}{rlrl}
\sum_{i=1}^{k} f_{i u v} & \leq c(u, v) & & \text { for each } u, v \in V \\
\sum_{v \in V} f_{i u v}-\sum_{v \in V} f_{i v u} & =0 & & \text { for each } i=1,2, \ldots, k \text { and } \\
\sum_{v \in V} f_{i, s_{i}, v}-\sum_{v \in V} f_{i, v, s_{i}} & =d_{i} & & \text { for each } i=1,2, \ldots, k \\
f_{i u v} & \geq 0 & & \text { for each } u \in V-\left\{s_{i}, t_{i}\right\} \\
& & \text { for each } i=1,2, \ldots, k
\end{array}
$$

## Integer Linear Programming

- Variable values are restricted to be integers
- Example:
> Input: $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
> Goal:

\[

\]

- Does this make the problem easier or harder?
> Harder. We'll later prove that this is "NP-complete".


## LPs are everywhere...

> Microeconomics
> Manufacturing
> VLSI (very large scale integration) design
> Logistics/transportation
> Portfolio optimization
> Bioengineering (flux balance analysis)
> Operations research more broadly: maximize profits or minimize costs, use linear models for simplicity
> Design of approximation algorithms
> Proving theorems, as a proof technique
> ...

## Exercise: Formulating LPs

- A canning company operates two canning plants ( A and B ).
- S1: 200 tonnes at $\$ 11$ /tonne
- S2: 310 tonnes at $\$ 10 /$ tonne
- S3: 420 tonnes at $\$ 9$ /tonne
- Three suppliers of fresh fruits:
- Shipping costs in \$/tonne: --------

|  |  | To: Plant A | Plant B |
| :---: | :--- | :--- | :--- |
| From: | S1 | 3 | 3.5 |
| S2 | 2 | 2.5 |  |
| S3 | 6 | 4 |  |

- Plant capacities and labour costs:


Plant A
460 tonnes
560 tonnes
$\$ 21 /$ tonne

- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit


## Exercise: Formulating LPs

- Similarly to the brewery example from earlier:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> The brewery cannot produce positive amounts of both A and B
> Goal: maximize profit

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
| :---: | :---: | :---: | :---: | :---: |
| A | 5 | 4 | 35 | 13 |
| B | 15 | 4 | 20 | 23 |
| C | 10 | 7 | 25 | 15 |
| Limit | 500 | 300 | 1000 |  |

## Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> The brewery can only produce $C$ in integral quantities up to 100
> Goal: maximize profit

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
| :---: | :---: | :---: | :---: | :---: |
| A | 5 | 4 | 35 | 13 |
| B | 15 | 4 | 20 | 23 |
| C | 10 | 7 | 25 | 15 |
| Limit | 500 | 300 | 1000 |  |

## Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> Goal: maximize profit, but if there are multiple profit-maximizing solutions, then...
- Break ties to choose those with the largest quantity of $A$
- Break any further ties to choose those with the largest quantity of $B$

| Beverage | Corn (kg) | Hops (kg) | Malt (kg) | Profit (\$) |
| :---: | :---: | :---: | :---: | :---: |
| A | 5 | 4 | 35 | 13 |
| B | 15 | 4 | 20 | 23 |
| C | 10 | 7 | 25 | 15 |
| Limit | 500 | 300 | 1000 |  |

