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Illustration Courtesy: 
Kevin Wayne & Denis Pankratov



Recap
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• Network flow
Ø Ford-Fulkerson algorithm
o Ways to make the running time polynomial

Ø Correctness using max-flow, min-cut
Ø Applications:
o Edge-disjoint paths
o Multiple sources/sinks
o Circulation 
o Circulation with lower bounds
o Survey design
o Image segmentation
o Profit maximization



Brewery	Example
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• A brewery can invest its inventory of corn, hops and malt 
into producing some amount of ale and some amount of 
beer
Ø Per unit resource requirement and profit of the two items are as 

given below

Example Courtesy: Kevin Wayne



Brewery	Example
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• Suppose it produces 𝐴 
units of ale and 𝐵 units 
of beer

• Then we want to solve 
this program:



Linear	Function
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• 𝑓:ℝ! → ℝ is a linear function if 𝑓 𝑥 = 𝑎"𝑥 for some 𝑎 ∈ ℝ!

Ø Example: 𝑓 𝑥!, 𝑥" = 3𝑥! − 5𝑥" =
#
$%

& '!
'"

• Linear objective: 𝑓
• Linear constraints: 

Ø 𝑔 𝑥 = 𝑐, where 𝑔:ℝ( → ℝ is a linear function and 𝑐 ∈ ℝ 
Ø Line in the plane (or a hyperplane in ℝ()
Ø Example: 5𝑥! + 7𝑥" = 10



Linear	Function
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• Geometrically, 𝑎 is the normal vector of the line(or 
hyperplane) represented by 𝑎"𝑥 = 𝑐



Linear	Inequality
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• 𝑎"𝑥 ≤ 𝑐 represents a “half-space”



Linear	Programming
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• Maximize/minimize a linear function subject to linear 
equality/inequality constraints



Geometrically…
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Back	to	Brewery	Example
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Back	to	Brewery	Example
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• Claim: Regardless of the objective function, there must be a 
vertex that is an optimal solution

Optimal	Vertex

373F23 - Nisarg Shah 12

OUT OF SYLLABUS



Optimal	Vertex
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• Convex set: 𝑆 is convex if 
𝑥, 𝑦 ∈ 𝑆, 𝜆 ∈ [0,1] ⇒ 𝜆𝑥 + 1 − 𝜆 𝑦 ∈ 𝑆

• Vertex: A point which cannot be written as a strict convex 
combination of any two points in the set

• Observation: Feasible region of an LP is a convex set

OUT OF SYLLABUS



Optimal	Vertex
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• Intuitive proof of the claim:
Ø Start at some point 𝑥 in the feasible region
Ø If 𝑥 is not a vertex:
o Find a direction 𝑑 such that points within a positive distance of 𝜖 from 𝑥 in 

both 𝑑 and −𝑑 directions are within the feasible region
o Objective must not decrease in at least one of the two directions
o Follow that direction until you reach a new point 𝑥 for which at least one 

more constraint is “tight”
Ø Repeat until we are at a vertex

OUT OF SYLLABUS



LP,	Standard	Formulation
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• Input: 𝑐, 𝑎', 𝑎(, … , 𝑎) ∈ ℝ!, 𝑏 ∈ ℝ)
Ø There are 𝑛 variables and 𝑚 constraints

• Goal:



LP,	Standard	Matrix	Form
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• Input: 𝑐, 𝑎', 𝑎(, … , 𝑎) ∈ ℝ!, 𝑏 ∈ ℝ)
Ø There are 𝑛 variables and 𝑚 constraints

• Goal:



LP	Tricks	I
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• What if the LP is not in standard form?
Ø Constraints that use ≥
o 𝑎!𝑥 ≥ 𝑏   ⇔  −𝑎!𝑥 ≤ −𝑏 

Ø Constraints that use equality
o 𝑎!𝑥 = 𝑏   ⇔  𝑎!𝑥 ≤ 𝑏, 	 𝑎!𝑥 ≥ 𝑏

Ø Objective function is a minimization
o Minimize 𝑐!𝑥   ⇔  Maximize −𝑐!𝑥

Ø Variable is unconstrained
o 𝑥 with no constraint  ⇔  Replace 𝑥 by two variables 𝑥"and 𝑥"", replace 

every occurrence of 𝑥 with 𝑥" − 𝑥"", and add constraints 𝑥" ≥ 0, 𝑥"" ≥ 0



LP	Transformation	Example
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LP	Tricks	II
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• Constraint: 𝑥 ≤ 3
Ø Replace with constraints 𝑥 ≤ 3 and −𝑥 ≤ 3
Ø What if the constraint is 𝑥 ≥ 3?

• Objective: minimize 3 𝑥 + 𝑦
Ø Add a variable 𝑡
Ø Add the constraints 𝑡 ≥ 𝑥 and 𝑡 ≥ −𝑥 (so 𝑡 ≥ |𝑥|)
Ø Change the objective to minimize 3𝑡 + 𝑦
Ø What if the objective is to maximize 3 𝑥 + 𝑦?

• Objective: minimize max(3𝑥 + 𝑦, 𝑥 + 2𝑦)
Ø Hint: minimizing 3 𝑥 + 𝑦 in the earlier bullet was equivalent to 

minimizing max(3𝑥 + 𝑦,−3𝑥 + 𝑦)

• …



Optimal	Solution
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• Does an LP always have an optimal solution?

• No! The LP can “fail” for two reasons:
1. It is infeasible, i.e., 𝑥	 𝐴𝑥 ≤ 𝑏} = ∅

o E.g., the set of constraints is 𝑥# ≤ 1,−𝑥#≤ −2

2. It is unbounded, i.e., the objective function can be made arbitrarily 
large (for maximization) or small (for minimization)
o E.g., “maximize 𝑥# subject to 𝑥# ≥ 0”

• But if the LP has an optimal solution, we know that there 
must be a vertex which is optimal



Simplex	Algorithm
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• Simple algorithm
Ø Easy to specify geometrically, but quite tricky to implement given just 

the LP in the standard form

• Worst-case running time
Ø #vertices of feasible region can be exponential
Ø Excellent performance in practice on many classes of LPs



Running	Time	for	LPs
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Year Algorithm Running Time

1947 Dantzig’s Simplex Exponential

1979 Khachiyan’s Ellipsoid 𝑂 𝑛$𝐿
1984 Karmarkar’s projective method 𝑂 𝑛%.'𝐿
1989 Vaidya’s method 𝑂 𝑛 +𝑚 #.'𝑛𝐿

2019 Cohen, Lee, Song, Zhang ;𝑂(𝑛() *# $	𝐿)
2020 Jiang, Song, Weinstein, Zhang ;𝑂(𝑛() *# #+	𝐿)

𝑛 = #variables
𝑚 = #constraints
𝐿 = #bits of input
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Duality



Certificate	of	Optimality
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• Suppose you design a state-of-the-art LP solver that can 
solve very large problem instances

• You want to convince someone that you have this new 
technology without showing them the code
Ø Idea: They can give you very large LPs and you can quickly return the 

optimal solutions
Ø Question: But how would they know that your solutions are optimal, 

if they don’t have the technology to solve those LPs?



Certificate	of	Optimality
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• Suppose I tell you that 𝑥', 𝑥( = (100,300) is optimal with 
objective value 1900

• How can you check this?
Ø Note: Can easily substitute (𝑥!, 𝑥"), and verify that it is feasible, and 

its objective value is indeed 1900



Certificate	of	Optimality
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• Any solution that satisfies these inequalities also satisfies 
their positive combinations
Ø E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
Ø Try to take combinations which give you 𝑥! + 6𝑥" on LHS

• Claim: 𝑥', 𝑥( = (100,300) is 
optimal with objective value 1900



Certificate	of	Optimality
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• first_constraint + 6*second_constraint
Ø 𝑥! + 6𝑥" ≤ 200 + 6 ∗ 300 = 2000
Ø This shows that no feasible solution can beat 2000

• Claim: 𝑥', 𝑥( = (100,300) is 
optimal with objective value 1900



Certificate	of	Optimality
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• 5*second_constraint + third_constraint
Ø 5𝑥" + 𝑥! + 𝑥" ≤ 5 ∗ 300 + 400 = 1900
Ø This shows that no feasible solution can beat 1900
o No need to proceed further
o We already know one solution that achieves 1900, so it must be 

optimal!

• Claim: 𝑥', 𝑥( = (100,300) is 
optimal with objective value 1900



Is	There	a	General	Algorithm?
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• Introduce variables 𝑦', 𝑦(, 𝑦> by which we will be 
multiplying the three constraints
Ø Note: These need not be integers. They can be reals.

• After multiplying and adding constraints, we get:
𝑦' + 𝑦> 𝑥' + 𝑦( + 𝑦> 𝑥( ≤ 200𝑦' + 300𝑦( + 400𝑦>



Is	There	a	General	Algorithm?
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Ø We have: 
𝑦! + 𝑦# 𝑥! + 𝑦" + 𝑦# 𝑥" ≤ 200𝑦! + 300𝑦" + 400𝑦#

Ø What do we want?
o 𝑦!, 𝑦", 𝑦# ≥ 0 because otherwise direction of inequality flips
o LHS to look like objective 𝑥! + 6𝑥"
• In fact, it is sufficient for LHS to be an upper bound on objective
• So, we want 𝑦! + 𝑦# ≥ 1 and 𝑦" + 𝑦# ≥ 6



Is	There	a	General	Algorithm?
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Ø We have: 
𝑦! + 𝑦# 𝑥! + 𝑦" + 𝑦# 𝑥" ≤ 200𝑦! + 300𝑦" + 400𝑦#

Ø What do we want?
o 𝑦!, 𝑦", 𝑦# ≥ 0
o 𝑦! + 𝑦# ≥ 1, 𝑦" + 𝑦# ≥ 6
o Subject to these, we want to minimize the upper bound 200𝑦! +
300𝑦" + 400𝑦#



Is	There	a	General	Algorithm?
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Ø We have: 
𝑦! + 𝑦# 𝑥! + 𝑦" + 𝑦# 𝑥" ≤ 200𝑦! + 300𝑦" + 400𝑦#

Ø What do we want?
o This is just another LP!
o Called the dual 
o Original LP is called the primal



Is	There	a	General	Algorithm?
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Ø The problem of verifying optimality is another LP
o For any 𝑦!, 𝑦", 𝑦#  that you can find, the objective value of the 

dual is an upper bound on the objective value of the primal
o If you found a specific 𝑦!, 𝑦", 𝑦#  for which this dual objective 

becomes equal to the primal objective for the (𝑥!, 𝑥") given to 
you, then you would know that the given 𝑥!, 𝑥"  is optimal for 
primal (and your (𝑦!, 𝑦", 𝑦#) is optimal for dual)



Is	There	a	General	Algorithm?
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Ø The problem of verifying optimality is another LP
o Issue 1: But…but…if I can’t solve large LPs, how will I solve the dual 

to verify if optimality of (𝑥!, 𝑥") given to me?
• You don’t. Ask the other party to give you both (𝑥!, 𝑥") and the 

corresponding 𝑦!, 𝑦", 𝑦#  for proof of optimality
o Issue 2: What if there are no (𝑦!, 𝑦", 𝑦#) for which dual objective 

matches primal objective under optimal solution (𝑥!, 𝑥")?
• As we will see, this can’t happen!



Is	There	a	General	Algorithm?
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Primal LP Dual LP

Ø General version, in our standard form for LPs



Is	There	a	General	Algorithm?
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Primal LP Dual LP

o 𝑐&𝑥 for any feasible 𝑥  ≤  𝑦&𝑏 for any feasible 𝑦

o max
)*+,-.	01-2+3.1	'

𝑐&𝑥 	≤ 	 min
45-.	01-2+3.1	6

𝑦&𝑏

o If there is (𝑥∗, 𝑦∗) with 𝑐&𝑥∗ = 𝑦∗ &𝑏, then both must be optimal

o In fact, for optimal 𝑥∗, 𝑦∗ , we claim that this must happen!
• Does this remind you of something? Max-flow, min-cut…



Weak	Duality
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• From here on, assume primal LP is feasible and bounded
• Weak duality theorem:

Ø For any primal feasible 𝑥 and dual feasible 𝑦, 𝑐&𝑥 ≤ 𝑦&𝑏

• Proof:
𝑐"𝑥 ≤ 𝑦"𝐴 𝑥 = 𝑦" 𝐴𝑥 ≤ 𝑦"𝑏

Primal LP Dual LP



Strong	Duality
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• Strong duality theorem:
Ø For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐&𝑥∗ = 𝑦∗ &𝑏

Primal LP Dual LP
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Applications of 
Linear Programming



Network	Flow	via	LP
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• Problem
Ø Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities 

 𝑐: 𝐸 → ℝ89
Ø Output: Value 𝑣 𝑓∗  of a maximum flow 𝑓∗

• Flow 𝑓 is valid if:
Ø Capacity constraints: ∀ 𝑢, 𝑣 ∈ 𝐸: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐(𝑢, 𝑣)
Ø Flow conservation: ∀𝑢:∑ :,< ∈> 𝑓 𝑢, 𝑣 = ∑ <,: ∈> 𝑓 𝑣, 𝑢

• Maximize 𝑣 𝑓 = ∑ ?,@ ∈B 𝑓 𝑠, 𝑣

Linear objective!

Linear constraints



Network	Flow	via	LP
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Q
(@,<)∈>

𝑓@<

0 ≤ 𝑓:< ≤ 𝑐 𝑢, 𝑣

Q
(:,<)∈>

𝑓:< = Q
(<,B)∈>

𝑓<,B

for all (𝑢, 𝑣) ∈ 𝐸

for all 𝑣 ∈ 𝑉\{𝑠, 𝑡}

maximize

Exercise: Write the dual of this LP. 
What is the dual trying to find?



Shortest	Path	via	LP
• Problem

Ø Input: directed graph 𝐺 = 𝑉, 𝐸 , edge weights 
𝑤:𝐸 → ℝ89, source vertex 𝑠, target vertex 𝑡

Ø Output: weight of the shortest-weight path from 𝑠 to 𝑡

• Variables: for each vertex 𝑣, we have variable 𝑑@

Why max?

If objective was min., then we 
could set all variables 𝑑# to 0.

Exercise: prove formally 
that this works!
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But…but…
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• For these problems, we have different combinatorial 
algorithms that are much faster and run in strongly 
polynomial time

• Why would we use LP?

• For some problems, we don’t have faster algorithms than 
solving them via LP



Multicommodity-Flow
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• Problem:
Ø Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities 𝑐: 𝐸 → ℝ89, 
𝑘 commodities (𝑠C, 𝑡C, 𝑑C), where 𝑠C is source of commodity 𝑖, 𝑡C is 
sink, and 𝑑C is demand.

Ø Output: valid multicommodity flow 𝑓!, 𝑓", … , 𝑓D , where 𝑓C has value 
𝑑C and all 𝑓C jointly satisfy the constraints

The only known polynomial 
time algorithm for this problem 

is based on solving LP!



Integer	Linear	Programming
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• Variable values are restricted to be integers
• Example:

Ø Input: 𝑐 ∈ ℝ(, 𝑏 ∈ ℝE, 𝐴 ∈ ℝE×(

Ø Goal:

Maximize       𝑐"𝑥
Subject to      𝐴𝑥 ≤ 𝑏

𝒙 ∈ {𝟎, 𝟏}𝒏

• Does this make the problem easier or harder?
Ø Harder. We’ll later prove that this is “NP-complete”.



LPs	are	everywhere…
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Ø Microeconomics
Ø Manufacturing
Ø VLSI (very large scale integration) design
Ø Logistics/transportation
Ø Portfolio optimization
Ø Bioengineering (flux balance analysis)
Ø Operations research more broadly: maximize profits or minimize 

costs, use linear models for simplicity
Ø Design of approximation algorithms
Ø Proving theorems, as a proof technique
Ø …



Exercise:	Formulating	LPs
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• A canning company operates two
canning plants (A and B). 
• Three suppliers of fresh fruits:

• Shipping costs in $/tonne:

• Plant capacities and labour costs:

• Selling price: $50/tonne, no limit

• Objective: Find which plant should get how much supply 
from each grower to maximize profit



Exercise:	Formulating	LPs
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• Similarly to the brewery example from earlier:
Ø A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer
Ø Per unit resource requirement and profit are as given below
Ø The brewery cannot produce positive amounts of both A and B
Ø Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000



Exercise:	Formulating	LPs

373F23 - Nisarg Shah 77

• Similarly to the brewery example from the beginning:
Ø A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer
Ø Per unit resource requirement and profit are as given below
Ø The brewery can only produce 𝐶 in integral quantities up to 100
Ø Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000



Exercise:	Formulating	LPs
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• Similarly to the brewery example from the beginning:
Ø A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer
Ø Per unit resource requirement and profit are as given below
Ø Goal: maximize profit, but if there are multiple profit-maximizing 

solutions, then…
o Break ties to choose those with the largest quantity of 𝐴
o Break any further ties to choose those with the largest quantity of 𝐵

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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