CSC373

Weeks 5,6:
 Network Flow

Nisarg Shah

Recap

- Dynamic Programming Basics
> Optimal substructure property
> Bellman equation
> Top-down (memoization) vs bottom-up implementations
- Dynamic Programming Examples
> Weighted interval scheduling
> Knapsack problem
> Single-source shortest paths
> Chain matrix product
> Edit distance (aka sequence alignment)
> Traveling salesman problem (TSP)

Network Flow

Network Flow

- Input
> A directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$
> Source node s, target node t
- Output
> Maximum "flow" from s to t

Network Flow

- Assumptions
> No edges enter s
> No edges leave t
> Edge capacity $c(e)$ is a nonnegative integer
- Later, we'll see what happens when $c(e)$ can be a rational or irrational number

Network Flow

- Flow
> An s - t flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}$
> Intuitively, $f(e)$ is the "amount of material" carried on edge e

Network Flow

- Constraints on flow f

1. Respecting capacities

$$
\forall e \in E: 0 \leq f(e) \leq c(e)
$$

2. Flow conservation
$\forall v \in V \backslash\{s, t\}: \sum_{e \text { entering } v} f(e)=\sum_{e \text { leaving } v} f(e)$

Flow in = flow out at every node other than s and t

Network Flow

- $f^{\text {in }}(v)=\sum_{e \text { entering } v} f(e)$
- $f^{\text {out }}(v)=\sum_{e \text { leaving } v} f(e)$
- Value of flow f is $v(f)=f^{\text {out }}(s)=f^{\text {in }}(t)$
- Q : Why is $f^{\text {out }}(s)=f^{\text {in }}(t)$?
- Restating the problem:
> Given a directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$, find a flow f^{*} with the maximum value.

First Attempt

- A natural greedy approach

1. Start from zero flow ($f(e)=0$ for each e).
2. While there exists an s - t path P in G such that $f(e)<c(e)$ for each $e \in P$
a. Find any such path P
b. Compute $\Delta=\min _{e \in P}(c(e)-f(e))$
c. Increase the flow on each edge $e \in P$ by Δ

- Note

Capacity and flow conservation constraints remain satisfied

First Attempt

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

$$
\text { ending flow value }=16
$$

flow network G and flow f

First Attempt

$$
\text { but max-flow value }=19
$$

flow network G and flow f

First Attempt

- Q: Why does the simple greedy approach fail?
- A: Because once it increases the flow on an edge, it is not allowed to decrease it ever in the future.
- Need a way to "reverse" bad decisions
flow network G

Reversing Bad Decisions

Suppose we start by sending
20 units of flow along this path

But the optimal configuration requires 10 fewer units of flow on $u \rightarrow v$

Reversing Bad Decisions

We can essentially send a "reverse" flow of 10 units along $v \rightarrow u$

So now we get this optimal flow

Residual Graph

- Suppose the current flow is f
- Define the residual graph G_{f} of flow f
> G_{f} has the same vertices as G
> For each edge $\mathrm{e}=(u, v)$ in G, G_{f} has at most two edges
- Forward edge $e=(u, v)$ with capacity $c(e)-f(e)$
- We can send this much additional flow on e
- Reverse edge $e^{r e v}=(v, u)$ with capacity $f(e)$
- The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is $f(e)$
- We only really add edges of capacity > 0

Residual Graph

- Example!

Flow f
Residual graph G_{f}

Augmenting Paths

- Let P be an $s-t$ path in the residual graph G_{f}
- Let bottleneck (P, f) be the smallest capacity across all edges in P
- "Augment" flow f by "sending" bottleneck (P, f) units of flow along P
$>$ What does it mean to send x units of flow along P ?
> For each forward edge $e \in P$, increase the flow on e by x
\Rightarrow For each reverse edge $e^{r e v} \in P$, decrease the flow on e by x

Residual Graph

- Example!

Flow f

Residual graph G_{f}

Path $P \rightarrow$ send flow $=$ bottleneck $=10$

Residual Graph

- Example!

New flow f

New residual graph G_{f}

No s - t path because no outgoing edge from s

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Capacity constraints (easy):
> If we increase flow on e, we can do so by at most the capacity of forward edge e in G_{f}, which is $c(e)-f(e)$
- So, the new flow can be at most $f(e)+(c(e)-f(e))=c(e)$
> If we decrease flow on e, we can do so by at most the capacity of reverse edge $e^{\text {rev }}$ in G_{f}, which is $f(e)$
\circ So, the new flow is at least $f(e)-f(e)=0$

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Flow conservation (a bit trickier):
> Each node on the path (except s and t) has exactly two incident edges
- Both forward / both reverse \Rightarrow one is incoming, one is outgoing
- Flow increased on both or decreased on both
- One forward, one reverse \Rightarrow both incoming / both outgoing
- Flow increased on one but decreased on the other
- In each case, net flow remains 0

Edge directions as in G

Ford-Fulkerson Algorithm

MaxFlow(G):

```
// initialize:
Set f(e)=0 for all e in G
```

// while there is an $s-t$ path in G_{f} :
While $P=$ FindPath(s, t,Residual $(G, f))!=$ None:
$f=\operatorname{Augment}(f, P)$
UpdateResidual(G, f)
EndWhile
Return f

Ford-Fulkerson Algorithm

- Running time:
> \#Augmentations:
- At every step, flow and capacities remain integers

○ For path P in G_{f}, bottleneck $(P, f)>0$ implies $\operatorname{bottleneck}(P, f) \geq 1$

- Each augmentation increases flow by at least 1
- Max flow (hence max \#augmentations) is at most $C=\sum_{e \text { leaving } s} c(e)$
> Time to perform an augmentation:
- G_{f} has n vertices and at most $2 m$ edges
- Finding P, computing bottleneck (P, f), updating G_{f}
- $O(m+n)$ time
> Total time: $O((m+n) \cdot C)$

Ford-Fulkerson Algorithm

- Total time: $O((m+n) \cdot C)$
> This is NOT polynomial time
> The value of C can be exponentially large in the input length (the number of bits required to write down the edge capacities)
> Note: While we assumed integer capacities, we know that the algorithm must always terminate even with rational capacities.
- Why?
- With irrational capacities, there is an example in which the algorithm never terminates.
- Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

- Q: Can we convert this to polynomial time?
> Not if we choose an arbitrary path in G_{f} at each step
> In the graph below, we might end up repeatedly sending 1 unit of flow across $a \rightarrow b$ and then reversing it
- Takes X steps, which can be exponential in the input length

Ford-Fulkerson Algorithm

- Ways to achieve polynomial time
> Find the maximum bottleneck capacity augmenting path
- Runs in $O\left(m^{2} \cdot \log C\right)$ operations
> Find the shortest augmenting path using BFS
- Edmonds-Karp algorithm
- Runs in $O\left(\mathrm{~nm}^{2}\right)$ operations
- Can be found in CLRS
> ...

Max Flow Problem

- Race to reduce the running time
> 1972: $O\left(\mathrm{n} \mathrm{m}^{2}\right)$ Edmonds-Karp
> 1980: $O\left(n m \log ^{2} n\right)$ Galil-Namaad
> 1983: $O(n m \log n)$ Sleator-Tarjan
$>$ 1986: $O\left(n m \log \left(n^{2} / m\right)\right)$ Goldberg-Tarjan
> 1992: $O\left(n m+n^{2+\epsilon}\right)$ King-Rao-Tarjan
> 1996: $O\left(n m \frac{\log n}{\log m / n \log n}\right)$ King-Rao-Tarjan
- Note: These are $O(n m)$ when $m=\omega(n)$
> 2013: O(nm) Orlin
- Breakthrough!
> 2021: $O\left(\left(m+n^{1.5}\right) \cdot \log X\right)$, where $X=$ max edge capacity - Breakthrough based on very heavy techniques!

Back to Ford-Fulkerson

- We argued that the algorithm must terminate, and must terminate in $O((m+n) \cdot C)$ time
- But we didn't argue correctness yet, i.e., the algorithm must terminate with the optimal flow

Cuts and Cut Capacities

- (A, B) is an s - t cut if it is a partition of vertex set V (i.e., $A \cup B=V$, $A \cap B=\emptyset)$ with $s \in A$ and $t \in B$
- Its capacity, denoted $\operatorname{cap}(A, B)$, is the sum of capacities of edges leaving A

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f)=f^{o u t}(A)-f^{\text {in }}(A)
$$

- Proof (on the board): Just take a sum of the flow conservation constraint over all nodes in A

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f) \leq \operatorname{cap}(A, B)
$$

- Proof:

$$
\begin{aligned}
v(f) & =f^{\text {out }}(A)-f^{\text {in }}(A) \\
& \leq f^{\text {out }}(A) \\
& =\sum_{e \text { leaving } A} f(e) \\
& \leq \sum_{e \text { leaving } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f) \leq \operatorname{cap}(A, B)
$$

- Hence, $\max _{f} v(f) \leq \min _{(A, B)} \operatorname{cap}(A, B)$
> Max value of any flow \leq min capacity of any $s-t$ cut
- We will now prove:
> Value of flow generated by Ford-Fulkerson = capacity of some cut
- Implications
> 1) Max flow = min cut
> 2) Ford-Fulkerson generates max flow.

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> $f=$ flow returned by Ford-Fulkerson
$>A^{*}=$ nodes reachable from s in G_{f}
$>B^{*}=$ remaining nodes $V \backslash A^{*}$
> Note: We look at the residual graph G_{f}, but define the cut in G

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Claim: $\left(A^{*}, B^{*}\right)$ is a valid cut
$\circ s \in A^{*}$ by definition
- $t \in B^{*}$ because when Ford-Fulkerson terminates, there are no $s-t$ paths in G_{f}, so $t \notin A^{*}$

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Blue edges = edges going out of A^{*} in G
$>$ Red edges = edges coming into A^{*} in G

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Each blue edge (u, v) must be saturated
\circ Otherwise G_{f} would have its forward edge (u, v) and then $v \in A^{*}$
> Each red edge (v, u) must have zero flow
- Otherwise G_{f} would have its reverse edge (u, v) and then $v \in A^{*}$

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Each blue edge (u, v) must be saturated $\Rightarrow f^{o u t}\left(A^{*}\right)=\operatorname{cap}\left(A^{*}, B^{*}\right)$
> Each red edge (v, u) must have zero flow $\Rightarrow f^{\text {in }}\left(A^{*}\right)=0$
$>$ So $v(f)=f^{\text {out }}\left(A^{*}\right)-f^{\text {in }}\left(A^{*}\right)=\operatorname{cap}\left(A^{*}, B^{*}\right) ■$

Max Flow - Min Cut

- Max Flow-Min Cut Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Our proof already gives an algorithm to find a min cut
> Run Ford-Fulkerson to find a max flow f
> Construct its residual graph G_{f}
$>$ Let $A^{*}=$ set of all nodes reachable from s in G_{f}
- Easy to compute using BFS
> Then $\left(A^{*}, V \backslash A^{*}\right)$ is a min cut

Poll

Question

- There is a network G with positive integer edge capacities.
- You run Ford-Fulkerson.
- It finds an augmenting path with bottleneck capacity 1 , and after that iteration, it terminates with a final flow value of 1.
- Which of the following statement(s) must be correct about G ?
(a) G has a single $s-t$ path.
(b) G has an edge e such that all $s-t$ paths go through e.
(c) The minimum cut capacity in G is greater than 1 .
(d) The minimum cut capacity in G is less than 1 .

Why Study Flow Networks?

- Unlike divide-and-conquer, greedy, or DP, this doesn't seem like an algorithmic framework
> It seems more like a single problem
- Turns out that many problems can be reduced to this versatile single problem
- Next lecture!

Network Flow Applications

Rail network connecting Soviet Union with Eastern European countries
(Tolstoì 1930s)

Rail network connecting Soviet Union with Eastern European countries
(Tolstoǐ 1930s)

Integrality Theorem

- Before we look at applications, we need the following special property of the max-flow computed by FordFulkerson and its variants
- Observation:
> If edge capacities are integers, then the max-flow computed by FordFulkerson and its variants are also integral (i.e., the flow on each edge is an integer).
> Easy to check that each augmentation step preserves integral flow

Bipartite Matching

- Problem
> Given a bipartite graph $G=(U \cup V, E)$, find a maximum cardinality matching
- We do not know any efficient greedy or dynamic programming algorithm for this problem.
- But it can be reduced to max-flow.

Bipartite Matching

- Create a directed flow graph where we...
> Add a source node s and target node t
> Add edges, all of capacity 1 :
○ $s \rightarrow u$ for each $u \in U, v \rightarrow t$ for each $v \in V$
- $u \rightarrow v$ for each $(u, v) \in E$

Bipartite Matching

- Observation
> There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- Proof: (matching \Rightarrow integral flow)
> Take a matching $M=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}$ of size k
> Construct the corresponding unique flow f_{M} where...
- Edges $s \rightarrow u_{i}, u_{i} \rightarrow v_{i}$, and $v_{i} \rightarrow t$ have flow 1 , for all $i=1, \ldots, k$
- The rest of the edges have flow 0
> This flow has value k

Bipartite Matching

- Observation
> There is a 1-1 correspondence between matchings of size k in the original graph and flows with value k in the corresponding flow network.
- Proof: (integral flow \Rightarrow matching)
> Take any flow f with value k
> The corresponding unique matching $M_{f}=$ set of edges from U to V with a flow of 1
- Since flow of k comes out of s, unit flow must go to k distinct vertices in U
- From each such vertex in U, unit flow goes to a distinct vertex in V
- Uses integrality theorem

Bipartite Matching

- Perfect matching $=$ flow with value n
> where $n=|U|=|V|$
- Recall naïve Ford-Fulkerson running time:
$>O((m+n) \cdot C)$, where $C=$ sum of capacities of edges leaving s
> Q : What's the runtime when used for bipartite matching?
- Some variants are faster...
> Dinitz's algorithm runs in time $O(m \sqrt{n})$ when all edge capacities are 1

Hall's Marriage Theorem

- When does a bipartite graph have a perfect matching?
> Well, when the corresponding flow network has value n
> But can we interpret this condition in terms of edges of the original bipartite graph?
> For $S \subseteq U$, let $N(S) \subseteq V$ be the set of all nodes in V adjacent to some node in S
- Observation:
> If G has a perfect matching, $|N(S)| \geq|S|$ for each $S \subseteq U$
> Because each node in S must be matched to a distinct node in $N(S)$

Hall's Marriage Theorem

- We'll consider a slightly different flow network, which is still equivalent to bipartite matching
> All $U \rightarrow V$ edges now have ∞ capacity
> $s \rightarrow U$ and $V \rightarrow t$ edges are still unit capacity

Hall's Marriage Theorem

- Hall's Theorem:
> G has a perfect matching iff $|N(S)| \geq|S|$ for each $S \subseteq V$
- Proof (reverse direction, via network flow):
> Suppose G doesn't have a perfect matching
> Hence, max-flow $=$ min-cut $<n$
> Let (A, B) be the min-cut
- Can't have any $U \rightarrow V$ (∞ capacity edges)
- Has unit capacity edges $s \rightarrow U \cap B$ and $V \cap A \rightarrow t$

Hall's Marriage Theorem

- Hall's Theorem:
> G has a perfect matching iff $|N(S)| \geq|S|$ for each $S \subseteq V$
- Proof (reverse direction, via network flow):
$>\operatorname{cap}(A, B)=|U \cap B|+|V \cap A|<n=|U|$
> So $|V \cap A|<|U \cap A|$
> But $N(U \cap A) \subseteq V \cap A$ because the cut doesn't include any ∞ edges
> So $|N(U \cap A)| \leq|V \cap A|<|U \cap A|$.

Some Notes

- Runtime for bipartite perfect matching
> 1955: $O(\mathrm{mn}) \rightarrow$ Ford-Fulkerson
> 1973: $O(m \sqrt{n}) \rightarrow$ blocking flow (Hopcroft-Karp, Karzanov)
$>$ 2004: $O\left(n^{2.378}\right) \rightarrow$ fast matrix multiplication (Mucha-Sankowsi)
> 2013: $\tilde{O}\left(m^{10 / 7}\right) \rightarrow$ electrical flow (Mądry)
> Best running time is still an open question
- Nonbipartite graphs
> Hall's theorem \rightarrow Tutte's theorem
> 1965: $O\left(n^{4}\right) \rightarrow$ Blossom algorithm (Edmonds)
$>$ 1980/1994: $O(m \sqrt{n}) \rightarrow$ Micali-Vazirani

Edge-Disjoint Paths

- Problem
> Given a directed graph $G=(V, E)$, two nodes s and t, find the maximum number of edge-disjoint $s \rightarrow t$ paths
\Rightarrow Two $s \rightarrow t$ paths P and P^{\prime} are edge-disjoint if they don't share an edge

Edge-Disjoint Paths

- Application:
> Communication networks
- Max-flow formulation
> Assign unit capacity on all edges

Edge-Disjoint Paths

- Theorem:
> There is 1-1 correspondence between sets of k edge-disjoint $s \rightarrow t$ paths and integral flows of value k
- Proof (paths \rightarrow flow)
> Let $\left\{P_{1}, \ldots, P_{k}\right\}$ be a set of k edge-disjoint $s \rightarrow t$ paths
> Define flow f where $f(e)=1$ whenever $e \in P_{i}$ for some i, and 0 otherwise
> Since paths are edge-disjoint, flow conservation and capacity constraints are satisfied
> Unique integral flow of value k

Edge-Disjoint Paths

- Theorem:
> There is 1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths and integral flows of value k
- Proof (flow \rightarrow paths)
> Let f be an integral flow of value k
> k outgoing edges from s have unit flow
> Pick one such edge (s, u_{1})
- By flow conservation, u_{1} must have unit outgoing flow (which we haven't used up yet).
- Pick such an edge and continue building a path until you hit t
> Repeat this for the other $k-1$ edges from s with unit flow

Edge-Disjoint Paths

- Maximum number of edge-disjoint $s \rightarrow t$ paths
> Equals max flow in this network
> By max-flow min-cut theorem, also equals minimum cut
> Exercise: minimum cut = minimum number of edges we need to delete to disconnect s from t
- Hint: Show each direction separately (\leq and \geq)

Edge-Disjoint Paths

- Exercise!
> Show that to compute the maximum number of edge-disjoint s - t paths in an undirected graph, you can create a directed flow network by adding each undirected edge in both directions and setting all capacities to 1
- Menger's Theorem
> In any directed/undirected graph, the maximum number of edgedisjoint (resp. vertex-disjoint) $s \rightarrow t$ paths equals the minimum number of edges (resp. vertices) whose removal disconnects s and t

Multiple Sources/Sinks

- Problem
> Given a directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{N}$, sources s_{1}, \ldots, s_{k} and sinks t_{1}, \ldots, t_{ℓ}, find the maximum total flow from sources to sinks.

Multiple Sources/Sinks

- Network flow formulation
> Add a new source s, edges from s to each s_{i} with ∞ capacity
> Add a new sink t, edges from each t_{j} to t with ∞ capacity
> Find max-flow from s to t
> Claim: 1 - 1 correspondence between flows in two networks

Circulation

Input

> Directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{N}$
> Node demands $d: V \rightarrow \mathbb{Z}$

- Output
> Some circulation $f: E \rightarrow \mathbb{N}$ satisfying
- For each $e \in E: 0 \leq f(e) \leq c(e)$
- For each $v \in V: \sum_{e \text { entering } v} f(v)-\sum_{e \text { leaving } v} f(v)=d(v)$
$>$ Note that you need $\sum_{v: d(v)>0} d(v)=\sum_{v: d(v)<0}-d(v)$
> What are demands?

Circulation

- Demand at $v=$ amount of flow you need to take out at node v
$>d(v)>0$: You need to take some flow out at v
- So, there should be $d(v)$ more incoming flow than outgoing flow
- "Demand node"
$>d(v)<0$: You need to put some flow in at v
\circ So, there should be $|d(v)|$ more outgoing flow than incoming flow
- "Supply node"
$>d(v)=0$: Node has flow conservation
- Equal incoming and outgoing flows
- "Transshipment node"

Circulation

- Example

Circulation

- Network-flow formulation G^{\prime}
> Add a new source s and a new $\operatorname{sink} t$
> For each "supply" node v with $d(v)<0$, add edge (s, v) with capacity $-d(v)$
> For each "demand" node v with $d(v)>0$, add edge (v, t) with capacity $d(v)$
- Claim:
> G has a circulation iff G^{\prime} has max flow of value

$$
\sum_{v: d(v)>0} d(v)=\sum_{v: d(v)<0}-d(v)
$$

Circulation

- Example

Circulation

- Example

Circulation with Lower Bounds

Input

> Directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{N}$ and lower bounds $\ell: E \rightarrow \mathbb{N}$
> Node demands $d: V \rightarrow \mathbb{Z}$

- Output
> Some circulation $f: E \rightarrow \mathbb{N}$ satisfying
- For each $e \in E: \ell(e) \leq f(e) \leq c(e)$
- For each $v \in V: \sum_{e \text { entering } v} f(v)-\sum_{e \text { leaving } v} f(v)=d(v)$
> Note that you still need $\sum_{v: d(v)>0} d(v)=\sum_{v: d(v)<0}-d(v)$

Circulation with Lower Bounds

- Transform to circulation without lower bounds
> Do the following operation to each edge

capacity

flow network G'
- Claim: Circulation in G iff circulation in G^{\prime}
> Proof sketch: $f(e)$ gives a valid circulation in G iff $f(e)-\ell(e)$ gives a valid circulation in G^{\prime}

Survey Design

- Problem

> We want to design a survey about m products

- We have one question in mind for each product
- Need to ask product j 's question to between p_{j} and p_{j}^{\prime} consumers
> There are a total of n consumers
- Consumer i owns a subset of products O_{i}
- We can ask consumer i questions about only these products
- We want to ask consumer i between c_{i} and c_{i}^{\prime} questions
$>$ Is there a survey meeting all these requirements?

Survey Design

- Bipartite matching is a special case
$>c_{i}=c_{i}^{\prime}=p_{j}=p_{j}^{\prime}=1$ for all i and j
- Formulate as circulation with lower bounds
> Create a network with special nodes s and t
> Edge from s to each consumer i with flow $\in\left[c_{i}, c_{i}^{\prime}\right]$
> Edge from each consumer i to each product $j \in O_{i}$ with flow $\in[0,1]$
> Edge from each product j to t with flow $\in\left[p_{j}, p_{j}^{\prime}\right]$
> Edge from t to s with flow in $[0, \infty]$
> All demands and supplies are 0

Survey Design

- Max-flow formulation:
> Feasible survey iff feasible circulation in this network

Image Segmentation

- Foreground/background segmentation
> Given an image, separate "foreground" from "background"
- Here's the power of PowerPoint (or the lack thereof)

Image Segmentation

- Foreground/background segmentation
> Given an image, separate "foreground" from "background"
- Here's what remove.bg gets using AI

Image Segmentation

- Informal problem
> Given an image (2D array of pixels), and likelihood estimates of different pixels being foreground/background, label each pixel as foreground or background
> Want to prevent having too many neighboring pixels where one is labeled foreground but the other is labeled background

Image Segmentation

- Input
> An image (2D array of pixels)
> $a_{i}=$ likelihood of pixel i being in foreground
$>b_{i}=$ likelihood of pixel i being in background
> $p_{i, j}=$ penalty for "separating" pixels i and j (i.e. labeling one of them as foreground and the other as background)
- Output
> Label each pixel as "foreground" or "background"
> Minimize "total penalty"
- Want it to be high if a_{i} is high but i is labeled background, b_{i} is high but i is labeled foreground, or $p_{i, j}$ is high but i and j are separated

Image Segmentation

- Recall
$>a_{i}=$ likelihood of pixels i being in foreground
> $b_{i}=$ likelihood of pixels i being in background
> $p_{i, j}=$ penalty for separating pixels i and j
> Let $E=$ pairs of neighboring pixels
- Output
> Minimize total penalty
○ $A=$ set of pixels labeled foreground
- $B=$ set of pixels labeled background
- Penalty =

$$
\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\|A \cap\{i, j\}|=1}} p_{i, j}
$$

Image Segmentation

- Formulate as a min-cut problem
> Want to divide the set of pixels V into (A, B) to minimize

$$
\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\|A \cap\{i, j\}|=1}} p_{i, j}
$$

> Nodes:

- source s, target t, and v_{i} for each pixel i
> Edges:
○ $\left(s, v_{i}\right)$ with capacity a_{i} for all i
- $\left(v_{i}, t\right)$ with capacity b_{i} for all i
$\circ\left(v_{i}, v_{j}\right)$ and $\left(v_{j}, v_{i}\right)$ with capacity $p_{i, j}$ each for all neighboring (i, j)

Image Segmentation

- Formulate as min-cut problem
> Here's what the network looks like

Image Segmentation

> Consider the min-cut (A, B)

$$
\operatorname{cap}(A, B)=\sum_{i \in A} b_{i}+\sum_{j \in B} a_{j}+\sum_{\substack{(i, j) \in E \\ i \in A, j \in B}} p_{i, j}
$$

If i and j are labeled differently, it will add $p_{i, j}$ exactly once
> Exactly what we want to minimize!

Image Segmentation

- GrabCut [Rother-Kolmogorov-Blake 2004]
"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother*

Vladimir Kolmogorov ${ }^{\dagger}$
Microsoft Research Cambridge, UK

Andrew Blake ${ }^{\ddagger}$

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Profit Maximization (Yeaa...!)

- Problem
> There are n tasks
> Performing task i generates a profit of p_{i}
- We allow $p_{i}<0$ (i.e., performing task i may be costly)
> There is a set E of precedence relations
$\circ(i, j) \in E$ indicates that if we perform i, we must also perform j
- Goal
> Find a subset of tasks S which, subject to the precedence constraints, maximizes $\operatorname{profit}(S)=\sum_{i \in S} p_{i}$

Profit Maximization

- We can represent the input as a graph
> Nodes = tasks, node weights = profits,
> Edges = precedence constraints
> Goal: find a subset of nodes S with highest total weight s.t. if $i \in S$ and $(i, j) \in E$, then $j \in S$ as well

Profit Maximization

- Want to formulate as a min-cut
> Add source s and target t
$>$ min-cut $(A, B) \Rightarrow$ want desired solution to be $S=A \backslash\{s\}$
> Goals:
- $\operatorname{cap}(A, B)$ should nicely relate to $\operatorname{profit}(S)$
- Precedence constraints must be respected
- "Hard" constraints are usually enforced using infinite capacity edges
- Construction:
> Add each $(i, j) \in E$ with infinite capacity
> For each i :
- If $p_{i}>0$, add (s, i) with capacity p_{i}
- If $p_{i}<0$, add (i, t) with capacity $-p_{i}$

Profit Maximization

Profit Maximization

Profit Maximization

QUESTION: What is the capacity of this cut?

Profit Maximization

Exercise: Show that...

1. A finite capacity cut exists.
2. If $\operatorname{cap}(A, B)$ is finite, then $A \backslash\{s\}$ is a valid solution;
3. Minimizing $\operatorname{cap}(A, B)$ maximizes $\operatorname{profit}(A \backslash\{s\})$

- Show that $\operatorname{cap}(A, B)=\mathrm{constant}-\operatorname{profit}(A \backslash\{s\})$, where the constant is independent of the choice of (A, B)

