CSC373

Weeks 5,6:
Network Flow

Nisarg Shah

Recap

* Dynamic Programming Basics
> Optimal substructure property
> Bellman equation
> Top-down (memoization) vs bottom-up implementations

* Dynamic Programming Examples
» Weighted interval scheduling
> Knapsack problem
> Single-source shortest paths
> Chain matrix product
> Edit distance (aka sequence alignment)
> Traveling salesman problem (TSP)

373F23 - Nisarg Shah 2

Network Flow

Network Flow

4)

* Input
> Adirected graph G = (V,E) @ @
> Edge capacitiesc : E = Ry 20 < / 20
» Source node s, target node t @ 30 o 30 ‘@

10 10 ’

: N Y v
Output . _>®
»> Maximum “flow” fromstot

_ J

373F23 - Nisarg Shah 4

Network Flow

* Assumptions
> No edges enter s

> No edges leave t @ @
Pd

> Edge capacity c(e) is a non- "o / 20
negative integer 30 30 \®
o Later, we’ll see what happens 10 p
when c(e) can be a rational or 10 10

irrational number \ v y
o —=(w)

373F23 - Nisarg Shah 5

Network Flow

* Flow
> An s-t flow is a function f: E = R
> Intuitively, f(e) is the “amount of material” carried on edge e

373F23 - Nisarg Shah

Network Flow

* Constraints on flow f

1. Respecting capacities
VeeE:0<f(e) <c(e)

2. Flow conservation

Vv eV \ {s,t}: Ze entering v f(e) = Zeleavingv f(e)

Flow in = flow out at every
node other than s and t

373F23 - Nisarg Shah

Network Flow

* fin(v) = De entering v f(e)
* fout(v) — Zeleavingv f(e)

* Value of flow f is v(f) = fOU(s) = f™(¢)
> Q: Why is fO%(s) = fI*(t)?

e Restating the problem:

> Given a directed graph G = (V, E) with edge capacities c: E = R,
find a flow f™* with the maximum value.

373F23 - Nisarg Shah 8

First Attempt

* A natural greedy approach
1. Start from zero flow (f(e) = 0 for each e).

2. While there exists an s-t path P in G such that f(e) < c(e) for
eache € P

a. Find any such path P
b. Compute A = Ig}EIIIJI(C(e) — f(e))

c. Increase the flow on each edgee € P by A

* Note
» Capacity and flow conservation constraints remain satisfied

373F23 - Nisarg Shah 9

First Attempt

flow capacity
flow network G and flow f \ /
£ 0/4 ()
X
O 0
Q\\ 0/2 o 0/6

O SRV SR

373F23 - Nisarg Shah

value of flow

First Attempt

flow network G and flow f

fai 0/4 ()
| e |

373F23 - Nisarg Shah

First Attempt

flow network G and flow f

() 0/4 ()

(s/omo <> 0/9\<>_§/10_)<t> 0 +8=38

373F23 - Nisarg Shah

First Attempt

flow network G and flow f

ST

2-9/2 6’/& 0/6 oo

</0/10 9/9_)()_1{2/10_)(9. 8 +2=10

373F23 - Nisarg Shah

First Attempt

flow network G and flow f

i
O 0/4 \
O T

22 & 6 6-/6
o / s /

N

O ¢/ 10 (e %/9_,0 10/10— (1) 10+6-16

373F23 - Nisarg Shah

First Attempt

ending flow value = 16

flow network G and flow f
Q——@
& /

212 s . 6/6

@ 6/10 <~> 8/9 CD

373F23 - Nisarg Shah

10/10

PR
16
@

First Attempt

but max-flow value = 19

flow network G and flow f

*e—:—@
\Q\\Q 0/2)/a 6/6

@ @———Q

373F23 - Nisarg Shah

10/10

First Attempt

* Q: Why does the simple greedy approach fail?

* A: Because once it increases the flow on an edge, it is not
allowed to decrease it ever in the future.

o 14
° Need d Way to “reverse flow network G

bad decisions @* ,

l |

:

373F23 - Nisarg Shah

Reversing Bad Decisions

Suppose we start by sending But the optimal configuration requires
20 units of flow along this path 10 fewer units of flowonu = v
PO
20/20 0/10 20/20 10/10
G{ 20/30 :@ @(10/30 :@
0/10 20/20 10/10 20/20

373F23 - Nisarg Shah

Reversing Bad Decisions

We can essentially send a “reverse” So now we get this optimal flow

flow of 10 units alongv = u
/C%

20/20 10/10 20/20 10/10
(10 20/30 }3) (10/30 }3}
10/10\ | 20/20 10/10 | 20/20

373F23 - Nisarg Shah

Residual Graph

* Suppose the current flow is f

* Define the residual graph G¢ of flow f

> Gy has the same vertices as G
> For each edge e = (u, v) in G, Gy has at most two edges

o Forward edge e = (u, v) with capacity c(e) — f(e)
* We can send this much additional flow on e

o Reverse edge e"®Y = (v, u) with capacity f(e)

e The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on e, which is f (e)

o We only really add edges of capacity > 0

373F23 - Nisarg Shah

Residual Graph

* Example!
Flow f Residual graph Gy
20/20 0/10 20 10
¢ ~» ®» @~ ®
0/10 20/20 10 20

v

373F23 - Nisarg Shah

Augmenting Paths

* Let P be an s-t path in the residual graph Gy

* Let bottleneck(P, f) be the smallest capacity across all edges
in P

« “Augment” flow f by “sending” bottleneck(P, f) units of flow
along P
> What does it mean to send x units of flow along P?

> For each forward edge e € P, increase the flow on e by x
> For each reverse edge e"®Y € P, decrease the flow on e by x

373F23 - Nisarg Shah

Residual Graph

* Example!

Flow f Residual graph Gy

JOR JOR
20/20 0/10 20/ 10
@ -~ ® @@= ®

0/10 20/20 10 20

Y v

\Y \Y

Path P - send flow = bottleneck = 10

373F23 - Nisarg Shah

Residual Graph

* Example!

New flow f New residual graph G

20/20 10/10 20/ 10
@ -~ ® @ ®

10/10 20/20 10 20

P
<«
<
<«

No s-t path because no outgoing edge from s

373F23 - Nisarg Shah

Augmenting Paths

* Let’s argue that the new flow is a valid flow

e Capacity constraints (easy):

> If we increase flow on e, we can do so by at most the capacity of
forward edge e in G¢, which is c(e) — f(e)

o So, the new flow can be at most f(e) + (c(e) — f(e)) = c(e)

> If we decrease flow on e, we can do so by at most the capacity of
reverse edge e"®V in G¢, which is f(e)

o So, the new flow is at least f(e) — f(e) =0

373F23 - Nisarg Shah

Augmenting Paths

* Let’s argue that the new flow is a valid flow

* Flow conservation (a bit trickier):

> Each node on the path (except s and t) has exactly two incident
edges

o Both forward / both reverse = one is incoming, one is outgoing
* Flow increased on both or decreased on both

o One forward, one reverse = both incoming / both outgoing
* Flow increased on one but decreased on the other

o In each case, net flow remains 0

Edge directions asin G

:+XC+X :—X:—XC-FX:

373F23 - Nisarg Shah

Ford-Fulkerson Algorithm

MaxFlow(G):

// initialize:
Set f(e) =0 for all e in G

// while there is an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f)) !=None:
f = Augment(f,P)
UpdateResidual (G, f)

EndWhile

Return f

373F23 - Nisarg Shah

Ford-Fulkerson Algorithm

* Running time:
» #Augmentations:
o At every step, flow and capacities remain integers
o For path P in Gy, bottleneck(P, f) > 0 implies bottleneck(P, f) = 1
o Each augmentation increases flow by at least 1
o Max flow (hence max #augmentations) is at most € = X, jeavings €(€)

> Time to perform an augmentation:
o Gy has n vertices and at most 2m edges

o Finding P, computing bottleneck(P, f), updating G¢
* O(m + n) time

> Total time: O((m + n) - C)

373F23 - Nisarg Shah

Ford-Fulkerson Algorithm

* Total time: O((m +n) - C)
> This is NOT polynomial time

> The value of C can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

> Note: While we assumed integer capacities, we know that the algorithm
must always terminate even with rational capacities.

o Why?

o With irrational capacities, there is an example in which the algorithm
never terminates.

* Q: Can we convert this to polynomial time?

373F23 - Nisarg Shah

Ford-Fulkerson Algorithm

* Q: Can we convert this to polynomial time?
> Not if we choose an arbitrary path in G at each step

> In the graph below, we might end up repeatedly sending 1 unit of flow
across a — b and then reversing it

o Takes X steps, which can be exponential in the input length

373F23 - Nisarg Shah

Ford-Fulkerson Algorithm

* Ways to achieve polynomial time

> Find the maximum bottleneck capacity augmenting path
o Runs in 0(m? - log C) operations

> Find the shortest augmenting path using BFS
o Edmonds-Karp algorithm
o Runs in 0(nm?) operations
o Can be found in CLRS

373F23 - Nisarg Shah

Max Flow Problem

e Race to reduce the running time
> 1972: 0(n m?) Edmonds-Karp

1980: 0(n mlog? n) Galil-Namaad

1983: 0(n mlogn) Sleator-Tarjan

1986: 0(n mlog(™*/m)) Goldberg-Tarjan
1992: O (n m + n?*€) King-Rao-Tarjan

logn
> 1996: 0 (n m
log m/n logn

o Note: These are O(n m) when m = w(n)

» 2013: O(nm) Orlin
o Breakthrough!

> 2021: O((m + n'®) - log X), where X = max edge capacity
o Breakthrough based on very heavy techniques!

YV V VYV V

) King-Rao-Tarjan

373F23 - Nisarg Shah

Back to Ford-Fulkerson

* We argued that the algorithm must terminate, and must
terminate in 0((m +n) - C) time

* But we didn’t argue correctness yet, i.e., the algorithm must
terminate with the optimal flow

373F23 - Nisarg Shah

Cuts and Cut Capacities

* (A,B)isans-t cutifitis a partition of vertexsetV (i.e., AUB =V,
ANB =0Q)withs€e Aandt €B

* Its capacity, denoted cap(A4, B), is the sum of capacities of edges leaving A

s-t cut

capacity(A,B) =25

373F23 - Nisarg Shah

Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),
v(f) = fO(A) — f™(A)

* Proof (on the board): Just take a sum of the flow conservation
constraint over all nodes in A

s-t cut

capacity(A,B) =25

373F23 - Nisarg Shah

Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),

v(f) < cap(4, B)
* Proof:

v(f) = fOU(A) — F(A)
< fO’LLt(A)
= ZeleavingAf(e)
< Ze leaving A C(e)

= cap(4A, B)

373F23 - Nisarg Shah

Cuts and Flows

Theorem: For any flow f and any s-t cut (4, B),
v(f) < cap(4, B)

Hence, mfax v(f) < ming, gy cap(4, B)

> Max value of any flow < min capacity of any s-t cut

We will now prove:
> Value of flow generated by Ford-Fulkerson = capacity of some cut

Implications
> 1) Max flow = min cut
> 2) Ford-Fulkerson generates max flow.

373F23 - Nisarg Shah

Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> [=flow returned by Ford-Fulkerson
» A" = nodes reachable from s in G
> B* =remaining nodes I/ \ A"
> Note: We look at the residual graph Gy, but define the cutin G

s
Graph G -
A* nodes
reachable from sin

residual graph G O

373F23 - Nisarg Shah

Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Claim: (A%, B¥) is a valid cut
o s € A" by definition
o t € B* because when Ford-Fulkerson terminates, there are no s-t
pathsin Gg,sot & A

@@
e

et &
Graph G < i
A* = nodes
reachable from sin

residual graph G O

373F23 - Nisarg Shah

Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Blue edges = edges going out of A*|in G
> Red edges = edges coming into A*|in G

Graph G N s

A* nodes
reachable from sin
residual graph G¢

Cut = (A", BY)

373F23 - Nisarg Shah

Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated
o Otherwise G would have its forward edge (u, v) and then v € A*
> Each red edge (v, u) must have zero flow
o Otherwise G would have its reverse edge (u,v) andthenv € A"

s
Graph G -
A* = nodes
reachable from sin

residual graph G O

373F23 - Nisarg Shah

Cuts and Flows

e Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated = % (4*) = cap(4*, B*)
> Each red edge (v, u) must have zero flow = f*(4*) = 0

> Sov(f) = fOU(A") — f™(A") = cap(A*,B") m

s
Graph G -
A* nodes
reachable from sin

residual graph G O

373F23 - Nisarg Shah

Max Flow - Min Cut

 Max Flow-Min Cut Theorem:
In any graph, the value of the maximum flow is equal to the
capacity of the minimum cut.

* Our proof already gives an algorithm to find a min cut
> Run Ford-Fulkerson to find a max flow f
> Construct its residual graph Gy
> Let A" = set of all nodes reachable from s in G¢

o Easy to compute using BFS
> Then (A%, V \ A®) is a min cut

373F23 - Nisarg Shah

Poll

Question

* There is a network G with positive integer edge capacities.
* You run Ford-Fulkerson.

* It finds an augmenting path with bottleneck capacity 1, and after that
iteration, it terminates with a final flow value of 1.

* Which of the following statement(s) must be correct about G?

(a) G has a single s-t path.
(b) G has an edge e such that all s-t paths go through e.
(c) The minimum cut capacity in G is greater than 1.

(d) The minimum cut capacity in G is less than 1.

373F23 - Nisarg Shah

Why Study Flow Networks?

* Unlike divide-and-conquer, greedy, or DP, this doesn’t seem
like an algorithmic framework
> It seems more like a single problem

e Turns out that many problems can be reduced to this
versatile single problem

 Next lecture!

373F23 - Nisarg Shah

Network Flow Applications

373F23 - Nisarg Shah

Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)

JORIGINS

373F23 - Nisarg Shah

Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)

Min-cut

capacity——>

10

JORIGINS

373F23 - Nisarg Shah

Integrality Theorem

* Before we look at applications, we need the following
special property of the max-flow computed by Ford-
Fulkerson and its variants

e Observation:

> If edge capacities are integers, then the max-flow computed by Ford-
Fulkerson and its variants are also integral (i.e., the flow on each

edge is an integer).

> Easy to check that each augmentation step preserves integral flow

373F23 - Nisarg Shah

Bipartite Matching

~
* Problem
> Given a bipartite graph ¢ = (U UV, E), find a maximum cardinality
matching)

* We do not know any efficient greedy or dynamic
programming algorithm for this problem.

e But it can be reduced to max-flow.

373F23 - Nisarg Shah

Bipartite Matching

|4

® © =

* Create a directed flow graph where we...
> Add a source node s and target node t
> Add edges, all of capacity 1:
oS—->uforeachu€U,v—-tforeachveVlV
ou — vforeach (u,v) €EE

373F23 - Nisarg Shah

Bipartite Matching

 Observation

> There is a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (matching = integral flow)
> Take a matching M = {(uq, vq), ..., (ug, vy)} of size k

» Construct the corresponding unique flow f;; where...
o Edges s = u;, u; - v;,andv; » thaveflow 1, foralli =1, ...,k
o The rest of the edges have flow 0

> This flow has value k

373F23 - Nisarg Shah

Bipartite Matching

 Observation

> There is a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (integral flow = matching)
> Take any flow f with value k

> The corresponding unique matching My = set of edges from U to V
with a flow of 1

o Since flow of k comes out of s, unit flow must go to k distinct
vertices in U

o From each such vertex in U, unit flow goes to a distinct vertex in V
o Uses integrality theorem

373F23 - Nisarg Shah

Bipartite Matching

* Perfect matching = flow with value n
> wheren = |U| = |V|

e Recall naive Ford-Fulkerson running time:

> O((m +n) - C), where C = sum of capacities of edges leaving s
> Q: What’s the runtime when used for bipartite matching?

 Some variants are faster...

> Dinitz’s algorithm runs in time O (m+/n) when all edge capacities are
1

373F23 - Nisarg Shah

Hall's Marriage Theorem

* When does a bipartite graph have a perfect matching?
> Well, when the corresponding flow network has value n

> But can we interpret this condition in terms of edges of the original
bipartite graph?

> ForS € U, let N(§) € V be the set of all nodes in VV adjacent to some
nodein S

e Observation:

> If G has a perfect matching, [N(S)| = |S| foreachS € U
> Because each node in S must be matched to a distinct node in N(S)

373F23 - Nisarg Shah

Hall's Marriage Theorem

 We'll consider a slightly different flow network, which is still
equivalent to bipartite matching
> All U — V edges now have oo capacity
> s > UandV — t edges are still unit capacity

373F23 - Nisarg Shah

Hall's Marriage Theorem

e Hall's Theorem:
> G has a perfect matching iff [IN(S)| = |S| foreachS € V

* Proof (reverse direction, via network flow):
> Suppose G doesn’t have a perfect matching

> Hence, max-flow = min-cut < n

> Let (4, B) be the min-cut
o Can’t have any U — V (oo capacity edges)
o Has unit capacityedgess = UNBandVNA-t

373F23 - Nisarg Shah

Hall's Marriage Theorem

e Hall's Theorem:
> G has a perfect matching iff [IN(S)| = |S| foreachS € V

* Proof (reverse direction, via network flow):
> cap(A,B) =|UNB|+|VNA|l<n=|U|

> So|VNA|<|UnA]|
> But N(U N A) €V N A because the cut doesn’t include any oo edges

>SOINWUNA)|<|IVNA|<|UNA|. =

373F23 - Nisarg Shah

Some Notes

* Runtime for bipartite perfect matching
» 1955: O(mn) — Ford-Fulkerson
> 1973: 0(m+/n) — blocking flow (Hopcroft-Karp, Karzanov)
> 2004: 0(n?378) — fast matrix multiplication (Mucha—Sankowsi)
> 2013: 0(m'%7) - electrical flow (Madry)
> Best running time is still an open question

* Nonbipartite graphs
» Hall’'s theorem — Tutte’s theorem
> 1965: 0(n*) - Blossom algorithm (Edmonds)
> 1980/1994: 0 (m+/n) — Micali-Vazirani

373F23 - Nisarg Shah

Edge-Disjoint Paths

\
* Problem
> Given a directed graph G = (V, E), two nodes s and t, find the
maximum number of edge-disjoint s — t paths)

> Two s — t paths P and P’ are edge-disjoint if they don’t share an
edge

373F23 - Nisarg Shah

Edge-Disjoint Paths
* Application:
» Communication networks

* Max-flow formulation
> Assign unit capacity on all edges

1
A
—
\

",“
A’X.
o Y
P & I"x
w ¢ & h
kY [-\\‘ & L)
O= — =©= —_ =O
/
(
% 3
"s, ,‘»"
“:‘ r 4
by &
, .
, x
g &
4 |
K X
L) pi
—

:5__~_~.,~—~“";5] k- LS
OFf ' G

2
|

\.
j
j
/
'
O«
—_—

373F23 - Nisarg Shah

Edge-Disjoint Paths

e Theorem:

> There is 1-1 correspondence between sets of k edge-disjoints — t
paths and integral flows of value k

* Proof (paths — flow)
> Let {P, ..., Py} be a set of k edge-disjoint s — t paths

> Define flow f where f(e) = 1 whenever e € P; for some i, and 0
otherwise

> Since paths are edge-disjoint, flow conservation and capacity
constraints are satisfied

> Unique integral flow of value k

373F23 - Nisarg Shah

Edge-Disjoint Paths

e Theorem:

> There is 1-1 correspondence between k edge-disjoint s = t paths
and integral flows of value k

* Proof (flow — paths)
> Let f be an integral flow of value k
> k outgoing edges from s have unit flow

> Pick one such edge (s,u4)

o By flow conservation, u; must have unit outgoing flow (which we
haven’t used up yet).

o Pick such an edge and continue building a path until you hit ¢t

> Repeat this for the other k — 1 edges from s with unit flow =

373F23 - Nisarg Shah

Edge-Disjoint Paths

* Maximum number of edge-disjoint s = t paths
» Equals max flow in this network
> By max-flow min-cut theorem, also equals minimum cut

> Exercise: minimum cut = minimum number of edges we need to
delete to disconnect s from t

o Hint: Show each direction separately (< and >)

SO

~

a1 — o—p
| !

373F23 - Nisarg Shah

Edge-Disjoint Paths

 Exercise!

> Show that to compute the maximum number of edge-disjoint s-t
paths in an undirected graph, you can create a directed flow network
by adding each undirected edge in both directions and setting all
capacitiesto 1

* Menger’s Theorem

> In any directed/undirected graph, the maximum number of edge-
disjoint (resp. vertex-disjoint) s = t paths equals the minimum
number of edges (resp. vertices) whose removal disconnects s and t

373F23 - Nisarg Shah

Multiple Sources/Sinks

* Problem A
> Given a directed graph G = (V, E) with edge capacitiesc: E — N,
sources Sy, ..., S and sinks t4, ..., tp, find the maximum total flow
from sources to sinks.
J
flow network G @ 9 /\ 6 (’D
3 T | 7
2
8 | , 4
F— ' —0F— s —®

373F23 - Nisarg Shah

Multiple Sources/Sinks

* Network flow formulation
» Add a new source s, edges from s to each s; with co capacity
> Add a new sink t, edges from each ¢; to t with oo capacity
> Find max-flow fromstot
> Claim: 1 — 1 correspondence between flows in two networks

flow network G @ 9 - /\ 6 @j
n % ond | b .)
N \/ AN \ 4

373F23 - Nisarg Shah

Circulation

[+ Input h

> Directed graph ¢ = (V,E)
> Edge capacitiesc : E —- N
> Node demandsd : V —» Z

* Output
» Some circulation f : E — N satisfying
o Foreache € E:0 < f(e) < c(e)

K o Foreachv €V Ze enteringvf(v) — Zeleavingvf(v) = d(v) /

> Note that you need Y., 5(,)>0 4 (V) = 2p.a(w)<0 —4 (V)
> What are demands?

373F23 - Nisarg Shah

Circulation

 Demand at v = amount of flow you need to take out at
node v

> d(v) > 0 : You need to take some flow out at v
o So, there should be d(v) more incoming flow than outgoing flow
o “Demand node”

> d(v) < 0:You need to put some flow in at v
o So, there should be |d(v)| more outgoing flow than incoming flow
o “Supply node”

> d(v) = 0: Node has flow conservation
o Equal incoming and outgoing flows
o “Transshipment node”

373F23 - Nisarg Shah

Circulation

 Example

flow network G -8

4770 6/6

3/3

-7 O

(demand node)

373F23 - Nisarg Shah

T 6/7

10 0

(supply node)
-6

Q.

1/7

2/4

(transshipment node)

flow capacity

" 7/9

4/4

Circulation

e Network-flow formulation G’
> Add a new source s and a new sink t

> For each “supply” node v with d(v) < 0, add edge (s, v) with
capacity —d(v)

> For each “demand” node v with d(v) > 0, add edge (v, t) with
capacity d(v)

e Claim:
> G has a circulation iff G’ has max flow of value

2 d(v) = 2 —d(v)
v:d(v)>0 v:d(v)<0

373F23 - Nisarg Shah

Circulation

* Example

flow network G _8

_4/'6’ 6/6

- Q

(demand node)

373F23 - Nisarg Shah

T 6/7

10 0

(supply node)
-6

Q.

_1/7"

2/4

(transshipment node)

flow capacity

Y779

4/4

Circulation

 Example

saturates all edges
leaving s
and entering ¢

flow network G’

11

demand

373F23 - Nisarg Shah

Circulation with Lower Bounds

(~ nput N

> Directed graph ¢ = (V,E)
> Edge capacities c : E = N and lower bounds ¢ : E - N
> Node demandsd : V —» Z

* Output
» Some circulation f : E — N satisfying
o Foreache € E:¥(e) < f(e) < c(e)

\ o Foreachv €V Ze enteringvf(v) — Zeleavingvf(v) = d(v) /

> Note that you still need }.,.5(,)>0 4 (V) = Zp.aw)<o —4 (V)

373F23 - Nisarg Shah

Circulation with Lower Bounds

 Transform to circulation without lower bounds
> Do the following operation to each edge

lower bound upper bound capacity
b —® e
dv) +2 dw) -2

d(v) d(w)

flow network G flow network G’

e Claim: Circulation in G iff circulation in G’
> Proof sketch: f(e) gives a valid circulation in G iff f(e) — £(e) gives a
valid circulation in G’

373F23 - Nisarg Shah

Survey Design

(Problem

> We want to design a survey about m products
o We have one question in mind for each product
o Need to ask product j’s question to between p; and p]’- consumers

> There are a total of n consumers
o Consumer i owns a subset of products O;
o We can ask consumer i questions about only these products
o We want to ask consumer i between c; and ¢; questions

\> Is there a survey meeting all these requirements?

373F23 - Nisarg Shah

Survey Design

* Bipartite matching is a special case
> c;=c¢; =p;=p;=1foralliandj

* Formulate as circulation with lower bounds

> Create a network with special nodes s and t

> Edge from s to each consumer i with flow € [c;, ¢;]

> Edge from each consumer i to each product j € 0; with flow € [0,1]
> Edge from each product j to t with flow € [p;, p;]
> Edge from t to s with flow in [0, oo]
> All demands and supplies are 0

373F23 - Nisarg Shah

Survey Design

e Max-flow formulation:

> Feasible survey iff feasible circulation in this network

[0,] —

p1.p1'T '\

/ [(‘l , (‘1']
7/ ~ A0

O

g . \: N
."‘ ,,I' \ "\,
J \ \ N\

consumers

373F23 - Nisarg Shah

products

Image Segmentation

* Foreground/background segmentation
> Given an image, separate “foreground” from “background”

Here’s the power of PowerPoint (or the lack thereof)

Remove
background

373F23 - Nisarg Shah

Image Segmentation

* Foreground/background segmentation
> Given an image, separate “foreground” from “background”

* Here’s what remove.bg gets using Al

Remove
background

373F23 - Nisarg Shah

Image Segmentation

* Informal problem

> Given an image (2D array of pixels), and likelihood estimates of
different pixels being foreground/background, label each
pixel as foreground or background

» Want to prevent having too many
neighboring pixels where one is
labeled foreground but the other I
is labeled background o

373F23 - Nisarg Shah

Image Segmentation

* Input
> Animage (2D array of pixels)
> a; = likelihood of pixel i being in foreground
> b; = likelihood of pixel i being in background

> pij = penalty for “separating” pixels i and j (i.e. labeling one of them
as foreground and the other as background)

* Output
> Label each pixel as “foreground” or “background”
> Minimize “total penalty”

o Want it to be high if a; is high but i is labeled background, b; is high
but i is labeled foreground, or p; ; is high but i and j are separated

373F23 - Nisarg Shah

Image Segmentation

e Recall
» a; = likelihood of pixels i being in foreground
> b; = likelihood of pixels i being in background
> pi j = penalty for separating pixels i and j
> Let E = pairs of neighboring pixels

* Output
> Minimize total penalty
o A = set of pixels labeled foreground
o B = set of pixels labeled background

o Penalty =
z bi + Z Clj + z pi,j
i€A jEB (i,j)EE
|An{i,j}=1

373F23 - Nisarg Shah

Image Segmentation

* Formulate as a min-cut problem
> Want to divide the set of pixels V into (4, B) to minimize

Zbl+2a]+ Z pi,j

i€A jeB (i,j)EE
|[An{i,j}=1

> Nodes:

o source s, target t, and v; for each pixel i
> Edges:

o (s,v;) with capacity a; for all i

o (v;, t) with capacity b; for all i

o (v;,vj) and (v}, v;) with capacity p; ;j each for all neighboring (i, j)

373F23 - Nisarg Shah

Image Segmentation

* Formulate as min-cut problem
> Here’s what the network looks like

373F23 - Nisarg Shah

Image Segmentation

If i and j are labeled differently, it
will add p; ; exactly once

» Consider the min-cut (4, B) /
CClp(A,B) = zbl + 2 Clj + 2 pi,j

IEA JEB (i,j)EE
i€A,jEB
> Exactly what we want to minimize!

373F23 - Nisarg Shah

Image Segmentation

* GrabCut [Rother-Kolmogorov-Blake 2004]

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother” Vladimir Kolmogorov® Andrew Blake*
Microsoft Research Cambridge. UK

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.

373F23 - Nisarg Shah

Profit Maximization (Yeaa...!

(Problem

> There are n tasks
» Performing task i generates a profit of p;
o We allow p; < 0 (i.e., performing task i may be costly)
> There is a set E of precedence relations
o (i,j) € E indicates that if we perform i, we must also perform j

e Goal

> Find a subset of tasks S which, subject to the precedence constraints,
\ maximizes profit(S) = X iesDi

J

373F23 - Nisarg Shah

Profit Maximization

* We can represent the input as a graph
> Nodes = tasks, node weights = profits,
> Edges = precedence constraints

» Goal: find a subset of nodes S with highest total weight s.t.ifi € §
and (i,j) € E, thenj € S as well

e’: -
< o C

373F23 - Nisarg Shah

Profit Maximization

* Want to formulate as a min-cut
> Add source s and target t
> min-cut (4, B) = want desired solutiontobe § = A \ {s}
> Goals:
o cap(A, B) should nicely relate to profit(S)

o Precedence constraints must be respected
* “Hard” constraints are usually enforced using infinite capacity edges

* Construction:
> Add each (i,j) € E with infinite capacity
» For eachi:
o If p; > 0, add (s, i) with capacity p;
o Ifp; <0, add (i, t) with capacity —p;

373F23 - Nisarg Shah

Profit Maximization

373F23 - Nisarg Shah

Profit Maximization

373F23 - Nisarg Shah

Profit Maximization

QUESTION: What is the capacity of this cut?

373F23 - Nisarg Shah

Profit Maximization

Exercise: Show that...
1. A finite capacity cut exists.
2. If cap(A, B) is finite, then A\{s} is a valid solution;
3. Minimizing cap (A, B) maximizes profit(A\{s})

* Show that cap(4, B) = constant — profit(A\{s}), where the
constant is independent of the choice of (4, B)

373F23 - Nisarg Shah

