
CSC373

Weeks	5,6:	
Network	Flow

373F23 - Nisarg Shah 1

Nisarg Shah

Recap

373F23 - Nisarg Shah 2

• Dynamic Programming Basics
Ø Optimal substructure property
Ø Bellman equation
Ø Top-down (memoization) vs bottom-up implementations

• Dynamic Programming Examples
Ø Weighted interval scheduling
Ø Knapsack problem
Ø Single-source shortest paths
Ø Chain matrix product
Ø Edit distance (aka sequence alignment)
Ø Traveling salesman problem (TSP)

Network	Flow

373F23 - Nisarg Shah 3

Network	Flow

373F23 - Nisarg Shah 4

• Input
Ø A directed graph 𝐺 = (𝑉, 𝐸)
Ø Edge capacities 𝑐 ∶ 𝐸 → ℝ!"
Ø Source node 𝑠, target node 𝑡

• Output
Ø Maximum “flow” from 𝑠 to 𝑡

Network	Flow

373F23 - Nisarg Shah 5

• Assumptions
Ø No edges enter 𝑠
Ø No edges leave 𝑡
Ø Edge capacity 𝑐(𝑒) is a non-

negative integer
o Later, we’ll see what happens

when 𝑐(𝑒) can be a rational or
irrational number

Network	Flow

373F23 - Nisarg Shah 6

• Flow
Ø An 𝑠-𝑡 flow is a function 𝑓: 𝐸 → ℝ!"
Ø Intuitively, 𝑓(𝑒) is the “amount of material” carried on edge 𝑒

Network	Flow

373F23 - Nisarg Shah 7

• Constraints on flow 𝑓

1. Respecting capacities

 ∀𝑒 ∈ 𝐸 ∶ 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

2. Flow conservation

 ∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 ∶ 	∑#	%&'%()&*	+ 	𝑓 𝑒 = ∑#	,%-.)&*	+ 	𝑓 𝑒

Flow in = flow out at every
node other than 𝑠 and 𝑡

Network	Flow

373F23 - Nisarg Shah 8

• 𝑓#$ 𝑣 = ∑%	'()'*+(,	- 	𝑓 𝑒
• 𝑓./0 𝑣 = ∑%	1'23+(,	- 	𝑓 𝑒

• Value of flow 𝑓 is 𝑣 𝑓 = 𝑓./0 𝑠 = 𝑓#$(𝑡)
Ø Q: Why is 𝑓/01 𝑠 = 𝑓23(𝑡)?

• Restating the problem:
Ø Given a directed graph 𝐺 = (𝑉, 𝐸) with edge capacities 𝑐: 𝐸 → ℝ!",

find a flow 𝑓∗ with the maximum value.

First	Attempt

373F23 - Nisarg Shah 9

• A natural greedy approach
1. Start from zero flow (𝑓 𝑒 = 0 for each 𝑒).

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺 such that 𝑓 𝑒 < 𝑐(𝑒) for
each 𝑒 ∈ 𝑃

a. Find any such path 𝑃

b. Compute Δ = min
#∈6

𝑐 𝑒 − 𝑓 𝑒

c. Increase the flow on each edge 𝑒 ∈ 𝑃 by Δ

• Note
ØCapacity and flow conservation constraints remain satisfied

First	Attempt

373F23 - Nisarg Shah 10

First	Attempt

373F23 - Nisarg Shah 11

First	Attempt

373F23 - Nisarg Shah 12

First	Attempt

373F23 - Nisarg Shah 13

First	Attempt

373F23 - Nisarg Shah 14

First	Attempt

373F23 - Nisarg Shah 15

First	Attempt

373F23 - Nisarg Shah 16

First	Attempt

373F23 - Nisarg Shah 17

• Q: Why does the simple greedy approach fail?
• A: Because once it increases the flow on an edge, it is not

allowed to decrease it ever in the future.

• Need a way to “reverse”
bad decisions

Reversing	Bad	Decisions

373F23 - Nisarg Shah 18

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/200/10

0/10

Suppose we start by sending
20 units of flow along this path

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

But the optimal configuration requires
10 fewer units of flow on 𝑢 → 𝑣

Reversing	Bad	Decisions

373F23 - Nisarg Shah 19

We can essentially send a “reverse”
flow of 10 units along 𝑣 → 𝑢

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

So now we get this optimal flow

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

𝟏𝟎

Residual	Graph

373F23 - Nisarg Shah 20

• Suppose the current flow is 𝑓
• Define the residual graph 𝐺: of flow 𝑓

Ø 𝐺7 has the same vertices as 𝐺

Ø For each edge e = (𝑢, 𝑣) in 𝐺, 𝐺7 has at most two edges

o Forward edge 𝑒 = (𝑢, 𝑣) with capacity 𝑐 𝑒 − 𝑓 𝑒
• We can send this much additional flow on 𝑒

o Reverse edge 𝑒8#+ = (𝑣, 𝑢) with capacity 𝑓(𝑒)
• The maximum “reverse” flow we can send is the maximum

amount by which we can reduce flow on 𝑒, which is 𝑓(𝑒)

o We only really add edges of capacity > 0

Residual	Graph

373F23 - Nisarg Shah 21

• Example!

s t

u

v

20/20

20/30

20/200/10

0/10

s t

u

v

𝟐𝟎

𝟏𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

𝟐𝟎

Flow 𝑓 Residual graph 𝐺!

Augmenting	Paths

373F23 - Nisarg Shah 22

• Let 𝑃 be an 𝑠-𝑡 path in the residual graph 𝐺:

• Let bottleneck(𝑃, 𝑓) be the smallest capacity across all edges
in 𝑃

• “Augment” flow 𝑓 by “sending” bottleneck 𝑃, 𝑓 	units of flow
along 𝑃
Ø What does it mean to send 𝑥 units of flow along 𝑃?
Ø For each forward edge 𝑒 ∈ 𝑃, increase the flow on 𝑒 by 𝑥
Ø For each reverse edge 𝑒8#+ ∈ 𝑃, decrease the flow on 𝑒 by 𝑥

Residual	Graph

373F23 - Nisarg Shah 23

• Example!

s t

u

v

20/20

20/30

20/200/10

0/10

Flow 𝑓

s t

u

v

𝟐𝟎

𝟏𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

Residual graph 𝐺!

Path 𝑷 → send flow = bottleneck = 10

𝟐𝟎

s t

u

v

20/20

10/30

20/2010/10

10/10

New flow 𝑓

Residual	Graph

373F23 - Nisarg Shah 24

• Example!

s t

u

v

𝟐𝟎

𝟐𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

New residual graph 𝐺!

No 𝒔-𝒕 path because no outgoing edge from 𝒔

𝟏𝟎

Augmenting	Paths

373F23 - Nisarg Shah 25

• Let’s argue that the new flow is a valid flow

• Capacity constraints (easy):

Ø If we increase flow on 𝑒, we can do so by at most the capacity of
forward edge 𝑒 in 𝐺7, which is 𝑐 𝑒 − 𝑓 𝑒
o So, the new flow can be at most 𝑓 𝑒 + 𝑐 𝑒 − 𝑓 𝑒 = 𝑐(𝑒)

Ø If we decrease flow on 𝑒, we can do so by at most the capacity of
reverse edge 𝑒8#+ in 𝐺7, which is 𝑓 𝑒
o So, the new flow is at least 𝑓 𝑒 − 𝑓 𝑒 = 0

Augmenting	Paths

373F23 - Nisarg Shah 26

• Let’s argue that the new flow is a valid flow

• Flow conservation (a bit trickier):
Ø Each node on the path (except 𝑠 and 𝑡) has exactly two incident

edges
o Both forward / both reverse ⇒ one is incoming, one is outgoing
• Flow increased on both or decreased on both

o One forward, one reverse ⇒ both incoming / both outgoing
• Flow increased on one but decreased on the other

o In each case, net flow remains 0

s t
+𝑥 +𝑥 −𝑥 −𝑥 +𝑥

Edge directions as in 𝐺

Ford-Fulkerson	Algorithm

373F23 - Nisarg Shah 27

MaxFlow(𝐺):

// initialize:
Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺7:
While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:
 𝑓 = Augment(𝑓, 𝑃)
UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓

Ford-Fulkerson	Algorithm

373F23 - Nisarg Shah 28

• Running time:
Ø #Augmentations:
o At every step, flow and capacities remain integers
o For path 𝑃 in 𝐺7, bottleneck 𝑃, 𝑓 > 0 implies bottleneck 𝑃, 𝑓 ≥ 1
o Each augmentation increases flow by at least 1
o Max flow (hence max #augmentations) is at most 𝐶 = ∑#	,%-.)&*	9 	𝑐(𝑒)

Ø Time to perform an augmentation:
o 𝐺7 has 𝑛 vertices and at most 2𝑚 edges
o Finding 𝑃, computing bottleneck 𝑃, 𝑓 , updating 𝐺7
• 𝑂(𝑚 + 𝑛) time

Ø Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)

Ford-Fulkerson	Algorithm

373F23 - Nisarg Shah 29

• Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)
Ø This is NOT polynomial time

Ø The value of 𝐶 can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

Ø Note: While we assumed integer capacities, we know that the algorithm
must always terminate even with rational capacities.

o Why?

o With irrational capacities, there is an example in which the algorithm
never terminates.

• Q: Can we convert this to polynomial time?

Ford-Fulkerson	Algorithm

373F23 - Nisarg Shah 30

• Q: Can we convert this to polynomial time?
Ø Not if we choose an arbitrary path in 𝐺7 at each step
Ø In the graph below, we might end up repeatedly sending 1 unit of flow

across 𝑎 → 𝑏 and then reversing it
o Takes 𝑋 steps, which can be exponential in the input length

Ford-Fulkerson	Algorithm

373F23 - Nisarg Shah 31

• Ways to achieve polynomial time
Ø Find the maximum bottleneck capacity augmenting path
o Runs in 𝑂 𝑚: ⋅ log 𝐶 operations

Ø Find the shortest augmenting path using BFS
o Edmonds-Karp algorithm
o Runs in 𝑂 𝑛𝑚: operations
o Can be found in CLRS

Ø …

Max	Flow	Problem

373F23 - Nisarg Shah 32

• Race to reduce the running time
Ø 1972: 𝑂 𝑛	𝑚: Edmonds-Karp
Ø 1980: 𝑂 𝑛	𝑚 log: 𝑛 Galil-Namaad
Ø 1983: 𝑂 𝑛	𝑚 log 𝑛 Sleator-Tarjan
Ø 1986: 𝑂 𝑛	𝑚 log ⁄3! ; Goldberg-Tarjan
Ø 1992: 𝑂 𝑛	𝑚 + 𝑛:<= King-Rao-Tarjan

Ø 1996: 𝑂 𝑛	𝑚 ,>* 3
,>* 	 ?" # $%& #

 King-Rao-Tarjan

o Note: These are 𝑂(𝑛	𝑚) when 𝑚 = 𝜔 𝑛
Ø 2013: 𝑂(𝑛	𝑚) Orlin
o Breakthrough!

Ø 2021: 𝑂(𝑚 + 𝑛@.B ⋅ log 𝑋), where 𝑋 = max edge capacity
o Breakthrough based on very heavy techniques!

Back	to	Ford-Fulkerson

373F23 - Nisarg Shah 33

• We argued that the algorithm must terminate, and must
terminate in 𝑂 𝑚 + 𝑛 ⋅ 𝐶 time

• But we didn’t argue correctness yet, i.e., the algorithm must
terminate with the optimal flow

Cuts	and	Cut	Capacities

373F23 - Nisarg Shah 34

• (𝐴, 𝐵) is an 𝑠-𝑡 cut if it is a partition of vertex set 𝑉 (i.e., 𝐴 ∪ 𝐵 = 𝑉,	
𝐴 ∩ 𝐵 = ∅) with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• Its capacity, denoted 𝑐𝑎𝑝 𝐴, 𝐵 , is the sum of capacities of edges leaving 𝐴

Cuts	and	Flows

373F23 - Nisarg Shah 35

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),

𝑣 𝑓 = 𝑓/01 𝐴 − 𝑓23(𝐴)
• Proof (on the board): Just take a sum of the flow conservation

constraint over all nodes in 𝐴

Cuts	and	Flows

373F23 - Nisarg Shah 36

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),
𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• Proof:
𝑣 𝑓 = 𝑓/01 𝐴 − 𝑓23 𝐴

	 	 	 					≤ 𝑓/01 𝐴

	 	 	 	 = ∑#	,%-.)&*	C𝑓(𝑒)

 ≤ ∑#	,%-.)&*	C 𝑐(𝑒)
	
	

	 	 	 											= 𝑐𝑎𝑝(𝐴, 𝐵)

Cuts	and	Flows

373F23 - Nisarg Shah 37

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),
𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• Hence, max
7
𝑣 𝑓 ≤ min C,E 𝑐𝑎𝑝 𝐴, 𝐵

Ø Max value of any flow ≤ min capacity of any 𝑠-𝑡 cut

• We will now prove:
Ø Value of flow generated by Ford-Fulkerson = capacity of some cut

• Implications
Ø 1) Max flow = min cut
Ø 2) Ford-Fulkerson generates max flow.

Cuts	and	Flows

373F23 - Nisarg Shah 38

• Theorem: Ford-Fulkerson finds maximum flow.
• Proof:

Ø 𝑓 = flow returned by Ford-Fulkerson
Ø 𝐴∗ = nodes reachable from 𝑠 in 𝐺7
Ø 𝐵∗ = remaining nodes 𝑉 ∖ 𝐴∗

Ø Note: We look at the residual graph 𝐺7, but define the cut in 𝐺

Graph 𝐺

𝐺"

Cuts	and	Flows

373F23 - Nisarg Shah 39

• Theorem: Ford-Fulkerson finds maximum flow.
• Proof:

Ø Claim: 𝐴∗, 𝐵∗ is a valid cut
o 𝑠 ∈ 𝐴∗ by definition
o 𝑡 ∈ 𝐵∗ because when Ford-Fulkerson terminates, there are no 𝑠-𝑡

paths in 𝐺7, so 𝑡 ∉ 𝐴∗

Graph 𝐺

𝐺"

Cuts	and	Flows

373F23 - Nisarg Shah 40

• Theorem: Ford-Fulkerson finds maximum flow.
• Proof:

Ø Blue edges = edges going out of 𝐴∗ in 𝐺
Ø Red edges = edges coming into 𝐴∗ in 𝐺

Graph 𝐺

𝐺"

Cuts	and	Flows

373F23 - Nisarg Shah 41

• Theorem: Ford-Fulkerson finds maximum flow.
• Proof:

Ø Each blue edge 𝑢, 𝑣 must be saturated
o Otherwise 𝐺7 would have its forward edge 𝑢, 𝑣 and then 𝑣 ∈ 𝐴∗

Ø Each red edge (𝑣, 𝑢) must have zero flow
o Otherwise 𝐺7 would have its reverse edge (𝑢, 𝑣) and then 𝑣 ∈ 𝐴∗

Graph 𝐺

𝐺"

Cuts	and	Flows

373F23 - Nisarg Shah 42

• Theorem: Ford-Fulkerson finds maximum flow.
• Proof:

Ø Each blue edge 𝑢, 𝑣 must be saturated ⇒ 𝑓/01 𝐴∗ = 𝑐𝑎𝑝(𝐴∗, 𝐵∗)
Ø Each red edge (𝑣, 𝑢) must have zero flow ⇒ 𝑓23 𝐴∗ = 0
Ø So 𝑣 𝑓 = 𝑓/01 𝐴∗ − 𝑓23(𝐴∗) = 𝑐𝑎𝑝 𝐴∗, 𝐵∗ ∎

Graph 𝐺

𝐺"

Max	Flow	-	Min	Cut

373F23 - Nisarg Shah 43

• Max Flow-Min Cut Theorem:
In any graph, the value of the maximum flow is equal to the
capacity of the minimum cut.

• Our proof already gives an algorithm to find a min cut
Ø Run Ford-Fulkerson to find a max flow 𝑓
Ø Construct its residual graph 𝐺7
Ø Let 𝐴∗ = set of all nodes reachable from 𝑠 in 𝐺7
o Easy to compute using BFS

Ø Then (𝐴∗, 𝑉 ∖ 𝐴∗) is a min cut

Poll

373F23 - Nisarg Shah 44

Question
• There is a network 𝐺 with positive integer edge capacities.

• You run Ford-Fulkerson.

• It finds an augmenting path with bottleneck capacity 1, and after that
iteration, it terminates with a final flow value of 1.

• Which of the following statement(s) must be correct about 𝐺?

(a) 𝐺 has a single 𝑠-𝑡 path.

(b) 𝐺 has an edge 𝑒 such that all 𝑠-𝑡 paths go through 𝑒.

(c) The minimum cut capacity in 𝐺 is greater than 1.
(d) The minimum cut capacity in 𝐺 is less than 1.

Why	Study	Flow	Networks?

373F23 - Nisarg Shah 45

• Unlike divide-and-conquer, greedy, or DP, this doesn’t seem
like an algorithmic framework
Ø It seems more like a single problem

• Turns out that many problems can be reduced to this
versatile single problem

• Next lecture!

373F23 - Nisarg Shah 52

Network Flow Applications

373F23 - Nisarg Shah 53

Rail network connecting Soviet Union with Eastern European countries
(Tolstoǐ 1930s)

373F23 - Nisarg Shah 54

Rail network connecting Soviet Union with Eastern European countries
(Tolstoǐ 1930s)

Min-cut

Integrality	Theorem

373F23 - Nisarg Shah 55

• Before we look at applications, we need the following
special property of the max-flow computed by Ford-
Fulkerson and its variants

• Observation:

Ø If edge capacities are integers, then the max-flow computed by Ford-
Fulkerson and its variants are also integral (i.e., the flow on each
edge is an integer).

Ø Easy to check that each augmentation step preserves integral flow

Bipartite	Matching

373F23 - Nisarg Shah 56

• Problem
Ø Given a bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸), find a maximum cardinality

matching

• We do not know any efficient greedy or dynamic
programming algorithm for this problem.

• But it can be reduced to max-flow.

Bipartite	Matching

373F23 - Nisarg Shah 57

• Create a directed flow graph where we…
Ø Add a source node 𝑠 and target node 𝑡
Ø Add edges, all of capacity 1:
o 𝑠 → 𝑢 for each 𝑢 ∈ 𝑈, 𝑣 → 𝑡 for each 𝑣 ∈ 𝑉
o 𝑢 → 𝑣 for each 𝑢, 𝑣 ∈ 𝐸

𝑈 𝑉 𝑈 𝑉

Bipartite	Matching

373F23 - Nisarg Shah 58

• Observation
Ø There is a 1-1 correspondence between matchings of size 𝑘 in the

original graph and flows with value 𝑘 in the corresponding flow
network.

• Proof: (matching ⇒ integral flow)
Ø Take a matching 𝑀 = 𝑢@, 𝑣@ , … , 𝑢F, 𝑣F of size 𝑘

Ø Construct the corresponding unique flow 𝑓G where…
o Edges 𝑠 → 𝑢2, 𝑢2 → 𝑣2, and 𝑣2 → 𝑡 have flow 1, for all 𝑖 = 1,… , 𝑘
o The rest of the edges have flow 0

Ø This flow has value 𝑘

Bipartite	Matching

373F23 - Nisarg Shah 59

• Observation
Ø There is a 1-1 correspondence between matchings of size 𝑘 in the

original graph and flows with value 𝑘 in the corresponding flow
network.

• Proof: (integral flow ⇒ matching)
Ø Take any flow 𝑓 with value 𝑘

Ø The corresponding unique matching 𝑀7 = set of edges from 𝑈 to 𝑉
with a flow of 1
o Since flow of 𝑘 comes out of 𝑠, unit flow must go to 𝑘 distinct

vertices in 𝑈
o From each such vertex in 𝑈, unit flow goes to a distinct vertex in 𝑉
o Uses integrality theorem

Bipartite	Matching

373F23 - Nisarg Shah 60

• Perfect matching = flow with value 𝑛
Ø where 𝑛 = 𝑈 = 𝑉

• Recall naïve Ford-Fulkerson running time:
Ø 𝑂((𝑚 + 𝑛) ⋅ 𝐶), where 𝐶 = sum of capacities of edges leaving 𝑠
Ø Q: What’s the runtime when used for bipartite matching?

• Some variants are faster…
Ø Dinitz’s algorithm runs in time 𝑂 𝑚 𝑛 when all edge capacities are
1

Hall’s	Marriage	Theorem

373F23 - Nisarg Shah 61

• When does a bipartite graph have a perfect matching?
Ø Well, when the corresponding flow network has value 𝑛
Ø But can we interpret this condition in terms of edges of the original

bipartite graph?
Ø For 𝑆 ⊆ 𝑈, let 𝑁 𝑆 ⊆ 𝑉 be the set of all nodes in 𝑉 adjacent to some

node in 𝑆

• Observation:
Ø If 𝐺 has a perfect matching, 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑈
Ø Because each node in 𝑆 must be matched to a distinct node in 𝑁(𝑆)

Hall’s	Marriage	Theorem

373F23 - Nisarg Shah 62

• We’ll consider a slightly different flow network, which is still
equivalent to bipartite matching
Ø All 𝑈 → 𝑉 edges now have ∞ capacity
Ø 𝑠 → 𝑈 and 𝑉 → 𝑡 edges are still unit capacity

𝑈 𝑉 𝑈 𝑉
∞

∞

1

1 1

1

Hall’s	Marriage	Theorem

373F23 - Nisarg Shah 63

• Hall’s Theorem:
Ø 𝐺 has a perfect matching iff 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑉

• Proof (reverse direction, via network flow):
Ø Suppose 𝐺 doesn’t have a perfect matching

Ø Hence, max-flow = min-cut < 𝑛

Ø Let (𝐴, 𝐵) be the min-cut
o Can’t have any 𝑈 → 𝑉 (∞ capacity edges)
o Has unit capacity edges 𝑠 → 𝑈 ∩ 𝐵 and 𝑉 ∩ 𝐴 → 𝑡

Hall’s	Marriage	Theorem

373F23 - Nisarg Shah 64

• Hall’s Theorem:
Ø 𝐺 has a perfect matching iff 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑉

• Proof (reverse direction, via network flow):
Ø 𝑐𝑎𝑝 𝐴, 𝐵 = 𝑈 ∩ 𝐵 + 𝑉 ∩ 𝐴 < 𝑛 = 𝑈

Ø So 𝑉 ∩ 𝐴 < |𝑈 ∩ 𝐴|

Ø But 𝑁 𝑈 ∩ 𝐴 ⊆ 𝑉 ∩ 𝐴 because the cut doesn’t include any ∞ edges

Ø So 𝑁 𝑈 ∩ 𝐴 ≤ 𝑉 ∩ 𝐴 < |𝑈 ∩ 𝐴|. ∎

Some	Notes

373F23 - Nisarg Shah 65

• Runtime for bipartite perfect matching
Ø 1955: 𝑂(𝑚𝑛) → Ford-Fulkerson
Ø 1973: 𝑂 𝑚 𝑛 → blocking flow (Hopcroft-Karp, Karzanov)
Ø 2004: 𝑂 𝑛:.HIJ → fast matrix multiplication (Mucha–Sankowsi)
Ø 2013: o𝑂 𝑚 ⁄@" I → electrical flow (Mądry)
Ø Best running time is still an open question

• Nonbipartite graphs
Ø Hall’s theorem → Tutte’s theorem
Ø 1965: 𝑂(𝑛L) → Blossom algorithm (Edmonds)
Ø 1980/1994: 𝑂 𝑚 𝑛 → Micali-Vazirani

Edge-Disjoint	Paths

373F23 - Nisarg Shah 66

• Problem
Ø Given a directed graph 𝐺 = (𝑉, 𝐸), two nodes 𝑠 and 𝑡, find the

maximum number of edge-disjoint 𝑠 → 𝑡 paths

Ø Two 𝑠 → 𝑡 paths 𝑃 and 𝑃′ are edge-disjoint if they don’t share an
edge

Edge-Disjoint	Paths

373F23 - Nisarg Shah 67

• Application:
Ø Communication networks

• Max-flow formulation
Ø Assign unit capacity on all edges

Edge-Disjoint	Paths

373F23 - Nisarg Shah 68

• Theorem:
Ø There is 1-1 correspondence between sets of 𝑘 edge-disjoint 𝑠 → 𝑡

paths and integral flows of value 𝑘

• Proof (paths → flow)
Ø Let 𝑃@, … , 𝑃F be a set of 𝑘 edge-disjoint 𝑠 → 𝑡 paths

Ø Define flow 𝑓 where 𝑓 𝑒 = 1 whenever 𝑒 ∈ 𝑃2 for some 𝑖, and 0
otherwise

Ø Since paths are edge-disjoint, flow conservation and capacity
constraints are satisfied

Ø Unique integral flow of value 𝑘

Edge-Disjoint	Paths

373F23 - Nisarg Shah 69

• Theorem:
Ø There is 1-1 correspondence between 𝑘 edge-disjoint 𝑠 → 𝑡 paths

and integral flows of value 𝑘

• Proof (flow → paths)
Ø Let 𝑓 be an integral flow of value 𝑘

Ø 𝑘 outgoing edges from 𝑠 have unit flow

Ø Pick one such edge (𝑠, 𝑢@)
o By flow conservation, 𝑢@ must have unit outgoing flow (which we

haven’t used up yet).
o Pick such an edge and continue building a path until you hit 𝑡

Ø Repeat this for the other 𝑘 − 1 edges from 𝑠 with unit flow ∎

Edge-Disjoint	Paths

373F23 - Nisarg Shah 70

• Maximum number of edge-disjoint 𝑠 → 𝑡 paths
Ø Equals max flow in this network
Ø By max-flow min-cut theorem, also equals minimum cut

Ø Exercise: minimum cut = minimum number of edges we need to
delete to disconnect 𝑠 from 𝑡
o Hint: Show each direction separately (≤ and ≥)

Edge-Disjoint	Paths

373F23 - Nisarg Shah 71

• Exercise!
Ø Show that to compute the maximum number of edge-disjoint 𝑠-𝑡

paths in an undirected graph, you can create a directed flow network
by adding each undirected edge in both directions and setting all
capacities to 1

• Menger’s Theorem
Ø In any directed/undirected graph, the maximum number of edge-

disjoint (resp. vertex-disjoint) 𝑠 → 𝑡 paths equals the minimum
number of edges (resp. vertices) whose removal disconnects 𝑠 and 𝑡

Multiple	Sources/Sinks

373F23 - Nisarg Shah 72

• Problem
Ø Given a directed graph 𝐺 = (𝑉, 𝐸) with edge capacities 𝑐: 𝐸 → ℕ,

sources 𝑠@, … , 𝑠F and sinks 𝑡@, … , 𝑡ℓ, find the maximum total flow
from sources to sinks.

Multiple	Sources/Sinks

373F23 - Nisarg Shah 73

• Network flow formulation
Ø Add a new source 𝑠, edges from 𝑠 to each 𝑠2 with ∞ capacity
Ø Add a new sink 𝑡, edges from each 𝑡N to 𝑡 with ∞ capacity
Ø Find max-flow from 𝑠 to 𝑡
Ø Claim: 1 − 1 correspondence between flows in two networks

Circulation

373F23 - Nisarg Shah 74

• Input
Ø Directed graph 𝐺 = (𝑉, 𝐸)
Ø Edge capacities 𝑐 ∶ 𝐸 → ℕ
Ø Node demands 𝑑 ∶ 𝑉 → ℤ

• Output
Ø Some circulation 𝑓 ∶ 𝐸 → ℕ satisfying
o For each 𝑒 ∈ 𝐸 : 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)
o For each 𝑣 ∈ 𝑉 : ∑#	%&'%()&*	+ 𝑓(𝑣) − ∑#	,%-.)&*	+ 𝑓 𝑣 = 𝑑(𝑣)

Ø Note that you need ∑+:P + Q"𝑑(𝑣) = ∑+:P + R"−𝑑(𝑣)
Ø What are demands?

Circulation

373F23 - Nisarg Shah 75

• Demand at 𝑣 = amount of flow you need to take out at
node 𝑣

Ø 𝑑 𝑣 > 0 : You need to take some flow out at 𝑣
o So, there should be 𝑑(𝑣) more incoming flow than outgoing flow
o “Demand node”

Ø 𝑑 𝑣 < 0 : You need to put some flow in at 𝑣
o So, there should be 𝑑 𝑣 more outgoing flow than incoming flow
o “Supply node”

Ø 𝑑 𝑣 = 0 : Node has flow conservation
o Equal incoming and outgoing flows
o “Transshipment node”

Circulation

373F23 - Nisarg Shah 76

• Example

Circulation

373F23 - Nisarg Shah 77

• Network-flow formulation 𝐺′
Ø Add a new source 𝑠 and a new sink 𝑡
Ø For each “supply” node 𝑣 with 𝑑 𝑣 < 0, add edge (𝑠, 𝑣) with

capacity −𝑑(𝑣)
Ø For each “demand” node 𝑣 with 𝑑 𝑣 > 0, add edge (𝑣, 𝑡) with

capacity 𝑑(𝑣)

• Claim:
Ø 𝐺 has a circulation iff 𝐺′ has max flow of value

t
+:P + Q"

𝑑 𝑣 =t
+:P + R"

−𝑑(𝑣)

Circulation

373F23 - Nisarg Shah 78

• Example

Circulation

373F23 - Nisarg Shah 79

• Example

Circulation	with	Lower	Bounds

373F23 - Nisarg Shah 80

• Input
Ø Directed graph 𝐺 = (𝑉, 𝐸)
Ø Edge capacities 𝑐 ∶ 𝐸 → ℕ and lower bounds ℓ ∶ 𝐸 → ℕ
Ø Node demands 𝑑 ∶ 𝑉 → ℤ

• Output
Ø Some circulation 𝑓 ∶ 𝐸 → ℕ satisfying
o For each 𝑒 ∈ 𝐸 : ℓ(𝑒) ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)
o For each 𝑣 ∈ 𝑉 : ∑#	%&'%()&*	+ 𝑓(𝑣) − ∑#	,%-.)&*	+ 𝑓 𝑣 = 𝑑(𝑣)

Ø Note that you still need ∑+:P + Q"𝑑(𝑣) = ∑+:P + R"−𝑑(𝑣)

Circulation	with	Lower	Bounds

373F23 - Nisarg Shah 81

• Transform to circulation without lower bounds
Ø Do the following operation to each edge

• Claim: Circulation in 𝐺 iff circulation in 𝐺′
Ø Proof sketch: 𝑓(𝑒) gives a valid circulation in 𝐺 iff 𝑓 𝑒 − ℓ(𝑒) gives a

valid circulation in 𝐺′

Survey	Design

373F23 - Nisarg Shah 82

• Problem
Ø We want to design a survey about 𝑚 products
o We have one question in mind for each product
o Need to ask product 𝑗’s question to between 𝑝N and 𝑝NS consumers

Ø There are a total of 𝑛 consumers
o Consumer 𝑖 owns a subset of products 𝑂2
o We can ask consumer 𝑖 questions about only these products
o We want to ask consumer 𝑖 between 𝑐2 and 𝑐2S questions

Ø Is there a survey meeting all these requirements?

Survey	Design

373F23 - Nisarg Shah 83

• Bipartite matching is a special case
Ø 𝑐2 = 𝑐2S = 𝑝N = 𝑝NS = 1 for all 𝑖 and 𝑗

• Formulate as circulation with lower bounds
Ø Create a network with special nodes 𝑠 and 𝑡
Ø Edge from 𝑠 to each consumer 𝑖 with flow ∈ [𝑐2, 𝑐2S]
Ø Edge from each consumer 𝑖 to each product 𝑗 ∈ 𝑂2 with flow ∈ [0,1]
Ø Edge from each product 𝑗 to 𝑡 with flow ∈ [𝑝N, 𝑝NS]
Ø Edge from 𝑡 to 𝑠 with flow in [0,∞]
Ø All demands and supplies are 0

Survey	Design

373F23 - Nisarg Shah 84

• Max-flow formulation:
Ø Feasible survey iff feasible circulation in this network

Image	Segmentation

373F23 - Nisarg Shah 85

• Foreground/background segmentation
Ø Given an image, separate “foreground” from “background”

• Here’s the power of PowerPoint (or the lack thereof)

Remove
background

Image	Segmentation

373F23 - Nisarg Shah 86

• Foreground/background segmentation
Ø Given an image, separate “foreground” from “background”

• Here’s what remove.bg gets using AI

Remove
background

Image	Segmentation

373F23 - Nisarg Shah 87

• Informal problem
Ø Given an image (2D array of pixels), and likelihood estimates of

different pixels being foreground/background, label each
pixel as foreground or background

Ø Want to prevent having too many
neighboring pixels where one is
labeled foreground but the other
is labeled background

Image	Segmentation

373F23 - Nisarg Shah 88

• Input
Ø An image (2D array of pixels)
Ø 𝑎2 = likelihood of pixel 𝑖	being in foreground
Ø 𝑏2 = likelihood of pixel 𝑖	being in background
Ø 𝑝2,N = penalty for “separating” pixels 𝑖 and 𝑗 (i.e. labeling one of them

as foreground and the other as background)

• Output
Ø Label each pixel as “foreground” or “background”
Ø Minimize “total penalty”
o Want it to be high if 𝑎2 is high but 𝑖 is labeled background, 𝑏2 is high

but 𝑖 is labeled foreground, or 𝑝2,N is high but 𝑖 and 𝑗 are separated

Image	Segmentation

373F23 - Nisarg Shah 89

• Recall
Ø 𝑎2 = likelihood of pixels 𝑖	being in foreground
Ø 𝑏2 = likelihood of pixels 𝑖	being in background
Ø 𝑝2,N = penalty for separating pixels 𝑖 and 𝑗
Ø Let 𝐸 = pairs of neighboring pixels

• Output
Ø Minimize total penalty
o 𝐴 = set of pixels labeled foreground
o 𝐵 = set of pixels labeled background
o Penalty =

F
"∈$

𝑏" +F
%∈&

𝑎% + F
",% ∈(

$∩ ",% *+

𝑝",%

Image	Segmentation

373F23 - Nisarg Shah 90

• Formulate as a min-cut problem
Ø Want to divide the set of pixels 𝑉 into (𝐴, 𝐵) to minimize

F
"∈$

𝑏" +F
%∈&

𝑎% + F
",% ∈(

$∩ ",% *+

𝑝",%

Ø Nodes:
o source 𝑠, target 𝑡, and 𝑣2 for each pixel 𝑖

Ø Edges:
o (𝑠, 𝑣2) with capacity 𝑎2 for all 𝑖
o (𝑣2, 𝑡) with capacity 𝑏2 for all 𝑖
o (𝑣2, 𝑣N) and (𝑣N, 𝑣2) with capacity 𝑝2,N each for all neighboring (𝑖, 𝑗)

Image	Segmentation

373F23 - Nisarg Shah 91

• Formulate as min-cut problem
Ø Here’s what the network looks like

Image	Segmentation

373F23 - Nisarg Shah 92

Ø Consider the min-cut (𝐴, 𝐵)
𝑐𝑎𝑝 𝐴, 𝐵 =F

"∈$

𝑏" +F
%∈&

𝑎% + F
",% ∈(

"∈$,%∈&

𝑝",%

Ø Exactly what we want to minimize!

If 𝑖 and 𝑗 are labeled differently, it
will add 𝑝!,# exactly once

Image	Segmentation

373F23 - Nisarg Shah 93

• GrabCut [Rother-Kolmogorov-Blake 2004]

Profit	Maximization	(Yeaa…!)

373F23 - Nisarg Shah 94

• Problem
Ø There are 𝑛 tasks
Ø Performing task 𝑖 generates a profit of 𝑝2
o We allow 𝑝2 < 0 (i.e., performing task 𝑖 may be costly)

Ø There is a set 𝐸 of precedence relations
o 𝑖, 𝑗 ∈ 𝐸 indicates that if we perform 𝑖, we must also perform 𝑗

• Goal
Ø Find a subset of tasks 𝑆 which, subject to the precedence constraints,

maximizes 𝑝𝑟𝑜𝑓𝑖𝑡 𝑆 = ∑2∈T 𝑝2

Profit	Maximization

373F23 - Nisarg Shah 95

• We can represent the input as a graph
Ø Nodes = tasks, node weights = profits,
Ø Edges = precedence constraints
Ø Goal: find a subset of nodes 𝑆 with highest total weight s.t. if 𝑖 ∈ 𝑆

and 𝑖, 𝑗 ∈ 𝐸, then 𝑗 ∈ 𝑆 as well

-1

3

-4

-2

-3

7

3

-9

Profit	Maximization

373F23 - Nisarg Shah 96

• Want to formulate as a min-cut
Ø Add source 𝑠 and target 𝑡
Ø min-cut (𝐴, 𝐵) ⇒ want desired solution to be 𝑆 = 𝐴 ∖ {𝑠}
Ø Goals:
o 𝑐𝑎𝑝(𝐴, 𝐵) should nicely relate to 𝑝𝑟𝑜𝑓𝑖𝑡(𝑆)
o Precedence constraints must be respected
• “Hard” constraints are usually enforced using infinite capacity edges

• Construction:
Ø Add each 𝑖, 𝑗 ∈ 𝐸 with infinite capacity
Ø For each 𝑖:
o If 𝑝" > 0, add (𝑠, 𝑖) with capacity 𝑝"
o If 𝑝" < 0, add (𝑖, 𝑡) with capacity −𝑝"

Profit	Maximization

373F23 - Nisarg Shah 97

-2

3 -3

-17

3

0

Profit	Maximization

373F23 - Nisarg Shah 98

-2

3 -3

-17

3

0

s
t

3

7

3
3

1

2

∞

∞

∞

∞

∞

∞

∞

∞

Profit	Maximization

373F23 - Nisarg Shah 99

A possible cut

QUESTION: What is the capacity of this cut?

-2

3 -3

-17

3

0

s
t

3

7

3
3

1

2

∞

∞

∞

∞

∞

∞

∞

∞

Profit	Maximization

373F23 - Nisarg Shah 100

Exercise: Show that…

1. A finite capacity cut exists.

2. If 𝑐𝑎𝑝(𝐴, 𝐵) is finite, then 𝐴\ 𝑠 is a valid solution;

3. Minimizing 𝑐𝑎𝑝(𝐴, 𝐵) maximizes 𝑝𝑟𝑜𝑓𝑖𝑡(𝐴\ 𝑠)

• Show that 𝑐𝑎𝑝 𝐴, 𝐵 = constant −	𝑝𝑟𝑜𝑓𝑖𝑡 𝐴\ 𝑠 , where the
constant is independent of the choice of (𝐴, 𝐵)

