CSC373

Weeks 2 & 3: Greedy Algorithms

Nisarg Shah

Recap

Divide & Conquer

- Master theorem
- \succ Counting inversions in $O(n \log n)$
- > Finding closest pair of points in \mathbb{R}^2 in $O(n \log^2 n)$
 - \circ Can be improved to $O(n \log n)$
- > Fast integer multiplication in $O(n^{\log_2 3})$
- > Fast matrix multiplication in $O(n^{\log_2 7})$
- > Finding k^{th} smallest element in O(n)
 - \circ Can be used for finding the median in O(n) time

Greedy Algorithms

- Greedy/myopic algorithm outline
 - \triangleright Goal: find a solution x maximizing/minimizing objective function f
 - \triangleright Challenge: space of possible solutions x is too large
 - Insight: Computing x requires taking several decisions (e.g., decide to either keep or discard each element of a set)
 - Approach: Instead of taking all the decisions together, take them one at a time
 - Take the next decision "greedily" to maximize the immediate "benefit" without knowing how you'll take future decisions
 - Most greedy algorithms trivially run in polynomial time, but require a proof that they will always return an optimal solution

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs i and j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap
 - Note: we allow a job to start right when another finishes
- Goal: find maximum-size subset of mutually compatible jobs

- Greedy template
 - Consider the jobs one-by-one in some "natural" order
 - > For each job being considered, take it if it's compatible with the ones already taken

Question: In what order should we consider the jobs?

Possible Orders

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_i s_i$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

Counterexamples

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
 - \triangleright Sort jobs by finish time, say $f_1 \le f_2 \le \cdots \le f_n$
 - $\circ O(n \log n)$
 - > For each job *j*, we need to check if it's compatible with *all* previously chosen jobs
 - \circ Naively, this can take O(n) time per job j, so $O(n^2)$ total time
 - \circ We only need to check if $s_i \geq f_{i^*}$, where i^* is the last added job
 - For any jobs i added before i^* , $f_i \leq f_{i^*}$
 - By keeping track of f_{i^*} , we can check job j in O(1) time
 - > Total running time: $O(n \log n)$

- Proof of optimality by contradiction
 - > Suppose for contradiction that greedy solution is not optimal
 - > Say greedy selects jobs $i_1, i_2, ..., i_k$ sorted by finish time
 - > Consider an optimal solution $j_1, j_2, ..., j_m$ by finish time which matches greedy for as many indices as possible
 - \circ That is, $j_1 = i_1, ..., j_r = i_r$ for the greatest possible r

- Proof of optimality by contradiction
 - ightharpoonup Claim: $r < k \le m$
 - > Proof:
 - \circ If r = k, then *OPT* selects every job selected by *GRD*
 - \circ But since we assumed GRD is not optimal, OPT must select at least one more job, which doesn't conflict with any jobs selected by GRD
 - O But then GRD would have selected this job too, a contradiction!
 - > Hence, both greedy and optimal select at least one job each after their (common) r^{th} job $i_r=j_r$
 - O Both i_{r+1} and j_{r+1} must be compatible with the previous selection ($i_1 = j_1, ..., i_r = j_r$)

- Proof of optimality by contradiction
 - \triangleright Consider a new solution $i_1, i_2, ..., i_r, i_{r+1}, j_{r+2}, ..., j_m$
 - \circ We have replaced j_{r+1} by i_{r+1} in our optimal solution
 - \circ This is still feasible because $f_{i_{r+1}} \le f_{j_{r+1}} \le s_{j_t}$ for $t \ge r+2$
 - \circ This is still optimal because m jobs are selected
 - \circ But it matches the greedy solution in r+1 indices
 - This is the desired contradiction

Proof of optimality by induction

- \triangleright Let G_j be the subset of jobs picked by greedy after considering the first j jobs by increasing finish time
- ▶ If greedy solution is G, then $G_j = G \cap \{1, ..., j\}$
- \triangleright Note that $G_0=\emptyset$ and $G_n=G$
- \triangleright We call G_j promising if some optimal solution O_j "extends it"
 - 0 $\exists T \subseteq \{j+1,...,n\}$ such that $O_j = G_j \cup T$ is optimal
- ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, G_t is promising
- > If we prove this, then we are done since $G = G_n$ is promising, which is the same as $G = G_n$ being optimal (Why?)

- Proof of optimality by induction
 - ▶ Inductive claim: For all $t \in \{0,1,...,n\}$, G_t is promising
 - > Base case: For t = 0, $G_0 = \emptyset$ is trivially promising (Why?)
 - ▶ Induction hypothesis: Suppose that for t = j 1, G_{j-1} is promising and optimal solution O_{j-1} extends G_{j-1}
 - \triangleright Induction step: At t = j, we have two possibilities:
 - 1) Greedy did not select job j, so $G_j = G_{j-1}$
 - Job j must have had a conflict with some job in G_{j-1}
 - Since $G_{j-1} \subseteq O_{j-1}$, O_{j-1} also cannot include job j
 - Hence, $O_j = O_{j-1}$ also extends $G_j = G_{j-1}$

- Proof of optimality by induction
 - \triangleright Induction step: At t = j, we have two possibilities:
 - 2) Greedy did select job j, so $G_i = G_{j-1} \cup \{j\}$
 - Consider the earliest job r in $O_{j-1} \setminus G_{j-1}$
 - Note that $f_j \leq f_r \leq s_\ell$ for any job $\ell \in O_{j-1} \setminus (G_{j-1} \cup \{r\})$
 - So $O_i = O_{i-1} \cup \{j\} \setminus \{r\}$ is optimal and extends $G \blacksquare$

Contradiction vs Induction

- Both methods make the same claim
 - \succ " $\forall j$, the greedy solution after j iterations can be extended to some optimal solution"
 - Proof by induction explicitly proves this inductively
 - Proof by contradiction...
 - Supposes that this is not true
 - \circ Considers the smallest r+1 such that the greedy solution after r+1 iterations cannot be extended to an optimal solution
 - Same as finding an optimal solution that matches greedy for the maximum possible number of iterations \boldsymbol{r}
 - \circ Derives a contradiction by showing that greedy after r+1 can still be extended to some optimal solution
 - Equivalent to the induction step

Contradiction vs Induction

- Choose the method that feels natural to you
- It may be the case that...
 - > For some problems, a proof by contradiction feels more natural
 - > But for other problems, a proof by induction feels more natural
 - No need to stick to one method
- As we saw for interval partitioning, sometimes you may require an entirely different kind of proof

Problem

- \triangleright Job j starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

One idea

- > Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

- Let's go back to the greedy template!
 - > Go through lectures in some "natural" order
 - Assign each lecture to a used classroom that is compatible (what if there are several?), and use a new classroom if the lecture conflicts with every used classroom
- Order of lectures?
 - \triangleright Earliest start time: ascending order of s_i
 - \triangleright Earliest finish time: ascending order of f_i
 - \triangleright Shortest interval: ascending order of $f_i s_i$
 - Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start time so that $s_1 \le s_2 \le ... \le s_n$.

 $d \leftarrow 0$ — number of allocated classrooms

For j = 1 to n

IF lecture j is compatible with some classroom Schedule lecture j in any such classroom k.

ELSE

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.

$$d \leftarrow d + 1$$

RETURN schedule.

Running time

- Key step: check if the next lecture can be scheduled at some classroom
- > Store classrooms in a priority queue / min heap
 - o key = latest finish time of any lecture in the classroom
- > Is lecture *j* compatible with some classroom?
 - o If $s_j \ge$ smallest key (say of classroom k), add lecture j to classroom k & update its key to f_j
 - \circ Otherwise, create a new classroom, add lecture j, set key to f_i
- $> O(n \log n)$ for sorting, $O(n \log d)$ for priority queue operations (if greedy ends up using d classrooms)
- > Since $d \le n$, total time is $O(n \log n)$

- Proof of optimality (lower bound)
 - Easy claim: # classrooms needed in any schedule ≥ "depth"
 - depth = maximum number of lectures running at any time
 - \circ Recall, as before, that job i runs in $[s_i, f_i)$
 - ▶ Difficult claim: # classrooms needed by greedy ≤ depth

- Proof of optimality (upper bound)
 - \triangleright Let d = # classrooms used by greedy
 - > Classroom d was opened because each classroom $k \in \{1, ..., d-1\}$ had a lecture ℓ_k that was in conflict with lecture j
 - > Consider the set of d lectures $\{\ell_1, \dots, \ell_{d-1}, j\}$
 - > Since we sorted by start time, each lecture in this set starts at/before s_i and ends after s_i (since it conflicts with lecture j)
 - \triangleright So, at time s_i , there are at least d mutually conflicting lectures
 - \triangleright Hence, depth $\ge d = \#$ classrooms used by greedy

Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

Input

- \rightarrow Graph G = (V, E)
- Vertices V = jobs/lectures
- \triangleright Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
 - > Graphs which can be obtained from incompatibility of intervals
 - > In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - > Yes! Chordal graphs
 - Every cycle with 4 or more vertices has a chord

Problem

- > We have a single machine
- \succ Each job j requires t_i units of time and is due by time d_i
- > If it's scheduled to start at s_i , it will finish at $f_i = s_i + t_i$
- > Lateness: $\ell_j = \max\{0, f_j d_j\}$
- > Goal: minimize the maximum lateness, $L = \max_{j} \ell_{j}$
- Contrast with interval scheduling
 - > We can decide the start time
 - > There are soft deadlines

Example

Input

	1	2	3	4	5	6
tj	3	2	1	4	3	2
dj	6	8	9	9	14	15

An example schedule

- Let's go back to greedy template
 - Consider jobs one-by-one in some "natural" order
 - > Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
 - \triangleright Shortest processing time first: ascending order of processing time t_j
 - \triangleright Earliest deadline first: ascending order of due time d_j
 - \triangleright Smallest slack first: ascending order of d_j-t_j

- Counterexamples
 - > Shortest processing time first
 - \circ Ascending order of processing time t_i

Smal	lest	slack	first
JIIIGI		JIGUN	

 \circ Ascending order of $d_j - t_j$

	1	2
tj	1	10
dj	100	10

	1	2
tj	1	10
dj	2	10

 By now, you should know what's coming... EARLIEST DEADLINE FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

 We'll prove that earliest deadline first works! SORT *n* jobs so that $d_1 \le d_2 \le ... \le d_n$.

$$t \leftarrow 0$$

For
$$j = 1$$
 to n

Assign job *j* to interval $[t, t+t_j]$.

$$s_j \leftarrow t$$
; $f_j \leftarrow t + t_j$

$$t \leftarrow t + t_j$$

RETURN intervals $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n].$

Observation 1

> There is an optimal schedule with no idle time

Observation 2

> EDF has no idle time

To prove:

EDF is at least as good as any schedule (even that optimal schedule) with no idle time

- Consider any schedule with no idle time
 - > It can be represented as a permutation $(q_1, q_2, ..., q_n)$ of (1, 2, ..., n)
- Define an inversion:
 - \triangleright Any pair of jobs (i, j) such that i < j but i is scheduled after j
- Observation 3
 - > EDF has zero inversions
 - > Every other schedule with no idle time has at least one inversion

Observation 4

> If a no-idle-time-schedule $(q_1, q_2, ..., q_n)$ has at least one inversion, then it has at least one inversion in an adjacent pair of jobs (q_i, q_{i+1})

Proof:

- > If not, then each of the pairs $(q_1, q_2), (q_2, q_3), \dots, (q_{n-1}, q_n)$ is not an inversion
- \Rightarrow Then, $q_1 < q_2$, $q_2 < q_3$, ..., $q_{n-1} < q_n$
- > Then, $q_1 < q_2 < \dots < q_n$
- \succ The only such schedule is (1,2,...,n), which has zero inversions

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

Check that swapping an adjacent inverted pair reduces the total #inversions by one

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

- \triangleright Let ℓ_k and ℓ_k' denote the lateness of job k before & after swap
- > Let $L = \max_{k} \ell_k$ and $L' = \max_{k} \ell'_k$
- > 1) $\ell_k = \ell'_k$ for all $k \neq i, j$ (no change in their finish time)
- $> 2) \ell_i' \leq \ell_i$ (i is moved early)

Observation 5

Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces #inversions by one

Proof

$$>$$
 3) $\ell'_{i} = f'_{i} - d_{j} = f_{i} - d_{j} \le f_{i} - d_{i} = \ell_{i} \quad (\because i < j \Rightarrow d_{i} \le d_{j})$

$$\Rightarrow \text{ Hence, } L' = \max\left\{\ell_i', \ell_j', \max_{k \neq i, j} \ell_k'\right\} \leq \max\left\{\ell_i, \ell_i, \max_{k \neq i, j} \ell_k\right\} \leq L$$

> Alternatively:

$$0 \ell'_k = \ell_k \le L$$
 for all $k \ne i, j$

$$0 \ell_i' \le \ell_i \le L$$

$$0 \ell_i' \le \ell_i \le L$$

$$\bigcirc \text{ Hence, } L' = \max \left\{ \ell'_i, \ell'_j, \max_{k \neq i,j} \ell'_k \right\} \leq L$$

Observations 1 & 2:

Greedy EDF and some optimal schedule OPT have no idle time (thus, they're permutations of jobs)

Observations 4 & 5:

If OPT has $r \ge 1$ inversions, there is another optimal permutation that has r-1 inversions.

Observation 3:

EDF permutation has 0 inversions, every other permutation has at least 1 inversion.

Proof by contradiction/induction that there is an optimal permutation with 0 inversions

Must be the EDF permutation

- Proof of optimality by contradiction
 - > Suppose for contradiction that the greedy EDF permutation is not optimal
 - Among all optimal permutations with no idle time (these exist by Observation 1), consider OPT* which has the fewest inversions
 - > Because EDF permutation is the only one with zero inversions (Observation 3) and it is not optimal, OPT* has $r \ge 1$ inversions
 - \triangleright By Observation 4, it has an adjacent inversion (i, j)
 - \triangleright By Observation 5, swapping the adjacent pair produces a new permutation (no idle time) that is optimal and has r-1 inversions
 - ➤ Contradiction! ■

- Proof of optimality by (reverse) induction
 - ▶ Claim: For each $r \in \{0,1,...,\binom{n}{2}\}$, there is an optimal permutation (no idle time) with at most r inversions
 - > Base case of $r = \binom{n}{2}$: Use any optimal permutation (Observation 1)
 - \triangleright Induction hypothesis: Suppose the claim holds for r=t+1
 - > Induction step:
 - \circ Let OPT* be an optimal permutation with at most t+1 inversions
 - o If it has at most t inversions, we're done!
 - o If it has exactly $t+1 \ge 1$ inversions, find and swap an adjacent inverted pair to get a new optimal permutation with t inversions (Observations 4 & 5)
 - > QED!
 - > Claim for r=0 shows optimality of the EDF permutation (Observation 3)

Problem

- \triangleright We have a document that is written using n distinct labels
- \triangleright Naïve encoding: represent each label using $\log n$ bits
- \triangleright If the document has length m, this uses $m \log n$ bits
- > English document with no punctuations etc.
- > n = 26, so we can use 5 bits

$$\circ a = 00000$$

$$0 b = 00001$$

$$c = 00010$$

$$0 d = 00011$$

0 ...

Is this optimal?

- > What if a, e, r, s are much more frequent in the document than x, q, z?
- Can we assign shorter codes to more frequent letters?

• Say we assign...

- \Rightarrow a = 0, b = 1, c = 01, ...
- > See a problem?
 - O What if we observe the encoding '01'?
 - Is it 'ab'? Or is it 'c'?

- To avoid conflicts, we need a prefix-free encoding
 - > Map each label x to a bit-string c(x) such that for all distinct labels x and y, c(x) is not a prefix of c(y)
 - > Then it's impossible to have a scenario like this

c(x) c(y)

- > Now, we can read left to right
 - Whenever the part to the left becomes a valid encoding, greedily decode it, and continue with the rest

Formal problem

- > Given n symbols and their frequencies (w_1, \ldots, w_n) , find a prefix-free encoding with lengths (ℓ_1, \ldots, ℓ_n) assigned to the symbols which minimizes $\sum_{i=1}^n w_i \cdot \ell_i$
 - \circ Note that $\sum_{i=1}^{n} w_i \cdot \ell_i$ is the length of the compressed document

Example

- $(w_a, w_b, w_c, w_d, w_e, w_f) = (42,20,5,10,11,12)$
- No need to remember the numbers

Observation: prefix-free encoding = tree

- Huffman Coding
 - \triangleright Build a priority queue by adding (x, w_x) for each symbol x
 - > While |queue|≥ 2
 - \circ Take the two symbols with the lowest weight (x, w_x) and (y, w_y)
 - \circ Merge them into one symbol with weight $w_x + w_y$
- Let's see this on the previous example

Final Outcome

Running time

- $> O(n \log n)$
- \succ Can be made O(n) if the labels are given to you sorted by their frequencies
 - Exercise! Think of using two queues...

Proof of optimality

- \triangleright Induction on the number of symbols n
- **Base case:** For n=2, both encodings which assign 1 bit to each symbol are optimal
- > Hypothesis: Assume it returns an optimal encoding with n-1 symbols and consider the case of n symbols.

• Lemma 1: If $w_a \le w_b$ but $\ell_a \ge \ell_b$, then swapping the encodings of a and b does not make the objective any worse.

Proof:

> We simply need to check that the given inequalities imply

$$w_a \cdot \ell_b + w_b \cdot \ell_a \le w_a \cdot \ell_a + w_b \cdot \ell_b$$

> QED!

- Let x, y be the first two symbols in Huffman priority queue
 - $> w_x$ is the lowest, w_y is the second lowest
 - > They become siblings in the Huffman tree from the first iteration
- Lemma 2: \exists optimal tree T in which x and y are siblings.
- Proof:
 - 1. Take any optimal tree
 - 2. If ℓ_x isn't the longest encoding, swapping x with a symbol that has the longest encoding keeps the tree optimal (Lemma 1)
 - 3. In this optimal tree, x must have a sibling (check!)
 - 4. If it's not y, swapping it with y keeps the tree optimal (Lemma 1)
 - 5. Now we have an optimal tree where x and y are siblings.

Proof of optimality

- > Let H be the Huffman tree
- \triangleright Let T be an optimal tree in which x and y are siblings (Lemma 2)
- > Let H' and T' be obtained from H and T by treating 'xy' as one symbol with frequency $w_x + w_y$
- > Note that
 - $\circ Length(H) = Length(H') + (w_{\chi} + w_{\gamma}) \cdot 1$
 - $\circ Length(T) = Length(T') + (w_x + w_y) \cdot 1$
- \triangleright But due to the induction hypothesis, $Length(H') \le Length(T')$
- \rightarrow Hence, $Length(H) \leq Length(T) \blacksquare$

Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
 - > Dijkstra's shortest path algorithm
 - > Kruskal and Prim's minimum spanning tree algorithms