CSC373

Weeks 2 \& 3: Greedy Algorithms

Nisarg Shah

Recap

- Divide \& Conquer
> Master theorem
$>$ Counting inversions in $O(n \log n)$
> Finding closest pair of points in \mathbb{R}^{2} in $O\left(n \log ^{2} n\right)$
- Can be improved to $O(n \log n)$
> Fast integer multiplication in $O\left(n^{\log _{2} 3}\right)$
> Fast matrix multiplication in $O\left(n^{\log _{2} 7}\right)$
> Finding $k^{\text {th }}$ smallest element in $O(n)$
- Can be used for finding the median in $O(n)$ time

Greedy Algorithms

- Greedy/myopic algorithm outline
> Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large
> Insight: Computing x requires taking several decisions (e.g., decide to either keep or discard each element of a set)
> Approach: Instead of taking all the decisions together, take them one at a time
- Take the next decision "greedily" to maximize the immediate "benefit" without knowing how you'll take future decisions
- Most greedy algorithms trivially run in polynomial time, but require a proof that they will always return an optimal solution

Interval Scheduling

- Problem

> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs i and j are compatible if $\left[s_{i}, f_{i}\right.$) and $\left[s_{j}, f_{j}\right.$) don't overlap

- Note: we allow a job to start right when another finishes
> Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

- Greedy template
> Consider the jobs one-by-one in some "natural" order
> For each job being considered, take it if it's compatible with the ones already taken
- Question: In what order should we consider the jobs?

Possible Orders

- Earliest start time: ascending order of s_{j}
- Earliest finish time: ascending order of f_{j}
- Shortest interval: ascending order of $f_{j}-s_{j}$
- Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Scheduling

- Counterexamples
earliest start time
shortest interval
fewest conflicts

Interval Scheduling

- Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time, say $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ - $O(n \log n)$
> For each job j, we need to check if it's compatible with all previously chosen jobs
- Naively, this can take $O(n)$ time per job j, so $O\left(n^{2}\right)$ total time
- We only need to check if $s_{j} \geq f_{i^{*}}$, where i^{*} is the last added job
- For any jobs i added before $i^{*}, f_{i} \leq f_{i^{*}}$
- By keeping track of $f_{i^{*}}$, we can check job j in $O(1)$ time
> Total running time: $O(n \log n)$

Interval Scheduling

- Proof of optimality by contradiction
> Suppose for contradiction that greedy solution is not optimal
> Say greedy selects jobs $i_{1}, i_{2}, \ldots, i_{k}$ sorted by finish time
> Consider an optimal solution $j_{1}, j_{2}, \ldots, j_{m}$ by finish time which matches greedy for as many indices as possible
○ That is, $j_{1}=i_{1}, \ldots, j_{r}=i_{r}$ for the greatest possible r

Interval Scheduling

- Proof of optimality by contradiction
> Claim: $r<k \leq m$
> Proof:
- If $r=k$, then OPT selects every job selected by GRD
- But since we assumed GRD is not optimal, OPT must select at least one more job, which doesn't conflict with any jobs selected by GRD
- But then GRD would have selected this job too, a contradiction!
> Hence, both greedy and optimal select at least one job each after their (common) $r^{\text {th }}$ job $i_{r}=j_{r}$
- Both i_{r+1} and j_{r+1} must be compatible with the previous selection ($i_{1}=j_{1}, \ldots, i_{r}=j_{r}$)

Interval Scheduling

- Proof of optimality by contradiction
> Consider a new solution $i_{1}, i_{2}, \ldots, i_{r}, i_{r+1}, j_{r+2}, \ldots, j_{m}$
- We have replaced j_{r+1} by i_{r+1} in our optimal solution
- This is still feasible because $f_{i_{r+1}} \leq f_{j_{r+1}} \leq s_{j_{t}}$ for $t \geq r+2$
- This is still optimal because m jobs are selected
- But it matches the greedy solution in $r+1$ indices
- This is the desired contradiction

Interval Scheduling

- Proof of optimality by induction
> Let G_{j} be the subset of jobs picked by greedy after considering the first j jobs by increasing finish time
> If greedy solution is G, then $G_{j}=G \cap\{1, \ldots, j\}$
$>$ Note that $G_{0}=\varnothing$ and $G_{n}=G$
> We call G_{j} promising if some optimal solution O_{j} "extends it" ○ $\exists T \subseteq\{j+1, \ldots, n\}$ such that $O_{j}=G_{j} \cup T$ is optimal
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, G_{t}$ is promising
> If we prove this, then we are done since $G=G_{n}$ is promising, which is the same as $G=G_{n}$ being optimal (Why?)

Interval Scheduling

- Proof of optimality by induction
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, G_{t}$ is promising
> Base case: For $t=0, G_{0}=\emptyset$ is trivially promising (Why?)
> Induction hypothesis: Suppose that for $t=j-1, G_{j-1}$ is promising and optimal solution O_{j-1} extends G_{j-1}
> Induction step: At $t=j$, we have two possibilities:

1) Greedy did not select job j, so $G_{j}=G_{j-1}$

- Job j must have had a conflict with some job in G_{j-1}
- Since $G_{j-1} \subseteq O_{j-1}, O_{j-1}$ also cannot include job j
- Hence, $O_{j}=O_{j-1}$ also extends $G_{j}=G_{j-1}$

Interval Scheduling

- Proof of optimality by induction
> Induction step: At $t=j$, we have two possibilities:

2) Greedy did select job j, so $G_{j}=G_{j-1} \cup\{j\}$

- Consider the earliest job r in $O_{j-1} \backslash G_{j-1}$
- Note that $f_{j} \leq f_{r} \leq s_{\ell}$ for any job $\ell \in O_{j-1} \backslash\left(G_{j-1} \cup\{r\}\right)$
- So $O_{j}=O_{j-1} \cup\{j\} \backslash\{r\}$ is optimal and extends $G ■$

Contradiction vs Induction

- Both methods make the same claim
> " $\forall j$, the greedy solution after j iterations can be extended to some optimal solution"
> Proof by induction explicitly proves this inductively
> Proof by contradiction...
- Supposes that this is not true
- Considers the smallest $r+1$ such that the greedy solution after $r+1$ iterations cannot be extended to an optimal solution
- Same as finding an optimal solution that matches greedy for the maximum possible number of iterations r
- Derives a contradiction by showing that greedy after $r+1$ can still be extended to some optimal solution
- Equivalent to the induction step

Contradiction vs Induction

- Choose the method that feels natural to you
- It may be the case that...
> For some problems, a proof by contradiction feels more natural
> But for other problems, a proof by induction feels more natural
> No need to stick to one method
- As we saw for interval partitioning, sometimes you may require an entirely different kind of proof

Interval Partitioning

- Problem
> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs are compatible if they don't overlap
> Goal: group jobs into fewest partitions such that jobs in the same partition are compatible
- One idea
> Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
> Doesn't work (check by yourselves)

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

Interval Partitioning

- Let's go back to the greedy template!
> Go through lectures in some "natural" order
$>$ Assign each lecture to a used classroom that is compatible (what if there are several?), and use a new classroom if the lecture conflicts with every used classroom
- Order of lectures?
> Earliest start time: ascending order of s_{j}
> Earliest finish time: ascending order of f_{j}
> Shortest interval: ascending order of $f_{j}-s_{j}$
> Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Partitioning

counterexample for earliest finish time

- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)
counterexample for fewest conflicts

Interval Partitioning

```
EarliestStartTimeFirst \(\left(n, s_{1}, s_{2}, \ldots, s_{n}, f_{1}, f_{2}, \ldots, f_{n}\right)\)
SORT lectures by start time so that \(s_{1} \leq s_{2} \leq \ldots \leq s_{n}\).
\(d \leftarrow 0 \longleftarrow\) number of allocated classrooms
FOR \(j=1\) TO \(n\)
    IF lecture \(j\) is compatible with some classroom
        Schedule lecture \(j\) in any such classroom \(k\).
    Else
        Allocate a new classroom \(d+1\).
        Schedule lecture \(j\) in classroom \(d+1\).
\(d \leftarrow d+1\)
RETURN schedule.
```


Interval Partitioning

- Running time
> Key step: check if the next lecture can be scheduled at some classroom
> Store classrooms in a priority queue / min heap
o key = latest finish time of any lecture in the classroom
> Is lecture j compatible with some classroom?
- If $s_{j} \geq$ smallest key (say of classroom k), add lecture j to classroom $k \&$ update its key to f_{j}
- Otherwise, create a new classroom, add lecture j, set key to f_{j}
> $O(n \log n)$ for sorting, $O(n \log d)$ for priority queue operations (if greedy ends up using d classrooms)
> Since $d \leq n$, total time is $O(n \log n)$

Interval Partitioning

- Proof of optimality (lower bound)
> Easy claim: \# classrooms needed in any schedule \geq "depth"
- depth = maximum number of lectures running at any time
- Recall, as before, that job i runs in $\left[s_{i}, f_{i}\right.$)
> Difficult claim: \# classrooms needed by greedy \leq depth

Interval Partitioning

- Proof of optimality (upper bound)
> Let $d=$ \# classrooms used by greedy
> Classroom d was opened because each classroom $k \in\{1, \ldots, d-1\}$ had a lecture ℓ_{k} that was in conflict with lecture j
> Consider the set of d lectures $\left\{\ell_{1}, \ldots, \ell_{d-1}, j\right\}$
> Since we sorted by start time, each lecture in this set starts at/before s_{j} and ends after s_{j} (since it conflicts with lecture j)
> So, at time s_{j}, there are at least d mutually conflicting lectures
> Hence, depth $\geq d=$ \#classrooms used by greedy

Interval Graphs

- Interval scheduling and interval partitioning can be seen as graph problems
- Input
> Graph $G=(V, E)$
> Vertices $V=$ jobs/lectures
> Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
> Graphs which can be obtained from incompatibility of intervals
> In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
> Yes! Chordal graphs
- Every cycle with 4 or more vertices has a chord

Minimizing Lateness

- Problem
> We have a single machine
> Each job j requires t_{j} units of time and is due by time d_{j}
> If it's scheduled to start at s_{j}, it will finish at $f_{j}=s_{j}+t_{j}$
$>$ Lateness: $\ell_{j}=\max \left\{0, f_{j}-d_{j}\right\}$
> Goal: minimize the maximum lateness, $L=\max _{j} \ell_{j}$
- Contrast with interval scheduling
> We can decide the start time
> There are soft deadlines

Minimizing Lateness

- Example

Input

	1	2	3	4	5	6
t_{j}	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

An example schedule

Minimizing Lateness

- Let's go back to greedy template
> Consider jobs one-by-one in some "natural" order
> Schedule jobs in this order (nothing special to do here, since we have to schedule all jobs and there is only one machine available)
- Natural orders?
> Shortest processing time first: ascending order of processing time t_{j}
> Earliest deadline first: ascending order of due time d_{j}
> Smallest slack first: ascending order of $d_{j}-t_{j}$

Minimizing Lateness

- Counterexamples
> Shortest processing time first
- Ascending order of processing time t_{j}

> Smallest slack first
- Ascending order of $d_{j}-t_{j}$

Minimizing Lateness

- By now, you should know what's coming...

EarliestDeadlineFirst $\left(n, t_{1}, t_{2}, \ldots, t_{n}, d_{1}, d_{2}, \ldots, d_{n}\right)$

SORT n jobs so that $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$.

- We'll prove that earliest deadline first works!
$t \leftarrow 0$
FOR $j=1$ TO n
Assign job j to interval $\left[t, t+t_{j}\right]$.
$s_{j} \leftarrow t ; f_{j} \leftarrow t+t_{j}$
$t \leftarrow t+t_{j}$
RETURN intervals $\left[s_{1}, f_{1}\right],\left[s_{2}, f_{2}\right], \ldots,\left[s_{n}, f_{n}\right]$.

Minimizing Lateness

- Observation 1
> There is an optimal schedule with no idle time

- Observation 2
> EDF has no idle time
- To prove:
> EDF is at least as good as any schedule (even that optimal schedule) with no idle time

Minimizing Lateness

- Consider any schedule with no idle time
> It can be represented as a permutation $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ of $(1,2, \ldots, n)$
- Define an inversion:
> Any pair of jobs (i, j) such that $i<j$ but i is scheduled after j
- Observation 3
> EDF has zero inversions
> Every other schedule with no idle time has at least one inversion

Minimizing Lateness

- Observation 4
> If a no-idle-time-schedule ($q_{1}, q_{2}, \ldots, q_{n}$) has at least one inversion, then it has at least one inversion in an adjacent pair of jobs (q_{i}, q_{i+1})
- Proof:
> If not, then each of the pairs $\left(q_{1}, q_{2}\right),\left(q_{2}, q_{3}\right), \ldots,\left(q_{n-1}, q_{n}\right)$ is not an inversion
$>$ Then, $q_{1}<q_{2}, q_{2}<q_{3}, \ldots, q_{n-1}<q_{n}$
$>$ Then, $q_{1}<q_{2}<\cdots<q_{n}$
> The only such schedule is $(1,2, \ldots, n)$, which has zero inversions

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
> Check that swapping an adjacent inverted pair reduces the total \#inversions by one

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
> Let ℓ_{k} and ℓ_{k}^{\prime} denote the lateness of job k before \& after swap
$>$ Let $L=\max _{k} \ell_{k}$ and $L^{\prime}=\max _{k} \ell_{k}^{\prime}$
> 1) $\ell_{k}=\ell_{k}^{\prime}$ for all $k \neq i, j \quad$ (no change in their finish time)
>2) $\ell_{i}^{\prime} \leq \ell_{i} \quad(i$ is moved early)

Minimizing Lateness

- Observation 5
> Swapping adjacently scheduled inverted jobs doesn't increase lateness but reduces \#inversions by one
- Proof
>3) $\ell_{j}^{\prime}=f_{j}^{\prime}-d_{j}=f_{i}-d_{j} \leq f_{i}-d_{i}=\ell_{i} \quad\left(\because i<j \Rightarrow d_{i} \leq d_{j}\right)$
$>$ Hence, $L^{\prime}=\max \left\{\ell_{i}^{\prime}, \ell_{j}^{\prime}, \max _{k \neq i, j} \ell_{k}^{\prime}\right\} \leq \max \left\{\ell_{i}, \ell_{i}, \max _{k \neq i, j} \ell_{k}\right\} \leq L$
> Alternatively:
○ $\ell_{k}^{\prime}=\ell_{k} \leq L$ for all $k \neq i, j$
- $\ell_{i}^{\prime} \leq \ell_{i} \leq L$
- $\ell_{j}^{\prime} \leq \ell_{i} \leq L$
- Hence, $L^{\prime}=\max \left\{\ell_{i}^{\prime}, \ell_{j}^{\prime}, \max _{k \neq i, j} \ell_{k}^{\prime}\right\} \leq L$

Minimizing Lateness

Observations 1 \& 2:
Greedy EDF and some optimal schedule OPT have no idle time (thus, they're permutations of jobs)

Observations 4 \& 5:
If OPT has $r \geq 1$ inversions, there is another optimal permutation that has $r-1$ inversions.

Observation 3:

EDF permutation has 0 inversions, every other permutation has at least 1 inversion.

Proof by contradiction/induction that there is an optimal permutation with 0 inversions
> Must be the EDF permutation

Minimizing Lateness

- Proof of optimality by contradiction
> Suppose for contradiction that the greedy EDF permutation is not optimal
> Among all optimal permutations with no idle time (these exist by Observation 1), consider OPT* which has the fewest inversions
> Because EDF permutation is the only one with zero inversions (Observation 3) and it is not optimal, OPT* has $r \geq 1$ inversions
> By Observation 4, it has an adjacent inversion (i,j)
> By Observation 5, swapping the adjacent pair produces a new permutation (no idle time) that is optimal and has $r-1$ inversions
> Contradiction! ■

Minimizing Lateness

- Proof of optimality by (reverse) induction
> Claim: For each $r \in\left\{0,1, \ldots,\binom{n}{2}\right\}$, there is an optimal permutation (no idle time) with at most r inversions
- Base case of $r=\binom{n}{2}$: Use any optimal permutation (Observation 1)
> Induction hypothesis: Suppose the claim holds for $r=t+1$
> Induction step:
- Let OPT* be an optimal permutation with at most $t+1$ inversions
- If it has at most t inversions, we're done!
- If it has exactly $t+1 \geq 1$ inversions, find and swap an adjacent inverted pair to get a new optimal permutation with t inversions (Observations 4 \& 5)
> QED!
> Claim for $r=0$ shows optimality of the EDF permutation (Observation 3)

Lossless Compression

- Problem
> We have a document that is written using n distinct labels
> Naïve encoding: represent each label using $\log n$ bits
> If the document has length m, this uses $m \log n$ bits
> English document with no punctuations etc.
> $n=26$, so we can use 5 bits
- $a=00000$
- $b=00001$
- $c=00010$
$\circ d=00011$
○ ...

Lossless Compression

- Is this optimal?
- What if a, e, r, s are much more frequent in the document than x, q, z ?
> Can we assign shorter codes to more frequent letters?
- Say we assign...
$>a=0, b=1, c=01, \ldots$
$>$ See a problem?
- What if we observe the encoding ' 01 ’?
- Is it 'ab'? Or is it ' c '?

Lossless Compression

- To avoid conflicts, we need a prefix-free encoding
> Map each label x to a bit-string $c(x)$ such that for all distinct labels x and $y, c(x)$ is not a prefix of $c(y)$
> Then it's impossible to have a scenario like this

> Now, we can read left to right
- Whenever the part to the left becomes a valid encoding, greedily decode it, and continue with the rest

Lossless Compression

- Formal problem
> Given n symbols and their frequencies $\left(w_{1}, \ldots, w_{n}\right)$, find a prefix-free encoding with lengths $\left(\ell_{1}, \ldots, \ell_{n}\right)$ assigned to the symbols which minimizes $\sum_{i=1}^{n} w_{i} \cdot \ell_{i}$
- Note that $\sum_{i=1}^{n} w_{i} \cdot \ell_{i}$ is the length of the compressed document
- Example
$>\left(w_{a}, w_{b}, w_{c}, w_{d}, w_{e}, w_{f}\right)=(42,20,5,10,11,12)$
$>$ No need to remember the numbers $;$

Lossless Compression

- Observation: prefix-free encoding = tree

Lossless Compression

- Huffman Coding
> Build a priority queue by adding $\left(x, w_{x}\right)$ for each symbol x
> While |queue $\mid \geq 2$
- Take the two symbols with the lowest weight $\left(x, w_{x}\right)$ and $\left(y, w_{y}\right)$
- Merge them into one symbol with weight $w_{x}+w_{y}$
- Let's see this on the previous example

Lossless Compression

| $c: 5$ | $d: 10$ | $e: 11$ | $f: 12$ | $b: 20$ | $a: 42$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Lossless Compression

Lossless Compression

$$
\text { b: } 20
$$

Lossless Compression

Lossless Compression

Lossless Compression

- Final Outcome

Lossless Compression

- Running time
> $O(n \log n)$
> Can be made $O(n)$ if the labels are given to you sorted by their frequencies
- Exercise! Think of using two queues...
- Proof of optimality
> Induction on the number of symbols n
> Base case: For $n=2$, both encodings which assign 1 bit to each symbol are optimal
> Hypothesis: Assume it returns an optimal encoding with $n-1$ symbols and consider the case of n symbols.

Lossless Compression

- Lemma 1: If $w_{a} \leq w_{b}$ but $\ell_{a} \geq \ell_{b}$, then swapping the encodings of a and b does not make the objective any worse.
- Proof:
> We simply need to check that the given inequalities imply

$$
w_{a} \cdot \ell_{b}+w_{b} \cdot \ell_{a} \leq w_{a} \cdot \ell_{a}+w_{b} \cdot \ell_{b}
$$

> QED!

Lossless Compression

- Let x, y be the first two symbols in Huffman priority queue
$>w_{x}$ is the lowest, w_{y} is the second lowest
$>$ They become siblings in the Huffman tree from the first iteration
- Lemma 2: \exists optimal tree T in which x and y are siblings.
- Proof:

1. Take any optimal tree
2. If ℓ_{x} isn't the longest encoding, swapping x with a symbol that has the longest encoding keeps the tree optimal (Lemma 1)
3. In this optimal tree, x must have a sibling (check!)
4. If it's not y, swapping it with y keeps the tree optimal (Lemma 1)
5. Now we have an optimal tree where x and y are siblings.

Lossless Compression

- Proof of optimality
> Let H be the Huffman tree
$>$ Let T be an optimal tree in which x and y are siblings (Lemma 2)
> Let H ' and T^{\prime} ' be obtained from H and T by treating ' $x y$ ' as one symbol with frequency $w_{x}+w_{y}$
> Note that
$\circ \operatorname{Length}(H)=\operatorname{Length}\left(H^{\prime}\right)+\left(w_{x}+w_{y}\right) \cdot 1$
$\circ \operatorname{Length}(T)=\operatorname{Length}\left(T^{\prime}\right)+\left(w_{x}+w_{y}\right) \cdot 1$
> But due to the induction hypothesis, Length $\left(H^{\prime}\right) \leq \operatorname{Length}\left(T^{\prime}\right)$
> Hence, Length $(H) \leq \operatorname{Length}(T)$

Other Greedy Algorithms

- If you aren't familiar with the following algorithms, spend some time checking them out!
> Dijkstra's shortest path algorithm
> Kruskal and Prim's minimum spanning tree algorithms

