CSC304 Algorithmic Game Theory & Mechanism Design

Evi Micha

CSC304 - Nisarg Shah & Evi Micha

Cake-Cutting

Cake-Cutting

- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]
 - > Almost without loss of generality
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$
 - > A finite union of disjoint intervals

Agent Valuations

- Each player *i* has a valuation V_i that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X$ s.t. $V_i(Y) = \lambda V_i(X)$

Fairness Goals

- Allocation: disjoint partition A = (A₁, ..., A_n)
 A_i = piece of the cake given to player i
- Desired fairness properties:
 - > Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

> Envy-Freeness (EF):

 $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$

Fairness Goals

- Prop: $\forall i \in N$: $V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. **Prop** \Rightarrow **EF**
 - 2. EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 players
- Player 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.
- This is envy-free and therefore proportional.
 > Why?

Input Model

- How do we measure the "time complexity" of a cakecutting algorithm for *n* players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which require infinite bits to encode.
- We want running time as a function of *n*.

Robertson-Webb Model

- We restrict access to valuation V_i through two types of queries:
 - > $\text{Eval}_i(x, y)$ returns $\alpha = V_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha)$ returns any y such that $V_i([x, y]) = \alpha$ \circ If $V_i([x, 1]) < \alpha$, return 1.

Robertson-Webb Model

- Two types of queries:
 - > $\operatorname{Eval}_i(x, y) = V_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha) = y$ s.t. $V_i([x, y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n = 2?
- Answer: 2

- Protocol for finding a proportional allocation for *n* players
- Referee starts at 0, and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth 1/n to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

- Robertson-Webb model? Cut-Eval queries?
 - > Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value 1/n from the smallest next piece.
 - > Ask each remaining player a cut query to mark a point where her value is 1/n from the current point.
 - Directly move the knife to the leftmost mark, and give that piece to that player.

- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

EVEN-PAZ (RECURSIVE)

- Input: Interval [x, y], number of players n
 For simplicity, assume n = 2^k for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player *i* mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be mark n/2 from the left.
- Recurse on [x, z*] with the left n/2 players, and on [z*, y] with the right n/2 players.

Even-Paz

- Theorem: EVEN-PAZ returns a Prop allocation.
- Inductive Proof:
 - > Hypothesis: With *n* players, EVEN-PAZ ensures that for each player *i*, $V_i(A_i) \ge (1/n) \cdot V_i([x, y])$

• Prop follows because initially $V_i([x, y]) = V_i([0, 1]) = 1$

- > Base case: n = 1 is trivial.
- > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
- > Take the 2^{k-1} left players.

○ Every left player *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$

○ If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Theorem: EVEN-PAZ uses $O(n \log n)$ queries.
- Simple Proof:
 - > Protocol runs for $\log n$ rounds.
 - > In each round, each player is asked one cut query.
 - ➢ QED!

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.
 - > [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
 - Last year, the long-standing major open question of "bounded EF protocol" was resolved!
 - [Aziz and Mackenzie, 2016]: O(n<sup>n^{n^{nⁿ}}) protocol!
 Yes, it's not a typo!
 </sup>

Four More Desiderata

- Equitability
 - $\succ V_i(A_i) = V_j(A_j)$ for all i, j.
- Perfect Partition
 - > $V_i(A_k) = 1/n$ for all i, k.
 - > Implies equitability.
 - Guaranteed to exist [Lyapunov '40] and can be found using only poly(n) cuts [Alon '87].

Four More Desiderata

• Pareto Optimality

> We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_i(B_i) \ge V_i(A_i)$ for all i and $V_i(B_i) > V_i(A_i)$ for some i.

Strategyproofness

No agent can misreport her valuation and increase her (expected) value for her allocation.

Strategyproofness

- Deterministic
 - > Bad news!
 - Theorem [Menon & Larson '17]: No deterministic SP mechanism is (even approximately) proportional.

Randomized

- Good news!
- Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that *always* returns an envy-free allocation.

Strategyproofness

• Randomized SP Mechanism:

Compute a perfect partition, and assign the n bundles to the n players uniformly at random.

• Why is this EF?

- > Every agent has value 1/n for her own as well as for every other agent's allocation.
- Note: We want EF in every realized allocation, not only in expectation.

• Why is this SP?

> An agent is assigned a random bundle, so her expected utility is 1/n, irrespective of what she reports.

Pareto Optimality (PO)

- Definition: We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_i(B_i) \ge V_i(A_i)$ for all i and $V_i(B_i) > V_i(A_i)$ for some i.
- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

PO + EF

- Theorem [Weller '85]:
 - There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - > Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is non-trivial.
 - > This is named after John Nash.
 - \circ Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

 $\frac{1}{2}$

• Example:

- > Green player has value 1 distributed evenly over [0, 2/3]
- > Blue player has value 1 distributed evenly over [0,1]
- > Without loss of generality (why?) suppose:
 - Green player gets [0, x] for $x \leq \frac{2}{3}$
 - Blue player gets $[x, 2/3] \cup [2/3, 1] = [x, 1]$

> Green's utility =
$$\frac{x}{\frac{2}{3}}$$
, blue's utility = $1 - x$

> Maximize:
$$\frac{3}{2}x \cdot (1-x) \Rightarrow x = \frac{1}{2}$$

Green has utility
$$\frac{3}{4}$$

Blue has utility $\frac{1}{2}$

1

Allocation

Problem

- Difficult to compute in general
 - I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz & Ye '14]:
 - For *piecewise constant* valuations, the Nash-optimal solution can be computed in polynomial time.

Indivisible Goods (Only if time permits)

- Goods cannot be shared / divided among players
 E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Indivisible Goods: Setting

				X
	8	7	20	5
M	9	11	12	8
	9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{\odot}(\{\blacksquare, \clubsuit\}) = 8 + 7 = 15$

8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

• Envy-freeness up to one good (EF1):

 $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

- ≻ Technically, $\exists g \in A_j$ only applied if $A_j \neq \emptyset$.
- "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in a cyclic order, say 1,2, ..., n, 1,2, ..., n, ...
 - An agent, in her turn, picks the good that she likes the most among the goods still not picked by anyone.
 - [Assignment Problem] This yields an EF1 allocation regardless of how you order the agents.
- Sadly, the allocation returned may not be Pareto optimal.

EF1+PO?

• Nash welfare to the rescue!

- Theorem [Caragiannis et al. '16]:
 - > Maximizing Nash welfare $\prod_i V_i(A_i)$ achieves both EF1 and PO.
 - > A bit of subtlety required if the maximum Nash welfare is zero

Integral Nash Allocation

8	7	20	5
9	11	12	8
9	10	18	3

20 * 8 * (9+10) = 3040

			V
8	7	20	5
9	11	12	8
9	10	18	3

(8+7) * 8 * 18 = 2160

			V
8	7	20	5
9	11	12	8
9	10	18	3

8 * (12+8) * 10 = 1600

20 * (11+8) * 9 = 3420

8	7	20	5
9	11	12	8
9	10	18	3

CSC304 - Nisarg Shah & Evi Micha

Computation

- For indivisible goods, Nash-optimal solution is strongly NPhard to compute
 - > That is, remains NP-hard even if all values are bounded.
- Open Question: Can we find an allocation that is both EF1 and PO in polynomial time?
 - > A recent paper provides a pseudo-polynomial time algorithm, i.e., its time is polynomial in n, m, and $\max_{i, q} V_i(\{g\})$.

Stronger Fairness Guarantees

- Envy-freeness up to the least valued good (EFx):
 - $\succ \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - "If i envies j, then removing any good from j's bundle eliminates the envy."
 - > Open question: Is there always an EFx allocation?
- Contrast this with EF1:
 - $\succ \forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - "If i envies j, then removing some good from j's bundle eliminates the envy."
 - > We know there is always an EF1 allocation that is also PO.

Stronger Fairness

- To clarify the difference between EF1 and EFx:
 - Suppose there are two players and three goods with values as follows.

	Α	В	С
P1	5		10
P2	0	1	10

- > If you give {A} → P1 and {B,C} → P2, it's EF1 but not EFx.
 EF1 because if P1 removes C from P2's bundle, all is fine.
 Not EFx because removing B doesn't eliminate envy.
- > Instead, {A,B} → P1 and {C} → P2 would be EFx.