CSC304

Algorithmic Game Theory \& Mechanism Design

Evi Micha

Cake-Cutting

Cake-Cutting

- A heterogeneous, divisible good > Heterogeneous: it may be valued differently by different individuals
> Divisible: we can share/divide it between individuals
- Represented as [0,1]
> Almost without loss of generality
- Set of players $N=\{1, \ldots, n\}$
- Piece of cake $X \subseteq[0,1]$
> A finite union of disjoint intervals

Agent Valuations

- Each player i has a valuation V_{i} that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y=\emptyset$, $V_{i}(X)+V_{i}(Y)=V_{i}(X \cup Y)$
- Normalized: $V_{i}([0,1])=1$
- Divisible: $\forall \lambda \in[0,1]$ and X,
$\exists Y \subseteq X$ s.t. $V_{i}(Y)=\lambda V_{i}(X)$

Fairness Goals

- Allocation: disjoint partition $A=\left(A_{1}, \ldots, A_{n}\right)$
> $A_{i}=$ piece of the cake given to player i
- Desired fairness properties:
> Proportionality (Prop):

$$
\forall i \in N: V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

> Envy-Freeness (EF):

$$
\forall i, j \in N: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

Fairness Goals

- Prop: $\forall i \in N: V_{i}\left(A_{i}\right) \geq 1 / n$
- EF: $\forall i, j \in N: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)$
- Question: What is the relation between proportionality and EF?

1. Prop $\Rightarrow \mathrm{EF}$
2.) $\mathrm{EF} \Rightarrow$ Prop
2. Equivalent
3. Incomparable

Cut-And-Choose

- Algorithm for $n=2$ players
- Player 1 divides the cake into two pieces X, Y s.t.

$$
V_{1}(X)=V_{1}(Y)=1 / 2
$$

- Player 2 chooses the piece she prefers.
- This is envy-free and therefore proportional.
> Why?

Input Model

- How do we measure the "time complexity" of a cakecutting algorithm for n players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_{i}, which require infinite bits to encode.
- We want running time as a function of n.

Robertson-Webb Model

- We restrict access to valuation V_{i} through two types of queries:
$>\operatorname{Eval}_{i}(x, y)$ returns $\alpha=V_{i}([x, y])$
$>\operatorname{Cut}_{i}(x, \alpha)$ returns any y such that $V_{i}([x, y])=\alpha$
- If $V_{i}([x, 1])<\alpha$, return 1 .

cut output

Robertson-Webb Model

- Two types of queries:

$$
\begin{aligned}
& >\operatorname{Eval}_{i}(x, y)=V_{i}([x, y]) \\
& >\operatorname{Cut}_{i}(x, \alpha)=y \text { s.t. } V_{i}([x, y])=\alpha
\end{aligned}
$$

- Question: How many queries are needed to find an EF allocation when $n=2$?
- Answer: 2

DUBINS-SPANIER

- Protocol for finding a proportional allocation for n players
- Referee starts at 0 , and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth $1 / n$ to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

DUBINS-SPANIER

DUBINS-SPANIER

- Robertson-Webb model? Cut-Eval queries?
> Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value $1 / n$ from the smallest next piece.
> Ask each remaining player a cut query to mark a point where her value is $1 / n$ from the current point.
> Directly move the knife to the leftmost mark, and give that piece to that player.

Visual Proof of Proportionality

DUBINS-SPANIER

- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?

1. $\Theta(n)$
2. $\Theta(n \log n)$
(3.) $\Theta\left(n^{2}\right)$
3. $\Theta\left(n^{2} \log n\right)$

Even-Paz (Recursive)

- Input: Interval $[x, y]$, number of players n
> For simplicity, assume $n=2^{k}$ for some k
- If $n=1$, give $[x, y]$ to the single player.
- Otherwise, let each player i mark z_{i} s.t.

$$
V_{i}\left(\left[x, z_{i}\right]\right)=\frac{1}{2} V_{i}([x, y])
$$

- Let z^{*} be mark $n / 2$ from the left.
- Recurse on $\left[x, z^{*}\right]$ with the left $n / 2$ players, and on $\left[z^{*}, y\right]$ with the right $n / 2$ players.

Even-Paz

EvEn-PAZ

- Theorem: Even-Paz returns a Prop allocation.
- Inductive Proof:
> Hypothesis: With n players, Even-Paz ensures that for each player i, $V_{i}\left(A_{i}\right) \geq(1 / n) \cdot V_{i}([x, y])$
- Prop follows because initially $V_{i}([x, y])=V_{i}([0,1])=1$
> Base case: $n=1$ is trivial.
> Suppose it holds for $n=2^{k-1}$. We prove for $n=2^{k}$.
> Take the 2^{k-1} left players.
- Every left player i has $V_{i}\left(\left[x, z^{*}\right]\right) \geq(1 / 2) V_{i}([x, y])$
- If it gets A_{i}, by induction, $V_{i}\left(A_{i}\right) \geq \frac{1}{2^{k-1}} V_{i}\left(\left[x, z^{*}\right]\right) \geq \frac{1}{2^{k}} V_{i}([x, y])$

EvEn-Paz

- Theorem: Even-Paz uses $O(n \log n)$ queries.
- Simple Proof:
> Protocol runs for $\log n$ rounds.
> In each round, each player is asked one cut query.
> QED!

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the RobertsonWebb model.
- Thus, the Even-Paz protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For n-player EF cake-cutting:
> [Brams and Taylor, 1995] give an unbounded EF protocol.
$>$ [Procaccia 2009] shows $\Omega\left(n^{2}\right)$ lower bound for EF.
> Last year, the long-standing major open question of "bounded EF protocol" was resolved!
> [Aziz and Mackenzie, 2016]: $O\left(n^{n^{n^{n^{n}}}}\right)$ protocol!
- Yes, it's not a typo!

Four More Desiderata

- Equitability
> $V_{i}\left(A_{i}\right)=V_{j}\left(A_{j}\right)$ for all i, j.
- Perfect Partition
$>V_{i}\left(A_{k}\right)=1 / n$ for all i, k.
> Implies equitability.
> Guaranteed to exist [Lyapunov '40] and can be found using only poly (n) cuts [Alon '87].

Four More Desiderata

- Pareto Optimality
> We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_{i}\left(B_{i}\right) \geq V_{i}\left(A_{i}\right)$ for all i and $V_{i}\left(B_{i}\right)>V_{i}\left(A_{i}\right)$ for some i.
- Strategyproofness
> No agent can misreport her valuation and increase her (expected) value for her allocation.

Strategyproofness

- Deterministic
> Bad news!
> Theorem [Menon \& Larson '17]: No deterministic SP mechanism is (even approximately) proportional.
- Randomized
> Good news!
> Theorem [Chen et al. ' 13 , Mossel \& Tamuz '10]: There is a randomized SP mechanism that always returns an envy-free allocation.

Strategyproofness

- Randomized SP Mechanism:
> Compute a perfect partition, and assign the n bundles to the n players uniformly at random.
- Why is this EF?
> Every agent has value $1 / n$ for her own as well as for every other agent's allocation.
> Note: We want EF in every realized allocation, not only in expectation.
- Why is this SP?
> An agent is assigned a random bundle, so her expected utility is $1 / n$, irrespective of what she reports.

Pareto Optimality (PO)

- Definition: We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_{i}\left(B_{i}\right) \geq V_{i}\left(A_{i}\right)$ for all i and $V_{i}\left(B_{i}\right)>V_{i}\left(A_{i}\right)$ for some i.
- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

$\mathrm{PO}+\mathrm{EF}$

- Theorem [Weller '85]:
> There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
> Nash-optimal allocation: $\operatorname{argmax}_{A} \prod_{i \in N} V_{i}\left(A_{i}\right)$
> Obviously, this is PO. The fact that it is EF is non-trivial.
> This is named after John Nash.
- Nash social welfare = product of utilities
- Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

- Example:
> Green player has value 1 distributed evenly over $[0,2 / 3]$
> Blue player has value 1 distributed evenly over [0,1]
> Without loss of generality (why?) suppose:
- Green player gets $[0, x]$ for $x \leq 2 / 3$
- Blue player gets $[x, 2 / 3] \cup[2 / 3,1]=[x, 1]$
- Green's utility $=\frac{x}{2 / 3}$, blue's utility $=1-x$
> Maximize: $\frac{3}{2} x \cdot(1-x) \Rightarrow x=1 / 2$

Green has utility $\frac{3}{4}$
Blue has utility $\frac{1}{2}$

Problem

- Difficult to compute in general
> I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz \& Ye '14]:
> For piecewise constant valuations, the Nash-optimal solution can be computed in polynomial time.

The density function of a piecewise constant valuation looks like this

NOT IN SYLLABUS

Indivisible Goods (Only if time permits)

Indivisible Goods

- Goods cannot be shared / divided among players
> E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Indivisible Goods: Setting

	1	\pm	盛	Y
2	8	7	20	5
R	9	11	12	8
2	9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{-\infty}(\{$ 回 $\})=8+7=15$

Indivisible Goods

	18	0		Y
2	8	7	20	5
Q	9	11	12	8
2	9	10	18	3

Indivisible Goods

	18	0	成	Y
雨	8	7	20	5
R	9	11	12	8
2	9	10	18	3

Indivisible Goods

	18	0	畐	Y
雨	8	7	20	5
Q	9	11	12	8
2	9	10	18	3

Indivisible Goods

	18	0	成	Y
雨	8	7	20	5
R	9	11	12	8
2	9	10	18	3

Indivisible Goods

- Envy-freeness up to one good (EF1):

$$
\forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)
$$

> Technically, $\exists g \in A_{j}$ only applied if $A_{j} \neq \emptyset$.
> "If i envies j, there must be some good in j 's bundle such that removing it would make i envy-free of j. ."

- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
> Agents take turns in a cyclic order, say $1,2, \ldots, n, 1,2, \ldots, n, \ldots$
> An agent, in her turn, picks the good that she likes the most among the goods still not picked by anyone.
- [Assignment Problem] This yields an EF1 allocation regardless of how you order the agents.
- Sadly, the allocation returned may not be Pareto optimal.

$\mathrm{EF} 1+\mathrm{PO}$?

- Nash welfare to the rescue!
- Theorem [Caragiannis et al. '16]:
> Maximizing Nash welfare $\prod_{i} V_{i}\left(A_{i}\right)$ achieves both EF1 and PO.
> A bit of subtlety required if the maximum Nash welfare is zero

Integral Nash Allocation

	18	0	成	Y
雨	8	7	20	5
R	9	11	12	8
2.	9	10	18	3

20 * 8 * $(9+10)=3040$

	5			
\because \rightarrow	8	7	20	5
8	9	11	12	8
	9	10	18	3

$$
(8+7) * 8 * 18=2160
$$

	1 E		$\sqrt{18}$	
\approx Ait	8	7	20	5
8	9	11	12	8
	9	10	18	3

$$
8 *(12+8) * 10=1600
$$

	18			
\%	8	7	20	5
Ci	9	11	12	8
	9	10	18	3

20 * $(11+8) * 9=3420$

	18	En		Y
R	8	7	20	5
5	9	11	12	8
.	9	10	18	3

Computation

- For indivisible goods, Nash-optimal solution is strongly NPhard to compute
> That is, remains NP-hard even if all values are bounded.
- Open Question: Can we find an allocation that is both EF1 and PO in polynomial time?
> A recent paper provides a pseudo-polynomial time algorithm, i.e., its time is polynomial in n, m, and $\max _{i, g} V_{i}(\{g\})$.

Stronger Fairness Guarantees

- Envy-freeness up to the least valued good (EFx):
$\Rightarrow \forall i, j \in N, \forall g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)$
> "If i envies j, then removing any good from j 's bundle eliminates the envy."
> Open question: Is there always an EFx allocation?
- Contrast this with EF1:
$>\forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)$
> "If i envies j, then removing some good from j 's bundle eliminates the envy."
> We know there is always an EF1 allocation that is also PO.

Stronger Fairness

- To clarify the difference between EF1 and EFx:
> Suppose there are two players and three goods with values as follows.

> If you give $\{A\} \rightarrow P 1$ and $\{B, C\} \rightarrow P 2$, it's EF1 but not EFx.
- EF1 because if P1 removes C from P2's bundle, all is fine.
- Not EFx because removing B doesn't eliminate envy.
$>$ Instead, $\{\mathrm{A}, \mathrm{B}\} \rightarrow \mathrm{P} 1$ and $\{\mathrm{C}\} \rightarrow \mathrm{P} 2$ would be EFx.

