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Cake-Cutting
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• A heterogeneous, divisible good
Ø Heterogeneous: it may be valued 

differently by different individuals
Ø Divisible: we can share/divide 

it between individuals

• Represented as [0,1]
Ø Almost without loss of generality

• Set of players 𝑁 = {1,… , 𝑛}
• Piece of cake 𝑋 ⊆ [0,1]

Ø A finite union of disjoint intervals 



Agent	Valuations
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• Each player 𝑖 has a valuation 𝑉! that is 
very much like a probability distribution 
over [0,1]

• Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑉! 𝑋 + 𝑉! 𝑌 = 𝑉! 𝑋 ∪ 𝑌

• Normalized: 𝑉! 0,1 = 1

• Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉! 𝑌 = 𝜆𝑉!(𝑋)

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽
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• Allocation: disjoint partition 𝐴 = (𝐴%, … , 𝐴&)
Ø 𝐴! = piece of the cake given to player 𝑖

• Desired fairness properties:

Ø Proportionality (Prop):

∀𝑖 ∈ 𝑁: 𝑉! 𝐴! ≥
1
𝑛

Ø Envy-Freeness (EF):
∀𝑖, 𝑗 ∈ 𝑁: 𝑉! 𝐴! ≥ 𝑉!(𝐴")



Fairness	Goals
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• Prop: ∀𝑖 ∈ 𝑁: 𝑉! 𝐴! ≥ ⁄1 𝑛
• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉! 𝐴! ≥ 𝑉! 𝐴'

• Question: What is the relation between proportionality and 
EF?
1. Prop ⇒ EF
2. EF ⇒ Prop
3. Equivalent
4. Incomparable



CUT-AND-CHOOSE

CSC304 - Nisarg Shah & Evi Micha 7

• Algorithm for 𝑛 = 2 players

• Player 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉% 𝑋 = 𝑉% 𝑌 = ⁄1 2

• Player 2 chooses the piece she prefers.

• This is envy-free and therefore proportional.
Ø Why?



Input	Model
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• How do we measure the “time complexity” of a cake-
cutting algorithm for 𝑛 players?

• Typically, time complexity is a function of the length of 
input encoded as binary.

• Our input consists of functions 𝑉!, which require infinite bits 
to encode.

• We want running time as a function of 𝑛.



Robertson-Webb	Model
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• We restrict access to valuation 𝑉! through two types of 
queries:
Ø Eval!(𝑥, 𝑦) returns 𝛼 = 𝑉! 𝑥, 𝑦
Ø Cut!(𝑥, 𝛼) returns any 𝑦 such that 𝑉! 𝑥, 𝑦 = 𝛼
o If 𝑉! 𝑥, 1 < 𝛼, return 1.

𝑥 𝑦

𝛼eval output

cut output



Robertson-Webb	Model
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• Two types of queries:
Ø Eval! 𝑥, 𝑦 = 𝑉! 𝑥, 𝑦
Ø Cut! 𝑥, 𝛼 = 𝑦 s.t. 𝑉! 𝑥, 𝑦 = 𝛼

• Question: How many queries are needed to find an EF 
allocation when 𝑛 = 2?

• Answer: 2



DUBINS-SPANIER
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• Protocol for finding a proportional allocation for 𝑛 players

• Referee starts at 0, and moves a knife to the right.
• Repeat: When the piece to the left of the knife is worth 1/𝑛

to some player, the player shouts “stop”, gets that piece, 
and exits.

• The last player gets the remaining piece.



DUBINS-SPANIER

12

1/3 1/3 ≥ 1/3
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• Robertson-Webb model? Cut-Eval queries?
Ø Moving knife is not really needed.

• At each stage, we want to find the remaining player that has 
value 1/𝑛 from the smallest next piece.
Ø Ask each remaining player a cut query to mark a point where her 

value is 1/𝑛 from the current point.
Ø Directly move the knife to the leftmost mark, and give that piece to 

that player.



VISUAL PROOF OF PROPORTIONALITY
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⁄1 3 ⁄1 3 ≥ ⁄1 3
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• Question: What is the complexity of the Dubins-Spanier
protocol in the Robertson-Webb model?

1. Θ 𝑛
2. Θ 𝑛 log 𝑛
3. Θ 𝑛#

4. Θ 𝑛# log 𝑛



EVEN-PAZ (RECURSIVE)
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• Input: Interval [𝑥, 𝑦], number of players 𝑛
Ø For simplicity, assume 𝑛 = 2$ for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single player.

• Otherwise, let each player 𝑖 mark 𝑧! s.t.

𝑉! 𝑥, 𝑧! =
1
2
𝑉! 𝑥, 𝑦

• Let 𝑧∗ be mark 𝑛/2 from the left.

• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 players, and on [𝑧∗, 𝑦]
with the right 𝑛/2 players.



EVEN-PAZ
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• Theorem: EVEN-PAZ returns a Prop allocation.
• Inductive Proof:

Ø Hypothesis: With 𝑛 players, EVEN-PAZ ensures that for each player 𝑖, 
𝑉! 𝐴! ≥ ⁄1 𝑛 ⋅ 𝑉! 𝑥, 𝑦
o Prop follows because initially 𝑉! 𝑥, 𝑦 = 𝑉! 0,1 = 1

Ø Base case: 𝑛 = 1 is trivial.
Ø Suppose it holds for 𝑛 = 2$%&. We prove for 𝑛 = 2$.
Ø Take the 2$%& left players. 
o Every left player 𝑖 has 𝑉! 𝑥, 𝑧∗ ≥ ⁄1 2 𝑉! 𝑥, 𝑦
o If it gets 𝐴!, by induction, 𝑉! 𝐴! ≥ &

#!"#
𝑉! 𝑥, 𝑧∗ ≥ &

#!
𝑉! 𝑥, 𝑦



EVEN-PAZ
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• Theorem: EVEN-PAZ uses 𝑂 𝑛 log 𝑛 queries.
• Simple Proof:

Ø Protocol runs for log 𝑛 rounds.
Ø In each round, each player is asked one cut query.
Ø QED!



Complexity	of	Proportionality
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• Theorem [Edmonds and Pruhs, 2006]: Any proportional 
protocol needs Ω(𝑛 log 𝑛) operations in the Robertson-
Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) provably 
optimal!



Envy-Freeness?
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• “I suppose you are also going to give such cute algorithms 
for finding envy-free allocations?”

• Bad luck. For 𝑛-player EF cake-cutting:
Ø [Brams and Taylor, 1995] give an unbounded EF protocol.
Ø [Procaccia 2009] shows Ω 𝑛# lower bound for EF.
Ø Last year, the long-standing major open question of “bounded EF 

protocol” was resolved!

Ø [Aziz and Mackenzie, 2016]: 𝑂(𝑛($
$$

$

) protocol!
o Yes, it’s not a typo!



Four	More	Desiderata
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• Equitability
Ø 𝑉! 𝐴! = 𝑉" 𝐴" for all 𝑖, 𝑗.

• Perfect Partition
Ø 𝑉! 𝐴$ = 1/𝑛 for all 𝑖, 𝑘.
Ø Implies equitability.
Ø Guaranteed to exist [Lyapunov ’40] and can be found using only 

poly(𝑛) cuts [Alon ‘87].



Four	More	Desiderata

CSC304 - Nisarg Shah & Evi Micha 26

• Pareto Optimality
Ø We say that 𝐴 is Pareto optimal if for any other allocation 𝐵, it 

cannot be that 𝑉! 𝐵! ≥ 𝑉! 𝐴! for all 𝑖 and 𝑉! 𝐵! > 𝑉!(𝐴!) for some 
𝑖.

• Strategyproofness
Ø No agent can misreport her valuation and increase her (expected) 

value for her allocation.



Strategyproofness
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• Deterministic
Ø Bad news!
Ø Theorem [Menon & Larson ‘17]: No deterministic SP mechanism is 

(even approximately) proportional.

• Randomized
Ø Good news!
Ø Theorem [Chen et al. ‘13, Mossel & Tamuz ‘10]: There is a 

randomized SP mechanism that always returns an envy-free
allocation.



Strategyproofness
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• Randomized SP Mechanism: 
Ø Compute a perfect partition, and assign the 𝑛 bundles to the 𝑛

players uniformly at random.

• Why is this EF? 
Ø Every agent has value ⁄& ( for her own as well as for every other 

agent’s allocation.
Ø Note: We want EF in every realized allocation, not only in 

expectation.

• Why is this SP?
Ø An agent is assigned a random bundle, so her expected utility is ⁄& (, 

irrespective of what she reports.



Pareto	Optimality	(PO)
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• Definition: We say that 𝐴 is Pareto optimal if for any other 
allocation 𝐵, it cannot be that 𝑉! 𝐵! ≥ 𝑉! 𝐴! for all 𝑖 and 
𝑉! 𝐵! > 𝑉!(𝐴!) for some 𝑖.

• Q: Is it PO to give the entire cake to player 1?
• A: Not necessarily. But yes if player 1 values “every part of 

the cake positively”.



PO	+	EF
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• Theorem [Weller ‘85]:
Ø There always exists an allocation of the cake that is both envy-free 

and Pareto optimal.

• One way to achieve PO+EF:
Ø Nash-optimal allocation: argmax) ∏!∈+𝑉! 𝐴!
Ø Obviously, this is PO. The fact that it is EF is non-trivial.
Ø This is named after John Nash.
o Nash social welfare = product of utilities
o Different from utilitarian social welfare = sum of utilities



Nash-Optimal	Allocation
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• Example:
Ø Green player has value 1 distributed evenly over 0, ⁄# ,
Ø Blue player has value 1 distributed evenly over [0,1]
Ø Without loss of generality (why?) suppose: 

o Green player gets [0, 𝑥] for 𝑥 ≤ ⁄% &
o Blue player gets 𝑥, ⁄% & ∪ ⁄% & , 1 = [𝑥, 1]

Ø Green’s utility = -⁄' (
,   blue’s utility = 1 − 𝑥

Ø Maximize: &
'
𝑥 ⋅ (1 − 𝑥) ⇒ 𝑥 = ⁄( '

0 1
!2 3

Allocation 0 1
!1 2 Green has utility &

)

Blue has utility (
'
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• Difficult to compute in general
Ø I believe it should require an unbounded number of queries in the 

Robertson-Webb model. But I can’t find such a result in the 
literature.

• Theorem [Aziz & Ye ‘14]:
Ø For piecewise constant valuations, the Nash-optimal solution can be 

computed in polynomial time.

0 1

The density function of a 
piecewise constant 
valuation looks like this
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Indivisible Goods
(Only if time permits)

NOT IN SYLLABUS



Indivisible	Goods
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• Goods cannot be shared / divided among players
Ø E.g., house, painting, car, jewelry, …

• Problem: Envy-free allocations may not exist!



Indivisible	Goods:	Setting
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8 7 20 5

9 11 12 8

9 10 18 3

We assume additive values. So, e.g., 𝑉 , = 8 + 7 = 15
Given such a matrix of numbers, assign each good to a player.
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Indivisible	Goods
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Indivisible	Goods
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• Envy-freeness up to one good (EF1): 

∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴' ∶ 𝑉! 𝐴! ≥ 𝑉! 𝐴'\{𝑔}

Ø Technically, ∃𝑔 ∈ 𝐴" only applied if 𝐴" ≠ ∅.
Ø “If 𝑖 envies 𝑗, there must be some good in 𝑗’s bundle such that 

removing it would make 𝑖 envy-free of 𝑗.”

• Does there always exist an EF1 allocation?



EF1
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• Yes! We can use Round Robin.
Ø Agents take turns in a cyclic order, say 1,2, … , 𝑛, 1,2, … , 𝑛, …

Ø An agent, in her turn, picks the good that she likes the most among 
the goods still not picked by anyone.

Ø [Assignment Problem] This yields an EF1 allocation regardless of how 
you order the agents.

• Sadly, the allocation returned may not be Pareto optimal.



EF1+PO?
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• Nash welfare to the rescue!

• Theorem [Caragiannis et al. ‘16]:
Ø Maximizing Nash welfare ∏!𝑉! 𝐴! achieves both EF1 and PO. 
Ø A bit of subtlety required if the maximum Nash welfare is zero



8 7 20 5

9 11 12 8

9 10 18 3

Integral	Nash	Allocation

CSC304 - Nisarg Shah & Evi Micha 43



8 7 20 5

9 11 12 8

9 10 18 3

20 * 8 * (9+10) = 3040
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8 7 20 5

9 11 12 8

9 10 18 3

(8+7) * 8 * 18 = 2160
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8 7 20 5

9 11 12 8

9 10 18 3

8 * (12+8) * 10 = 1600
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8 7 20 5

9 11 12 8

9 10 18 3

20 * (11+8) * 9 = 3420
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Computation
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• For indivisible goods, Nash-optimal solution is strongly NP-
hard to compute
Ø That is, remains NP-hard even if all values are bounded.

• Open Question: Can we find an allocation that is both EF1 
and PO in polynomial time? 
Ø A recent paper provides a pseudo-polynomial time algorithm, i.e., its 

time is polynomial in 𝑛, 𝑚, and max
!,0

𝑉! 𝑔 .



Stronger	Fairness	Guarantees
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• Envy-freeness up to the least valued good (EFx):
Ø ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑔 ∈ 𝐴" ∶ 𝑉! 𝐴! ≥ 𝑉! 𝐴"\{𝑔}
Ø “If 𝑖 envies 𝑗, then removing any good from 𝑗’s bundle eliminates the 

envy.”
Ø Open question: Is there always an EFx allocation?

• Contrast this with EF1:
Ø ∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴" ∶ 𝑉! 𝐴! ≥ 𝑉! 𝐴"\{𝑔}
Ø “If 𝑖 envies 𝑗, then removing some good from 𝑗’s bundle eliminates 

the envy.”
Ø We know there is always an EF1 allocation that is also PO.



Stronger	Fairness
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• To clarify the difference between EF1 and EFx:
Ø Suppose there are two players and three goods with values as 

follows.

Ø If you give {A} → P1 and {B,C} → P2, it’s EF1 but not EFx.
o EF1 because if P1 removes C from P2’s bundle, all is fine.
o Not EFx because removing B doesn’t eliminate envy.

Ø Instead, {A,B} → P1 and {C} → P2 would be EFx.

A B C

P1 5 1 10

P2 0 1 10


