CSC304 Algorithmic Game Theory & Mechanism Design

Nisarg Shah

This Lecture: More Auctions

- Sponsored search
- Other auction mechanisms
 - > 1st price auction and ascending (English) auction
 - Comparison to the 2nd price auction
- A different type of incentive guarantee
 - Bayes-Nash Incentive Compatibility
- Revelation principle and revenue equivalence

Sponsored Search Auctions

About 549,000 results (0.84 seconds)

Need A Good Tax Accountant? - We are Tax Experts in Toronto.

Ad www.taxsos.ca/Tax-Accountant 🔻

Solve Complex Tax Problems Quickly. Service Special. Contact Us Now! Highlights: Team Of Professionals, Free Consultation Available... 9 60 Green Lane, Unit 13, Thornhill, ON - Closing soon · 10:00 AM - 6:00 PM •

About Us

Why Choose Tax SOS

Cost of Services

Contact Us

Looking For An Accountant? - Get Expert & Trusted Advice - intuit.ca

Select From Over 50,000 QuickBooks Pro Advisors Bookkeeping · Accounting Service · Tax & Financial Planning · Quickbooks Setup · Business Consult...

AZ Accounting Toronto - Specializing in Small Business

Ad www.azaccountingfirm.ca/ *

Tax Consulting and Finance Services Services: Financial Statements, Professional Corporations, Self-Employed Individuals...

Specialized Tax Accountant - Best Tax Service For Less Now.

Ad www.crataxrescue.ca/CRATaxProblem/Tax-Accountant 🔻

Quick Relief For CRA Tax Troubles. Get Free Meeting Today. Frequently Asked Question · 3 Easy Steps To Fix Taxes

Sponsored Search Auctions

- A search engine receives a query
- There are k advertisement slots

 "Clickthrough rates": c₁ ≥ c₂ ≥ ··· ≥ c_k ≥ c_{k+1} = 0
- There are *n* advertisers (bidders)
 - > Bidder *i* derives value v_i *per click*
 - > Value to bidder *i* for slot $j = v_i \cdot c_j$
 - \succ Without loss of generality, $v_1 \geq v_2 \geq \cdots \geq v_n$

• Question:

> Who gets which slot, and how much do they pay?

Sponsored Search : VCG

• VCG

- > Outcome
 - Maximize welfare \Rightarrow bidder j gets slot j for $1 \le j \le k$, other bidders get nothing
- Payments
 - \circ Payment charged to bidder j = increase in welfare of others if j abstains
 - Bidders j + 1 through k + 1 would be upgraded by one slot
 So:
 - Payment of bidder $j = \sum_{i=j+1}^{k+1} v_i \cdot (c_{i-1} c_i)$
 - Payment of bidder $j \text{ <u>per click</u>} = \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1}-c_i}{c_i}$

Sponsored Search : VCG

• What if all the clickthrough rates are same?

$$\succ c_1 = c_2 = \dots = c_k > c_{k+1} = 0$$

> Payment of bidder
$$j \text{ per click}$$

 $\circ \sum_{i=j+1}^{k+1} v_i \cdot \frac{c_{i-1}-c_i}{c_j} = v_{k+1}$

Bidders 1 through k pay the value of bidder k + 1
 Familiar? VCG for k identical items

Sponsored Search : GSP

- Generalized Second Price Auction (GSP)
 - For 1 ≤ j ≤ k, bidder j gets slot j and pays the value of bidder j + 1 per click
 - > Other bidders get nothing and pay nothing
- Natural extension of the "second price" idea
 - > We considered this before for two identical slots
 - Not strategyproof
 - > In fact, truth-telling may not even be a Nash equilibrium 🛞

Sponsored Search : GSP

- But there is a good Nash equilibrium that...
 - realizes the VCG outcome, i.e., maximizes welfare, and
 - ➤ generates as much revenue as VCG ☺ [Edelman et al. 2007]
- Even the worst Nash equilibrium...
 - > gives 1.282-approximation to welfare ($PoA \le 1.282$) and
 - generates at least half of the revenue of VCG
 [Caragiannis et al. 2011, Dutting et al. 2011, Lucier et al. 2012]
- So if the players achieve an equilibrium, things aren't so bad

VCG vs GSP

• VCG

- Truthful revelation is a dominant strategy, so there's a higher confidence that players will reveal truthfully and the theoretical welfare/revenue guarantees will hold
- But it is difficult to convey and understand

• GSP

- > Need to rely on players reaching a Nash equilibrium
- But has good welfare and revenue guarantees and is easy to convey and understand
- Industry is split on this issue too!

From Theory to Reality

• Value is proportional to clickthrough rate?

- Could it be that users clicking on the 2nd slot are more likely buyers than those clicking on the 1st slot?
- Misaligned values of advertisers and ad engines?
 - > An advertiser having a high value for a slot does not necessarily mean their ad is appropriate for the slot

• Market competition?

> What if there are other ad engines deploying other mechanisms and advertisers are strategic about which ad engines to participate in?

Bayes-Nash Incentive Compatibility

Bayesian Framework

- Useful for providing weaker incentive guarantees than strategyproofness
- Strategyproofness:
 - "It's best for me to tell the truth even if I know what other players are doing, and regardless of what they are doing."

• Weaker guarantee:

- "I don't *exactly* know what others are going to do, but I have some idea. In expectation, it's best for me to tell the truth."
- Incomplete information setting

Bayesian Framework

- Each agent *i*'s valuation v_i is sampled from a distribution D_i
 - > v_i 's are independent of each other
 - > T_i = valuation space of agent *i* (support of $D_i \subseteq T_i$)
 - > A_i = bid space of agent i
 - > Agent *i*'s strategy $s_i: T_i \rightarrow A_i$ converts her valuation to her bid
- All agents know all D_i -s and all s_i -s, but only their own v_i
 - > Agent *i* reasons about agent *j*'s bid in expectation over v_j drawn from D_j and then s_j applied to it

Bayesian Framework

- Given a strategy profile $\vec{s} = (s_1, ..., s_n)$:
 - Expected utility to agent i is

$$E_{\{v_j \sim D_j\}_{j \neq i}} [u_i(s_1(v_1), \dots, s_n(v_n))]$$

where utility u_i is "value derived – payment charged" under the outcome implemented when each agent j bids $s_j(v_j)$

- > \vec{s} is a Bayes-Nash equilibrium (BNE) if s_i is the best strategy for agent i given \vec{s}_{-i} (strategies of others)
 - "I don't know what others' values are. But I know they are rational players, so I can reason about what strategies they might use."

Comparison

- Nash equilibrium
 - Given their strategies and values, I'm doing the best I can
- Bayes-Nash equilibrium
 - Given their strategies and in expectation over their values, I'm doing the best I can

• Dominant strategy equilibrium

- > (Each player is playing their dominant action)
- Regardless of their strategies and values, I'm doing the best I can

Example

- Sealed-bid first price auction for a single item
 - > Each agent *i* confidentially submits a bid b_i
 - > Agent i^* with the highest bid wins the item, pays b_{i^*}
- Example
 - Suppose there are two agents
 - Each agent i draws her valuation v_i for the item from the same distribution U[0,1]
 - Claim: Both players using the strategy s(v) = v/2 is a BNE.
 o Proof on the board.