CSC304

Algorithmic Game Theory \& Mechanism Design

Nisarg Shah

Announcements

- Assignment 1 solutions uploaded
- Additional office hour
> Tomorrow (Wed, Oct 19), 2-3pm ET, same Zoom link
- Midterm 1
> Thursday, Oct 20, 4:10pm - 5:00pm (tutorial slot)
> In-person
> EX 100 (Exam Centre)
> Aid: One $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes on one side
- Syllabus: Game theory (first lecture to end of game theory portion in today's lecture)

Resuming discussion on VCG mechanism

Mathematical Setup

- $A=$ finite set of outcomes
- Each agent i has a private valuation $v_{i}: A \rightarrow \mathbb{R}$
> Agent i might report \tilde{v}_{i} instead of the true v_{i}
- Mechanism consist of a pair of rules (f, p)
> Input: reported valuations $\tilde{v}=\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)$
> $f(\tilde{v}) \in A$ is the outcome implemented
$>p(\tilde{v})=\left(p_{1}, \ldots, p_{n}\right)$ are the payments
- $p_{i}(\tilde{v})$ is the amount agent i needs to pay
- Each agent's payment depends on everyone's reports
- Utility to agent $i: u_{i}(\tilde{v})=v_{i}(f(\tilde{v}))-p_{i}(\tilde{v})$

Value minus payment

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Truthfulness/strategyproofness
> For all agents i, all v_{i}, and all \tilde{v},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq u_{i}\left(\tilde{v}_{i}, \tilde{v}_{-i}\right)
$$

> "Every agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report"
> Almost same as telling the truth being a weakly dominant action

- What's the difference?

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Individual rationality
> For all agents i and for all \tilde{v}_{-i},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq 0
$$

> "No agent should regret participating if she tells the truth."
> Assumes that the utility from not participating is 0

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- No payments to agents
> For all agents i and for all \tilde{v},

$$
p_{i}(\tilde{v}) \geq 0
$$

> "Agents pay the center. Not the other way around."
> Common for auctions, but we may want the reverse in other settings

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Welfare maximization
$>f(\tilde{v})$ must be in $\operatorname{argmax}_{a} \sum_{i} \widetilde{v}_{i}(a)$
- Important when making the users happy matters more than the immediate short-term revenue
- Or think of the auctioneer as "agent $n+1$ " with utility equal to the total payment received $\sum_{i} p_{i}(\tilde{v})$, and look at total utility

$$
\left(\sum_{i} v_{i}(f(\tilde{v}))-p_{i}(f(\tilde{v}))\right)+\left(\sum_{i} p_{i}(f(\tilde{v}))\right)=\sum_{i} v_{i}(f(\tilde{v}))
$$

Single-item Vickrey Auction

- Simplifying notation:
- $f(\tilde{v})$: give the item to agent $i^{*} \in \operatorname{argmax}_{i} \tilde{v}_{i}$
- $p(\tilde{v}): p_{i^{*}}=\max _{j \neq i^{*}} \tilde{v}_{j}$, other agents pay nothing

VCG Auction

- Single-item
> Simplified notation: $v_{i}=$ value of agent i for the item
$>f(\tilde{v}):$ give the item to agent $i^{*} \in \operatorname{argmax}_{i} \tilde{v}_{i}$
$>p(\tilde{v}): p_{i^{*}}=\max _{j \neq i^{*}} \tilde{v}_{j}$, other agents pay nothing
- General setup

$$
\begin{array}{ll}
>f(\tilde{v})=a^{*} \in \operatorname{argmax}_{a \in A} \sum_{i} \tilde{v}_{i}(a) & \text { Maximize welfare } \\
>p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]
\end{array}
$$

i 's payment $=$ welfare that
others lost due to presence of i

VCG: Simple Example

- Suppose each agent has a value XBox and a value for PS4.
- Their value for $\{X B o x, P S 4\}$ is the max of their two values.

Q: Who gets the xbox and who gets the PS4?
Q: How much do they pay?

VCG: Simple Example

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of $7+6=13$

VCG: Simple Example

Payments:

- Zero payments charged to A1 and A2
> "Deleting" either does not change the outcome/payments for others
- Can also be seen by individual rationality

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 3=11-7=4$
> Max welfare to others if A3 absent: $7+4=11$
- Give XBox to A4 and PS4 to A1
> Welfare to others if A3 present: 7

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 4=12-6=6$
> Max welfare to others if A4 absent: $8+4=12$
- Give XBox to A3 and PS4 to A1
> Welfare to others if A4 present: 6

VCG: Simple Example

Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets $6-4=2$, A4 gets $7-6=1$

Properties of VCG Auction

- Strategyproofness:
> Suppose agents other than i report \tilde{v}_{-i}.
> Agent i reports $\tilde{v}_{i} \Rightarrow$ outcome chosen is $f(\tilde{v})=a$
$>$ Utility to agent $i=v_{i}(a)-\left(\square-\sum_{j \neq i} \tilde{v}_{j}(a)\right)$ Term that agent i cannot affect
> Agent i wants a to maximize $v_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
$>f$ chooses a to maximize $\tilde{v}_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
> Hence, agent i is best off reporting $\tilde{v}_{i}=v_{i}$
○ f chooses a that maximizes the utility to agent i

Properties of VCG Auction

- Individual rationality:
$>a^{*} \in \operatorname{argmax}_{a \in A} v_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
$>\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_{j}(a)$

$$
\begin{aligned}
& u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \\
& =v_{i}\left(a^{*}\right)-\left(\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})-\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right) \\
& =\left[v_{i}\left(a^{*}\right)+\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})\right] \\
& =\text { Max welfare to all agents } \\
& \geq 0 \text { max welfare to others when } i \text { is absent } \\
& \geq 0
\end{aligned}
$$

Properties of VCG Auction

- No payments to agents:
> Suppose the agents report \tilde{v}
$>a^{*} \in \operatorname{argmax}_{a \in A} \sum_{j} \tilde{v}_{j}(a)$
$>\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_{j}(a)$

$$
\begin{aligned}
& p_{i}(\tilde{v}) \\
& =\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})-\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right) \\
& =\text { Max welfare to others when } i \text { is absent } \\
& \geq 0
\end{aligned}
$$

Properties of VCG Auction

- Welfare maximization:
> By definition, since f chooses the outcome maximizing the sum of reported values
- Informal result:
> Under minimal assumptions, VCG is the unique auction satisfying these properties.

Example: Seller as Agent

- Seller (S) wants to sell his car (c) to buyer (B)
- Seller has a value for his own car: $v_{S}(c)$
> Individual rationality for the seller mandates that seller must get revenue at least $v_{S}(c)$
- Idea: Add seller as another agent and make his values part of the welfare calculations!

Seller as Agent

$$
v_{S}(c)=3
$$

$$
v_{B}(c)=5
$$

- What if...
$>$ We give the car to buyer when $v_{B}(c)>v_{S}(c)$ and
> Buyer pays seller $v_{B}(c)$: Not strategyproof for buyer!
> Buyer pays seller $v_{S}(c)$: Not strategyproof for seller!
> Hmm...what would VCG do?

What would VCG do?

$$
v_{S}(c)=3
$$

$v_{B}(c)=5$

- Allocation?
> Buyer gets the car (welfare $=5$)
- Payment?
> Buyer pays: 3-0 = 3
> Seller pays: $0-5=-5$

Mechanism takes \$3 from buyer and gives $\$ 5$ to the seller!

- Need external subsidy

Problems with VCG

- Difficult to understand
> Need to reason about what welfare maximizing allocation in agent i 's absence
- Does not care about revenue
> Although we can lower bound its revenue
- With sellers as agents, need subsidy
> With no subsidy, cannot get the other three properties
- Might be NP-hard to compute

Single-Minded Bidders

- Selling a set S of m items
- Each agent i has two private values $\left(v_{i}, S_{i}\right)$
> $S_{i} \subseteq S$ is the subset of items desired by agent i
> When given a bundle of items A_{i}, agent i has value v_{i} if $S_{i} \subseteq A_{i}$ and 0 otherwise
> "Single-minded"
- Welfare-maximizing allocation
> Agent i either gets S_{i} or nothing
> Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Weighted Independent Set (WIS) problem
> Given a graph with weights on nodes, find an independent set of nodes with the maximum weight
> Known to be NP-hard
> Easy to reduce our problem to WIS
○ Not even $\mathrm{O}\left(m^{0.5-\epsilon}\right)$ approximation of welfare unless $N P \subseteq Z P P$
- We will see an algorithm that is:
> \sqrt{m}-approximation
- Approximation $=\frac{\text { maximum possible welfare }}{\text { welfare achieved by algo }}$ on the worst instance
> Still strategyproof!

Greedy Algorithm

- Input: $\left(v_{i}, S_{i}\right)$ for each agent i
- Output: Agents with mutually independent S_{i}
- Greedy algorithm:
$>$ Sort the agents in a specific order (we'll see).
$>$ Relabel them as $1,2, \ldots, n$ in this order.
> $W \leftarrow \emptyset$
$>$ For $i=1, \ldots, n$:
- If $S_{i} \cap S_{j}=\emptyset$ for every $j \in W$, then $W \leftarrow W \cup\{i\}$
> Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values.
> $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \Rightarrow m$-approximation $:($
- But we don't want to exhaust too many items.
$>\frac{v_{1}}{\left|S_{1}\right|} \geq \frac{v_{2}}{\left|S_{2}\right|} \geq \cdots \frac{v_{n}}{\left|S_{n}\right|} \Rightarrow m$-approximation $*$
- \sqrt{m}-approximation : $\frac{v_{1}}{\sqrt{\left|S_{1}\right|}} \geq \frac{v_{2}}{\sqrt{\left|S_{2}\right|}} \geq \cdots \frac{v_{n}}{\sqrt{\left|S_{n}\right|}}$?
[Lehmann et al. 2011]

Proof of Approximation

- Definitions
> OPT = Agents satisfied by the optimal algorithm
> $W=$ Agents satisfied by the greedy algorithm
$>$ For $i \in W, O P T_{i}=\left\{j \in O P T, j \geq i: S_{i} \cap S_{j} \neq \varnothing\right\}$
- Claim 1: $O P T \subseteq \bigcup_{i \in W} O P T_{i}$
- Claim 2: It is enough to show that $\forall i \in W$

$$
\sqrt{m} \cdot v_{i} \geq \Sigma_{j \in O P T_{i}} v_{j}
$$

- Observation: For $j \in O P T_{i}, v_{j} \leq v_{i} \cdot \frac{\sqrt{\left|S_{j}\right|}}{\sqrt{\left|S_{i}\right|}}$

Proof of Approximation

- Summing over all $j \in O P T_{i}$:

$$
\Sigma_{j \in O P T_{i}} v_{j} \leq \frac{v_{i}}{\sqrt{\left|S_{i}\right|}} \cdot \Sigma_{j \in O P T_{i}} \sqrt{\left|S_{j}\right|}
$$

- Using Cauchy-Schwarz $\left(\Sigma_{i} x_{i} y_{i} \leq \sqrt{\Sigma_{i} x_{i}^{2}} \cdot \sqrt{\Sigma_{i} y_{i}^{2}}\right)$

$$
\begin{gathered}
\Sigma_{j \in O P T_{i}} \sqrt{1 \cdot\left|S_{j}\right|} \leq \sqrt{\left|O P T_{i}\right|} \cdot \sqrt{\Sigma_{j \in O P T_{i}}\left|S_{j}\right|} \\
\leq \sqrt{\left|S_{i}\right|} \cdot \sqrt{m}
\end{gathered}
$$

Strategyproofness

- Agent i pays $p_{i}=v_{j^{*}} \cdot \sqrt{\frac{\left|S_{i}\right|}{\left|S_{j^{*}}\right|}}$
> j^{*} is the smallest index j such that j is currently not selected by greedy but would be selected if we remove (v_{i}, S_{i}) from the system
> Exercise: Show that we must have $j^{*}>i$
- Exercise: Show that $S_{i} \cap S_{j^{*}} \neq \varnothing$
- Another interpretation: $p_{i}=$ lowest value i can report and still win

Strategyproofness

- Critical payment
> Charge each agent the lowest value they can report and still win
- Monotonic allocation
> If agent i wins when reporting $\left(v_{i}, S_{i}\right)$, she must win when reporting $v_{i}^{\prime} \geq v_{i}$ and $S_{i}^{\prime} \subseteq S_{i}$.
> Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
> May look into approximately maximizing welfare
> As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
> Note: approximation is needed for computational reasons
- Later in mechanism design without money...
> We will not be able to use payments to achieve strategyproofness
> Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions

