CSC304 Algorithmic Game Theory & Mechanism Design

Nisarg Shah

Announcements

- Assignment 1 solutions uploaded
- Additional office hour
 - > Tomorrow (Wed, Oct 19), 2-3pm ET, same Zoom link

• Midterm 1

- > Thursday, Oct 20, 4:10pm 5:00pm (tutorial slot)
- > In-person
- > EX 100 (Exam Centre)
- Aid: One 8.5" x 11" sheet of handwritten notes on one side
- Syllabus: Game theory (first lecture to end of game theory portion in today's lecture)

Resuming discussion on VCG mechanism

Mathematical Setup

- *A* = finite set of outcomes
- Each agent *i* has a private valuation $v_i : A \to \mathbb{R}$ > Agent *i* might report \tilde{v}_i instead of the true v_i
- Mechanism consist of a pair of rules (f, p)
 - > Input: reported valuations $\tilde{v} = (\tilde{v}_1, ..., \tilde{v}_n)$
 - > $f(\tilde{v})$ ∈ A is the outcome implemented
 - > p(ṽ) = (p₁, ..., p_n) are the payments
 p_i(ṽ) is the amount agent *i* needs to pay
 Each agent's payment depends on everyone's reports

• Utility to agent
$$i : u_i(\tilde{v}) = v_i(f(\tilde{v})) - p_i(\tilde{v})$$

Value minus payment

- We want the mechanism (*f*, *p*) to satisfy some nice properties
- Truthfulness/strategyproofness
 - > For all agents *i*, all v_i , and all \tilde{v} , $u_i(v_i, \tilde{v}_{-i}) \ge u_i(\tilde{v}_i, \tilde{v}_{-i})$
 - "Every agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report"
 - Almost same as telling the truth being a weakly dominant action
 - o What's the difference?

- We want the mechanism (*f*, *p*) to satisfy some nice properties
- Individual rationality
 - > For all agents *i* and for all \tilde{v}_{-i} , $u_i(v_i, \tilde{v}_{-i}) \ge 0$
 - "No agent should regret participating if she tells the truth."
 - > Assumes that the utility from not participating is 0

- We want the mechanism (*f*, *p*) to satisfy some nice properties
- No payments to agents

> For all agents *i* and for all \tilde{v} , $p_i(\tilde{v}) \ge 0$

- "Agents pay the center. Not the other way around."
- > Common for auctions, but we may want the reverse in other settings

- We want the mechanism (*f*, *p*) to satisfy some nice properties
- Welfare maximization
 - > $f(\tilde{v})$ must be in $\operatorname{argmax}_a \sum_i \tilde{v}_i(a)$
 - Important when making the users happy matters more than the immediate short-term revenue
 - Or think of the auctioneer as "agent n + 1" with utility equal to the total payment received $\sum_i p_i(\tilde{v})$, and look at total utility

$$\left(\sum_{i} v_i(f(\tilde{v})) - p_i(f(\tilde{v}))\right) + \left(\sum_{i} p_i(f(\tilde{v}))\right) = \sum_{i} v_i(f(\tilde{v}))$$

Single-item Vickrey Auction

- Simplifying notation:
- $f(\tilde{v})$: give the item to agent $i^* \in \operatorname{argmax}_i \tilde{v}_i$
- $p(\tilde{v}): p_{i^*} = \max_{j \neq i^*} \tilde{v}_j$, other agents pay nothing

VCG Auction

• Single-item

- > Simplified notation: v_i = value of agent i for the item
- > $f(\tilde{v})$: give the item to agent i^* ∈ argmax_i \tilde{v}_i
- > $p(\tilde{v}): p_{i^*} = \max_{i \neq i^*} \tilde{v}_i$, other agents pay nothing

• General setup > $f(\tilde{v}) = a^* \in \operatorname{argmax}_{a \in A} \sum_i \tilde{v}_i(a)$ Maximize welfare > $p_i(\tilde{v}) = \left[\max_a \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$ i's payment = welfare that others lost due to presence of i

- Suppose each agent has a value XBox and a value for PS4.
- Their value for {*XBox*, *PS*4} is the max of their two values.

Q: Who gets the xbox and who gets the PS4? Q: How much do they pay?

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of 7 + 6 = 13

Payments:

- Zero payments charged to A1 and A2
 - "Deleting" either does not change the outcome/payments for others
- Can also be seen by individual rationality

Payments:

- Payment charged to A3 = 11 7 = 4
 - > Max welfare to others if A3 absent: 7 + 4 = 11
 - $\,\circ\,$ Give XBox to A4 and PS4 to A1
 - Welfare to others if A3 present: 7

Payments:

- Payment charged to A4 = 12 6 = 6
 - > Max welfare to others if A4 absent: 8 + 4 = 12
 - $\,\circ\,\,$ Give XBox to A3 and PS4 to A1
 - Welfare to others if A4 present: 6

Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets 6 4 = 2, A4 gets 7 6 = 1

• Strategyproofness:

- > Suppose agents other than *i* report \tilde{v}_{-i} .
- > Agent *i* reports $\tilde{v}_i \Rightarrow$ outcome chosen is $f(\tilde{v}) = a$
- > Utility to agent $i = v_i(a) \left(\prod_{i \neq i} \tilde{v}_j(a) \right)$

Term that agent *i* cannot affect

- > Agent *i* wants *a* to maximize $v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- > f chooses a to maximize $\tilde{v}_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- \succ Hence, agent i is best off reporting $\tilde{v}_i = v_i$
 - $\circ f$ chooses a that maximizes the utility to agent i

• Individual rationality:

≻
$$a^* \in \operatorname{argmax}_{a \in A} v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$$

≻ $\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_j(a)$

$$u_{i}(v_{i}, \tilde{v}_{-i}) = v_{i}(a^{*}) - \left(\sum_{j \neq i} \tilde{v}_{j}(\tilde{a}) - \sum_{j \neq i} \tilde{v}_{j}(a^{*})\right) \\ = \left[v_{i}(a^{*}) + \sum_{j \neq i} \tilde{v}_{j}(a^{*})\right] - \left[\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})\right]$$

= Max welfare to all agents - max welfare to others when *i* is absent ≥ 0

- No payments to agents:
 - \succ Suppose the agents report \tilde{v}
 - ≻ $a^* \in \operatorname{argmax}_{a \in A} \sum_j \tilde{v}_j(a)$
 - $\succ \tilde{a} \in \operatorname{argmax}_{a \in A} \, \sum_{j \neq i} \tilde{v}_j(a)$

 $p_i(\tilde{v})$

$$= \sum_{j \neq i} \tilde{v}_j(\tilde{a}) - \sum_{j \neq i} \tilde{v}_j(a^*)$$

= Max welfare to others when *i* is absent - welfare to others when *i* is present ≥ 0

• Welfare maximization:

By definition, since f chooses the outcome maximizing the sum of reported values

• Informal result:

> Under minimal assumptions, VCG is the unique auction satisfying these properties.

Example: Seller as Agent

- Seller (S) wants to sell his car (c) to buyer (B)
- Seller has a value for his own car: $v_S(c)$
 - > Individual rationality for the seller mandates that seller must get revenue at least $v_S(c)$
- Idea: Add seller as another agent and make his values part of the welfare calculations!

Seller as Agent

 $v_S(c) = 3$

- What if...
 - > We give the car to buyer when $v_B(c) > v_S(c)$ and
 - > Buyer pays seller $v_B(c)$: Not strategyproof for buyer!
 - > Buyer pays seller $v_S(c)$: Not strategyproof for seller!
 - > Hmm...what would VCG do?

What would VCG do?

 $v_S(c) = 3$

$$v_B(c)=5$$

- Allocation?
 - Buyer gets the car (welfare = 5)
- Payment?
 - > Buyer pays: 3 0 = 3

> Seller pays:
$$0 - 5 = -5$$

Mechanism takes \$3 from buyer and gives \$5 to the seller!

• Need external subsidy

Problems with VCG

- Difficult to understand
 - Need to reason about what welfare maximizing allocation in agent i's absence
- Does not care about revenue
 - > Although we can lower bound its revenue
- With sellers as agents, need subsidy
 - > With no subsidy, cannot get the other three properties
- Might be NP-hard to compute

Single-Minded Bidders

- Selling a set S of m items
- Each agent *i* has two private values (v_i, S_i)
 - > S_i ⊆ S is the subset of items desired by agent i
 - > When given a bundle of items A_i , agent *i* has value v_i if $S_i ⊆ A_i$ and 0 otherwise
 - Single-minded

• Welfare-maximizing allocation

- > Agent *i* either gets S_i or nothing
- Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Weighted Independent Set (WIS) problem
 - Given a graph with weights on nodes, find an independent set of nodes with the maximum weight
 - Known to be NP-hard
 - ► Easy to reduce our problem to WIS
 Not even $O(m^{0.5-\epsilon})$ approximation of welfare unless $NP \subseteq ZPP$
- We will see an algorithm that is:
 - > \sqrt{m} -approximation

 \circ Approximation = $\frac{\text{maximum possible welfare}}{\text{welfare achieved by algo}}$ on the worst instance

Still strategyproof!

Greedy Algorithm

- Input: (v_i, S_i) for each agent i
- Output: Agents with mutually independent S_i
- Greedy algorithm:
 - > Sort the agents in a specific order (we'll see).
 - > Relabel them as 1, 2, ..., n in this order.
 - $\succ W \leftarrow \emptyset$

- If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$
- > Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values. > $v_1 \ge v_2 \ge \cdots \ge v_n \Rightarrow m$ -approximation \circledast
- But we don't want to exhaust too many items. $\geq \frac{v_1}{|S_1|} \geq \frac{v_2}{|S_2|} \geq \cdots \frac{v_n}{|S_n|} \Rightarrow m$ -approximation \mathfrak{S}

•
$$\sqrt{m}$$
-approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- Definitions
 - > *OPT* = Agents satisfied by the optimal algorithm
 - > W = Agents satisfied by the greedy algorithm
 - > For *i* ∈ *W*, *OPT_i* = {*j* ∈ *OPT*, *j* ≥ *i* : *S_i* ∩ *S_j* ≠ Ø}
- Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$
- Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \ge \Sigma_{j \in OPT_i} v_j$

• Observation: For
$$j \in OPT_i$$
, $v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz (
$$\Sigma_i x_i y_i \leq \sqrt{\Sigma_i x_i^2} \cdot \sqrt{\Sigma_i y_i^2}$$
)
 $\Sigma_{j \in OPT_i} \sqrt{1 \cdot |S_j|} \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} |S_j|}$
 $\leq \sqrt{|S_i|} \cdot \sqrt{m}$

Strategyproofness

- Agent *i* pays $p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$
 - > j^* is the smallest index j such that j is currently not selected by greedy but would be selected if we remove (v_i, S_i) from the system
 - > Exercise: Show that we must have $j^* > i$
 - ▶ Exercise: Show that $S_i \cap S_{j^*} \neq \emptyset$
 - > Another interpretation: p_i = lowest value *i* can report and still win

Strategyproofness

- Critical payment
 - > Charge each agent the lowest value they can report and still win
- Monotonic allocation
 - > If agent *i* wins when reporting (v_i, S_i) , she must win when reporting $v'_i \ge v_i$ and $S'_i \subseteq S_i$.
 - > Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
 - > May look into approximately maximizing welfare
 - As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
 - Note: approximation is needed for computational reasons
- Later in mechanism design without money...
 - > We will not be able to use payments to achieve strategyproofness
 - Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions