CSC304

Algorithmic Game Theory \& Mechanism Design

Nisarg Shah

Announcements

- Assignment 1
> Due 11:59pm on Saturday, Oct 15
> You can use up to 2 late days
> Submit a single PDF named "hwk1.pdf" on MarkUs
- Midterm 1
> Thursday, Oct 20, 4:10pm - 5:00pm (tutorial slot)
> In-person
> EX 100 (Exam Centre)
> Aid: One $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes on one side
> Syllabus: Game theory (first lecture to end of game theory portion in today's lecture)

Stackelberg Games

Recap

- Focus on two players: "leader" and "follower"

1. Leader commits to a (possibly mixed) strategy x_{1}
> Cannot change later
2. Follower learns about x_{1}
> Follower must believe that leader's commitment is credible
3. Follower chooses the best response x_{2}
> Can assume to be a pure strategy without loss of generality
> If multiple actions are best response, break ties in favor of the leader

Recap Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Three outcomes
> Nash equilibrium: (Up, Left), reward of P1 = 1
> P 1 commits to Down: P 2 responds with Right, reward of $\mathrm{P} 1=2$
$>$ P1 commits to ($0.5 \times$ Up $+0.5 \times$ Down): P 2 responds still with Right, reward of P1 $=0.5 \times 2+0.5 \times 3=2.5$

Stackelberg vs Nash

- Committing first is always better than playing a simultaneous-move game?
- Yes!
> If $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a NE, P 1 is always free to commit to x_{1}^{*}, which ensures that P2 will play x_{2}^{*} and P1 will get the NE reward
> P1 may be able to commit to a better strategy than x_{1}^{*}
- Applications to security
> Law enforcement is better off committing to a mixed patrolling strategy and announcing the strategy publicly!

Stackelberg in Zero-Sum

- Recall the minimax theorem:

$$
\max _{x_{1}} \min _{x_{2}} x_{1}^{T} A x_{2}=\min _{x_{2}} \max _{x_{1}} x_{1}^{T} A x_{2}
$$

- P1 goes first:
> P1 chooses maximin strategy x_{1}^{*} maximizing $\min _{x_{2}}\left(x_{1}^{*}\right)^{T} A x_{2}$
> P 2 responds with $\underset{x_{2}}{\operatorname{argmin}}\left(x_{1}^{*}\right)^{T} A x_{2}$
- P2 goes first:
> P2 chooses minimax strategy x_{1}^{*} minimizing $\max _{x_{1}} x_{1}^{T} A x_{2}^{*}$
x_{1}
> P1 responds with $\operatorname{argmax} x_{1}^{T} A x_{2}^{*}$

Stackelberg in General-Sum

- 2-player non-zero-sum game with reward matrices A for P1 and $B \neq-A$ for P 2
- What will P1 commit to?

$$
\begin{aligned}
& \max _{x_{1}} x_{1}^{T} A f\left(x_{1}\right) \\
& \text { where } f\left(x_{1}\right)=\underset{x_{2}}{\operatorname{argmax}} x_{1}^{T} B \quad x_{2}
\end{aligned}
$$

- How do we compute this?

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$(2,1)$	
Down			

- Let us separately maximize the reward of P1 in 2 cases:
> Strategies that cause P2 to play Left
> Strategies that cause P2 to play Right
- Suppose P1 commits to Up w.p. p, Down w.p. $1-p$

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Strategies that cause P2 to play Left

Max $p \cdot 1+(1-p) \cdot 0$
Reward of P1
assuming P2 plays Left such that

$$
p \cdot 1+(1-p) \cdot 0 \geq p \cdot 0+(1-p) \cdot 1
$$

$$
p \in[0,1]
$$

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$(2,1)$	
Down			

- Strategies that cause P2 to play Left

Max p
such that Best reward across all strategies
$p \geq 1-p$ where P2 responds with Left = 1
$p \in[0,1]$

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Strategies that cause P2 to play Right

Max $p \cdot 3+(1-p) \cdot 2$

such that

$$
p \cdot 1+(1-p) \cdot 0 \leq p \cdot 0+(1-p) \cdot 1
$$

$$
p \in[0,1]
$$

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Strategies that cause P2 to play Right

Max $p+2$
such that
Best reward across all strategies
where P 2 responds with Right $=2.5$
$2 p \leq 1$
$p \in[0,1]$

Example

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Since P1 can commit to any strategy...
> P1 can choose the best among both types of strategies: those that cause P2 to choose Left and those that cause P2 to choose Right
> Hence, the best possible reward for P 1 is the maximum of the two answers

Stackelberg via LPs

- General algorithm:
> For each action s_{2}^{*} of P2, write a linear program
- Variables: probabilities of P1 playing different actions under a mixed strategy x_{1}
- Objective: maximize the reward of P1 when P1 plays x_{1} and P2 responds with s_{2}^{*}
- Constraint: s_{2}^{*} must be the best response for P2 when P1 plays x_{1}
> \# linear programs = \# actions of P2
- P1's reward in Stackelberg equilibrium = best answer across all the linear programs
> Running time: polynomial in the number of actions of P1 and P2

Real-World Applications

- Security Games
> Defender (leader) and attacker (follower)
> Defender assigns patrol units to protect sets of targets, attacker chooses a target to attack
> Both have different utilities for protecting/attacking different targets
> Running time polynomial in \#actions
- But \#actions exponentially many

NOT IN SYLLABUS

MGistivalt National News

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

LAX

WEB EXCLUSIVE

By Andrew Murr

Newsweek
Updated: 1:00 p.m. PT Sept 28, 2007
Sept. 28, 2007-Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely

Security forces work the sidewalk unpredictable. Now all airport security officials have to do is press a button labeled
"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

Real-World Applications

- Protecting entry points to LAX
- Scheduling air marshals on flights
> Must return home
- Protecting the Staten Island Ferry
> Continuous-time strategies
- Fare evasion in LA metro
> Bathroom breaks !!!
- Wildlife protection in Ugandan forests
> Poachers are not fully rational
- Cyber security

End of Game Theory

Start of Mechanism Design with Money

Mechanism Design with Money

- Design the game structure in order to induce the desired behavior from the agents
- Desired behavior?
> We will mostly focus on incentivizing agents to truthfully reveal their "private" information
- Something only the agents know, such as how much value they place on some items
- With money
> Can pay agents or ask agents for money depending on what the agents report

Mathematical Setup

- $A=$ finite set of outcomes
- Each agent i has a private valuation $v_{i}: A \rightarrow \mathbb{R}$
> Agent i might report \tilde{v}_{i} instead of the true v_{i}
- Mechanism consist of a pair of rules (f, p)
> Input: reported valuations $\tilde{v}=\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)$
> $f(\tilde{v}) \in A$ is the outcome implemented
$>p(\tilde{v})=\left(p_{1}, \ldots, p_{n}\right)$ are the payments
- $p_{i}(\tilde{v})$ is the amount agent i needs to pay
- Each agent's payment depends on everyone's reports
- Utility to agent $i: u_{i}(\tilde{v})=v_{i}(f(\tilde{v}))-p_{i}(\tilde{v})$

Value minus payment

Mathematical Setup

- Our goal is to design the mechanism (f, p)
$>f$ is called the social choice function
$\Rightarrow p$ is called the payment scheme
- Example
> Suppose we want to sell one item to one of n agents
$>A=$ set of n outcomes
- Each corresponds to giving the item to a different agent
> Agent i values the item at v_{i}, but may report $\widetilde{v_{i}}$
- v_{i} is the value for receiving the item, value for all other outcomes is 0
$>f$ takes \tilde{v} as input and decides who gets the item
> p takes \tilde{v} as input and decides who pays how much

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 1: Each would tell me his/her value. I'll give it to the one with the higher value.

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 2: Each would tell me his/her value. ${ }^{\prime}$ 'll give it to the one with the higher value, but they have to pay me that value.

Single-Item Auction

Objective: The one who really needs it more should have it.

Implements the desired outcome.
But not truthfully.

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 3: Each would tell me his/her value. I'll give it to the one with the highest value, and charge them the second highest value.

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Truthfulness/strategyproofness
> For all agents i, all v_{i}, and all \tilde{v},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq u_{i}\left(\tilde{v}_{i}, \tilde{v}_{-i}\right)
$$

> "Every agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report"
> Almost same as telling the truth being a weakly dominant action

- What's the difference?

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Individual rationality
> For all agents i and for all \tilde{v}_{-i},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq 0
$$

> "No agent should regret participating if she tells the truth."
> Assumes that the utility from not participating is 0

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- No payments to agents
> For all agents i and for all \tilde{v},

$$
p_{i}(\tilde{v}) \geq 0
$$

> "Agents pay the center. Not the other way around."
> Common for auctions, but we may want the reverse in other settings

Desiderata

- We want the mechanism (f, p) to satisfy some nice properties
- Welfare maximization
$>f(\tilde{v})$ must be in $\operatorname{argmax}_{a} \sum_{i} \widetilde{v}_{i}(a)$
- Important when making the users happy matters more than the immediate short-term revenue
- Or think of the auctioneer as "agent $n+1$ " with utility equal to the total payment received $\sum_{i} p_{i}(\tilde{v})$, and look at total utility

$$
\left(\sum_{i} v_{i}(f(\tilde{v}))-p_{i}(f(\tilde{v}))\right)+\left(\sum_{i} p_{i}(f(\tilde{v}))\right)=\sum_{i} v_{i}(f(\tilde{v}))
$$

Single-item Vickrey Auction

- Simplifying notation: $v_{i}=$ value of agent i for the item
- $f(\tilde{v})$: give the item to agent $i^{*} \in \operatorname{argmax}_{i} \tilde{v}_{i}$
- $p(\tilde{v}): p_{i^{*}}=\max _{j \neq i^{*}} \tilde{v}_{j}$, other agents pay nothing

Theorem:
Single-item Vickrey auction is strategyproof.
Proof sketch:

Vickrey Auction: Identical Items

- Two identical xboxes
> Each agent i only wants one, has value v_{i}
> Goal: give to the agents with the two highest values
- Attempt 1
> To agent with highest value, charge $2^{\text {nd }}$ highest value.
$>$ To agent with $2^{\text {nd }}$ highest value, charge $3^{\text {rd }}$ highest value.
- Attempt 2
> To agents with highest and $2^{\text {nd }}$ highest values, charge the $3^{\text {rd }}$ highest value.
- Question: Which attempt(s) would be strategyproof?
>Both, 1, 2, None?

VCG Auction

- Recall the general setup:
> $A=$ set of outcomes, $v_{i}=$ valuation of agent $i, \tilde{v}_{i}=$ what agent i reports, f chooses the outcome, p decides payments
- VCG (Vickrey-Clarke-Groves Auction)
> $f(\tilde{v})=a^{*} \in \operatorname{argmax}_{a \in A} \sum_{i} \tilde{v}_{i}(a)$
$\Rightarrow p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]$

A Note About Payments

- $p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]$
- In the first term...
> Maximum is taken over alternatives that are feasible when i does not participate.
> Agent i cannot affect this term, so can ignore in calculating incentives.
> Could be replaced with any function $h_{i}\left(\tilde{v}_{-i}\right)$
- This specific function has advantages (we'll see)

VCG: Simple Example

- Suppose each agent has a value XBox and a value for PS4.
- Their value for $\{X B o x, P S 4\}$ is the max of their two values.

Q: Who gets the xbox and who gets the PS4?
Q: How much do they pay?

VCG: Simple Example

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of $7+6=13$

VCG: Simple Example

Payments:

- Zero payments charged to A1 and A2
> "Deleting" either does not change the outcome/payments for others
- Can also be seen by individual rationality

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 3=11-7=4$
> Max welfare to others if A3 absent: $7+4=11$
- Give XBox to A4 and PS4 to A1
> Welfare to others if A3 present: 7

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 4=12-6=6$
> Max welfare to others if A4 absent: $8+4=12$
- Give XBox to A3 and PS4 to A1
> Welfare to others if A4 present: 6

VCG: Simple Example

Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets $6-4=2$, A4 gets $7-6=1$

