CSC304 Algorithmic Game Theory & Mechanism Design

Nisarg Shah

Recap: PoA & PoS

• Price of Anarchy (PoA)

"Worst NE vs optimum"

Max total reward Min total reward in any NE

or

Max total cost in any NE

Min total cost

• Price of Stability (PoS)

"Best NE vs optimum"

Max total reward Max total reward in any NE

or

Min total cost in any NE Min total cost

 $PoA \ge PoS \ge 1$

Recap: Cost Sharing Game

- *n* players on directed weighted graph *G*
- Player *i*
 - > Wants to go from s_i to t_i
 - > Strategy set $S_i = \{ \text{directed } s_i \rightarrow t_i \text{ paths} \}$
 - > Denote his chosen path by $P_i \in S_i$
- Each edge *e* has cost *c_e* (weight)
 - Cost is split among all players taking edge e
 - > That is, among all players i with $e \in P_i$

Recap: Cost Sharing Game

• Given strategy profile \vec{P} , cost $c_i(\vec{P})$ to player *i* is sum of his costs for edges $e \in P_i$

• Social cost
$$C(\vec{P}) = \sum_i c_i(\vec{P})$$

Note: C(P) = ∑_{e∈E(P)} c_e, where...
E(P)={edges taken in P by at least one player}
Why?

Recap: PoA of Cost-Sharing

- For cost-sharing games, we'll be looking at PoA and PoS with respect to pure Nash equilibria.
- Theorem:
 - > Every cost-sharing game has $PoA \le n$.
 - > There exists a cost-sharing game with PoA = n
- Before looking at PoS...
 - Want to argue that every cost-sharing game admits a pure Nash equilibrium via "potential" argument
 Will prove that PoS = O(log n)
 - Tightness established in tutorial 3

Good News

- Theorem: Every cost-sharing game has a pure Nash equilibrium.
- Proof:
 - > Via "potential function" argument

Step 1: Define Potential Fn

- Potential function: $\Phi : \prod_i S_i \to \mathbb{R}_+$
 - > This is a function such that for every pure strategy profile $\vec{P} = (P_1, \dots, P_n)$, player *i*, and strategy P'_i of *i*,

$$c_i(P'_i, \vec{P}_{-i}) - c_i(\vec{P}) = \Phi(P'_i, \vec{P}_{-i}) - \Phi(\vec{P})$$

- When a single player i changes her strategy, the change in potential function equals the change in cost to i!
- Note: In contrast, the change in the social cost C equals the total change in cost to all players.

• Hence, the social cost will often not be a valid potential function.

Step 2: Potential $F^n \rightarrow pure Nash Eq$

- A potential function exists \Rightarrow a pure NE exists.
 - > Consider a \vec{P} that minimizes the potential function.
 - > If player *i* deviates to playing P'_i , then by the definition of the potential function:

$$c_i(P'_i, \vec{P}_{-i}) - c_i(P_i, \vec{P}_{-i}) = \Phi(P'_i, \vec{P}_{-i}) - \Phi(P_i, \vec{P}_{-i}) \ge 0$$

- > The inequality is because $\Phi(P_i, \vec{P}_{-i})$ is the lowest possible.
- > Hence, player *i*'s cost cannot decrease by deviating.
- Hence, every pure strategy profile minimizing the potential function is a pure Nash equilibrium.

Step 3: Potential Fⁿ for Cost-Sharing

- Recall: $E(\vec{P}) = \{ edges taken in \vec{P} by at least one player \}$
- Let $n_e(\vec{P})$ be the number of players taking e in \vec{P}

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Note: The cost of edge *e* to each player taking *e* is $c_e/n_e(\vec{P})$. But the potential function includes all fractions: $c_e/1$, $c_e/2$, ..., $c_e/n_e(\vec{P})$.

Step 3: Potential Fⁿ for Cost-Sharing

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Why is this a potential function?

- > If a player changes path, he pays $\frac{c_e}{n_e(\vec{P})+1}$ for each new edge e, gets back $\frac{c_f}{n_f(\vec{P})}$ for each old edge f.
- > This is precisely the change in the potential function too.
- > So $\Delta c_i = \Delta \Phi$.

Potential Minimizing Eq.

- Minimizing the potential function gives some pure Nash equilibrium
 - > Is this equilibrium special? Yes!
- Recall that the price of anarchy can be up to *n*.
 - That is, the worst Nash equilibrium can be up to n times worse than the social optimum.
- A potential-minimizing pure Nash equilibrium is better!

Potential Minimizing Eq.

Potential Minimizing Eq.

Potential-minimizing PNE is O(log n)-approximation to the social optimum.

- Thus, in every cost-sharing game, the price of stability is O(log n).
 - > Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- *n* players, *m* resources (e.g., edges)
- Each player *i* chooses a set of resources P_i (e.g., $s_i \rightarrow t_i$ paths)
- When n_j player use resource j, each of them get a cost $f_j(n_j)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$\Phi(\vec{P}) = \sum_{j \in E(\vec{P})} \sum_{k=1}^{n_j(\vec{P})} f_j(k)$$

• Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

- In cost sharing, f_i is decreasing
 - > The more people use a resource, the less the cost to each.
- *f_i* can also be increasing
 - > Road network, each player going from home to work
 - > Uses a sequence of roads
 - The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

• Parkes-Seuken Example

- > 2000 players want to go from 1 to 4
- > 1 \rightarrow 2 and 3 \rightarrow 4 are "congestible" roads
- > 1 \rightarrow 3 and 2 \rightarrow 4 are "constant delay" roads

- Pure Nash equilibrium?
 - \succ 1000 take 1 \rightarrow 2 \rightarrow 4, 1000 take 1 \rightarrow 3 \rightarrow 4
 - > Each player has cost 10 + 25 = 35
 - > Anyone switching to the other creates a greater congestion on it, and faces a higher cost

- What if we add a zero-cost connection $2 \rightarrow 3$?
 - > Intuitively, adding more roads should only be helpful
 - In reality, it leads to a greater delay for everyone in the unique equilibrium!

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay = 40!

- In fact, what we showed is:
 - > In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each player!

Zero-Sum Games

Zero-Sum Games

Special case of games

- > Total reward to all players is constant in every outcome
- > Without loss of generality, sum of rewards = 0
 - Remember: rewards to each player can be additively shifted without changing the structure of the game
- > Inspired terms like "zero-sum thinking" and "zero-sum situation"
- Focus on two-player zero-sum games (2p-zs)

"The more I win, the more you lose"

Examples

Zero-sum game: Rock-Paper-Scissor

P2 P1	Rock	Paper	Scissor
Rock	(0 , 0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0,0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

Non-zero-sum game: Prisoner's dilemma

John Sam	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

Importance

- Why are they interesting?
 - Many physical games we play are zero-sum: chess, tic-tac-toe, rockpaper-scissor, ...
 - > (win, lose), (lose, win), (draw, draw)
 - > (1, -1), (-1, 1), (0, 0)
- Why are they technically interesting?
 - > We'll see.

Zero-Sum Games

- Reward for P2 = Reward for P1
 - Only need to write a single entry in each cell (say reward of P1)
 We get a matrix A
 - > Row player wants to maximize the value, column player wants to minimize it

P2 P1	Rock	Paper	Scissor
Rock	0	-1	1
Paper	1	0	-1
Scissor	-1	1	0

Rewards in Matrix Form

- Reward to the row player when...
 - > The row player uses mixed strategy $x_1 = (x_{1,1}, x_{1,2}, ...)$
 - > The column player uses mixed strategy $x_2 = (x_{2,1}, x_{2,2}, ...)$
 - Given by

$$x_1^T A x_2 = \sum_{i,j} x_{1,i} * x_{2,j} * A_{i,j}$$

• With probability $x_{1,i} * x_{2,j}$, the row player chooses action *i* and the column player chooses action *j*, giving the row player reward $A_{i,j}$

• Reward to the column player is $-x_1^T A x_2$

How would the two players act in this zero-sum game?

John von Neumann, 1928

Maximin Strategy

- Worst-case thinking by the row player...
 - If I choose mixed strategy x₁, in the worst case the column player might end up choosing x₂ that minimizes my reward
 - > Let me choose x_1 that maximizes this "worst-case reward":

$$V_1^* = \max_{x_1} \min_{x_2} x_1^T A x_2$$

- > V_1^* = maximin value of the row player
- > x_1^* (maximizer) = maximin strategy of the row player
- > Row player guarantee:

 \circ "By playing x_1^* , I guarantee myself reward at least $V_1^{*"}$

Maximin Strategy

• Similar worst-case thinking by the column player...

- If I choose mixed strategy x₂, in the worst case the row player ends up choosing x₁ minimizing my reward (i.e., maximizing her reward)
- > Let me choose x_2 that optimizes this "worst-case":

$$V_2^* = \min_{x_2} \max_{x_1} x_1^T A x_2$$

- > V_2^* = minimax value of the column player
- > x_2^* (maximizer) = minimax strategy of the column player
- > Column player guarantee:

 \circ "By playing x_2^* , I guarantee that the row player gets at most $V_2^{*''}$

Maximin vs Minimax

Row player

If I play x_1^* , I get reward at least V_1^*

Column player

If I play x_2^* , the row player gets reward at most V_2^*

Claim: It is easy to see that $V_1^* \leq V_2^*$ (Why?)

Maximin vs Minimax

$$V_{1}^{*} = \max_{x_{1}} \min_{x_{2}} x_{1}^{T} * A * x_{2} \qquad V_{2}^{*} = \min_{x_{2}} \max_{x_{1}} x_{1}^{T} * A * x_{2}$$

$$x_{1}^{*} \coprod \qquad x_{2}^{*} \coprod$$

• Another way to see this:

$$V_1^* = \min_{x_2} (x_1^*)^T * A * x_2 \le (x_1^*)^T * A * x_2^*$$
$$\le \max_{x_1} x_1^T * A * x_2^* = V_2^*$$

The Minimax Theorem

- Jon von Neumann [1928]
- Theorem: For any two-player zero-sum game,
 - > $V_1^* = V_2^* = V^*$ (called the minimax value of the game)
 - Set of Nash equilibria =
 - $\{(x_1^*, x_2^*) : where...$

 $x_1^* = maximin \text{ for row player, } x_2^* = minimax \text{ for column player} \}$

• Corollary: x_1^* is best response to x_2^* and vice-versa.

Commitment Interpretation

Commitment

- x₁^{*} is the strategy that the row player would choose if she were to commit to her strategy *first*, and the column player were to choose his strategy after observing the row player's strategy
- Similarly, x₂^{*} is the strategy that the column player would choose if he were to commit to his strategy *first*, and the row player were to choose her strategy after observing the column player's strategy

• Minimax theorem:

x₁^{*} and x₂^{*} are best responses to each other, so in two-player zerosum games, it doesn't matter if one player commits first or if both play simultaneously

The Minimax Theorem

• Jon von Neumann [1928]

"As far as I can see, there could be no theory of games ... without that theorem ...

I thought there was nothing worth publishing until the Minimax Theorem was proved"

Computing Nash Equilibria

- Recall that in general games, computing a Nash equilibrium is hard even with two players.
- For two-player zero-sum games, a Nash equilibrium can be computed in polynomial time.
 - \succ Polynomial in #actions of the two players: m_1 and m_2
 - Exploits the fact that Nash equilibrium is simply composed of maximin strategies, which can be computed using linear programming

Computing Nash Equilibria

Maximize v

Subject to

 $(x_1^T A)_j \ge v, \ j \in \{1, \dots, m_2\}$ $x_1(1) + \dots + x_1(m_1) = 1$ $x_1(i) \ge 0, \ i \in \{1, \dots, m_1\}$

Minimax Theorem in Real Life?

Goalie Kicker	L	R
L	0.58	0.95
R	0.93	0.70

Kicker Maximize vSubject to $0.58p_L + 0.93p_R \ge v$ $0.95p_L + 0.70p_R \ge v$ $p_L + p_R = 1$ $p_L \ge 0, p_R \ge 0$ Goalie Minimize vSubject to $0.58q_L + 0.95q_R \le v$ $0.93q_L + 0.70q_R \le v$ $q_L + q_R = 1$ $q_L \ge 0, q_R \ge 0$

Minimax Theorem in Real Life?

Goalie Kicker	L	R
L	0.58	0.95
R	0.93	0.70

Kicker	Goalie
Maximin:	Maximin:
$p_L = 0.38, p_R = 0.62$	$q_L = 0.42$, $q_R = 0.58$
Reality:	Reality:
$p_L = 0.40, p_R = 0.60$	$p_L = 0.423, q_R = 0.577$

Some evidence that people may play minimax strategies.

Stackelberg Games

Sequential Move Games

- Focus on two players: "leader" and "follower"
- 1. Leader commits to a (possibly mixed) strategy x_1
 - Cannot change later
- 2. Follower learns about x_1
 - Follower must believe that leader's commitment is credible
- 3. Follower chooses the best response x_2
 - > Can assume to be a pure strategy without loss of generality
 - > If multiple actions are best response, break ties in favor of the leader

Sequential Move Games

- Wait. Does this give us anything new?
 - Can't I, as player 1, commit to playing x₁ in a simultaneous-move game too?
 - > Player 2 wouldn't believe you.

That's unless...

• You're as convincing as this guy.

How to represent the game?

• Extensive form representation

> Can also represent "information sets", multiple moves, ...

A Curious Case

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0,0)	(2,1)

- Q: What are the Nash equilibria of this game?
- Q: You are P1. What is your reward in Nash equilibrium?

A Curious Case

P2 P1	Left	Right
Up	(1,1)	(3 , 0)
Down	(0 , 0)	(2,1)

- Say that as P1, you have the ability to commit to a pure strategy.
- Q: Which pure strategy would you commit to? And what would your reward be now?

Commitment Advantage

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0,0)	(2 , 1)

- Reward in the unique Nash equilibrium = 1
- (Higher) reward when committing to Down = 2

Commitment Advantage

P2 P1	Left	Right
Up	(1 , 1)	(3 , 0)
Down	(0,0)	(2,1)

- Even higher reward in committing to a mixed strategy
 - > P1 commits to: Up w.p. 0.5ϵ , Down w.p. $0.5 + \epsilon$
 - P2 is still better off playing Right
 - > \mathbb{E} [Reward] to P1 → 2.5
 - Note: If P1 plays both actions with probability exactly 0.5, we assume P2 plays Right (break ties in favor of leader)