CSC304

Algorithmic Game Theory \& Mechanism Design

Nisarg Shah

Recap: PoA \& PoS

- Price of Anarchy (PoA) "Worst NE vs optimum"
$\frac{\text { Max total reward }}{\text { Min total reward in any NE }}$ or

Max total cost in any NE
Min total cost

- Price of Stability (PoS)
"Best NE vs optimum"

Max total reward
Max total reward in any NE

or

Min total cost in any NE
Min total cost

$$
\mathrm{PoA} \geq \mathrm{PoS} \geq 1
$$

Recap: Cost Sharing Game

- n players on directed weighted graph G
- Player i
> Wants to go from s_{i} to t_{i}
> Strategy set $S_{i}=$ \{directed $s_{i} \rightarrow t_{i}$ paths $\}$
> Denote his chosen path by $P_{i} \in S_{i}$
- Each edge e has cost c_{e} (weight)
> Cost is split among all players taking edge e
$>$ That is, among all players i with $e \in P_{i}$

Recap: Cost Sharing Game

- Given strategy profile \vec{P}, cost $c_{i}(\vec{P})$ to player i is sum of his costs for edges $e \in P_{i}$
- Social $\operatorname{cost} C(\vec{P})=\sum_{i} c_{i}(\vec{P})$
- Note: $C(\vec{P})=\sum_{e \in E(\vec{P})} c_{e}$, where...
> $E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
> Why?

Recap: PoA of Cost-Sharing

- For cost-sharing games, we'll be looking at PoA and PoS with respect to pure Nash equilibria.
- Theorem:
> Every cost-sharing game has $\mathrm{PoA} \leq n$.
> There exists a cost-sharing game with $\mathrm{PoA}=n$
- Before looking at PoS...
> Want to argue that every cost-sharing game admits a pure Nash equilibrium via "potential" argument
- Will prove that PoS $=O(\log n)$
- Tightness established in tutorial 3

Good News

- Theorem: Every cost-sharing game has a pure Nash equilibrium.
- Proof:
> Via "potential function" argument

Step 1: Define Potential Fn

- Potential function: $\Phi: \prod_{i} S_{i} \rightarrow \mathbb{R}_{+}$
> This is a function such that for every pure strategy profile $\vec{P}=$ $\left(P_{1}, \ldots, P_{n}\right)$, player i, and strategy P_{i}^{\prime} of i,

$$
c_{i}\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-c_{i}(\vec{P})=\Phi\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-\Phi(\vec{P})
$$

> When a single player i changes her strategy, the change in potential function equals the change in cost to i !
> Note: In contrast, the change in the social cost C equals the total change in cost to all players.

- Hence, the social cost will often not be a valid potential function.

Step 2: Potential $\mathrm{F}^{\mathrm{n}} \rightarrow$ pure Nash Eq

- A potential function exists \Rightarrow a pure NE exists.
> Consider a \vec{P} that minimizes the potential function.
$>$ If player i deviates to playing P_{i}^{\prime}, then by the definition of the potential function:

$$
c_{i}\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-c_{i}\left(P_{i}, \vec{P}_{-i}\right)=\Phi\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-\Phi\left(P_{i}, \vec{P}_{-i}\right) \geq 0
$$

> The inequality is because $\Phi\left(P_{i}, \vec{P}_{-i}\right)$ is the lowest possible.
> Hence, player i 's cost cannot decrease by deviating.

- Hence, every pure strategy profile minimizing the potential function is a pure Nash equilibrium.

Step 3: Potential F^{n} for Cost-Sharing

- Recall: $E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
- Let $n_{e}(\vec{P})$ be the number of players taking e in \vec{P}

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Note: The cost of edge e to each player taking e is $c_{e} / n_{e}(\vec{P})$. But the potential function includes all fractions: $c_{e} / 1, c_{e} / 2, \ldots, c_{e} / n_{e}(\vec{P})$.

Step 3: Potential F^{n} for Cost-Sharing

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Why is this a potential function?
> If a player changes path, he pays $\frac{c_{e}}{n_{e}(\vec{P})+1}$ for each new edge e, gets back $\frac{c_{f}}{n_{f}(\vec{P})}$ for each old edge f.
> This is precisely the change in the potential function too.
$>$ So $\Delta c_{i}=\Delta \Phi$.

Potential Minimizing Eq.

- Minimizing the potential function gives some pure Nash equilibrium
> Is this equilibrium special? Yes!
- Recall that the price of anarchy can be up to n.
> That is, the worst Nash equilibrium can be up to n times worse than the social optimum.
- A potential-minimizing pure Nash equilibrium is better!

Potential Minimizing Eq.

$$
\forall \vec{P}, C(\vec{P}) \leq \Phi(\vec{P}) \leq C(\vec{P}) * H(n) \quad \longleftarrow \quad\left\{\begin{array}{c}
\text { Harmonic function } H(n) \\
=\sum_{k=1}^{n} 1 / n=O(\log n)
\end{array}\right.
$$

$$
C\left(\vec{P}^{*}\right) \leq \Phi\left(\vec{P}^{*}\right) \leq \Phi(O P T) \leq C(O P T) * H(n)
$$

Potential Minimizing Eq.

- Potential-minimizing PNE is $O(\log n)$-approximation to the social optimum.
- Thus, in every cost-sharing game, the price of stability is $O(\log n)$.
> Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- n players, m resources (e.g., edges)
- Each player i chooses a set of resources P_{i} (e.g., $s_{i} \rightarrow t_{i}$ paths)
- When n_{j} player use resource j, each of them get a cost $f_{j}\left(n_{j}\right)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$
\Phi(\vec{P})=\sum_{j \in E(\vec{P})} \sum_{k=1}^{n_{j}(\vec{P})} f_{j}(k)
$$

- Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

The Braess' Paradox

- In cost sharing, f_{j} is decreasing
> The more people use a resource, the less the cost to each.
- f_{j} can also be increasing
> Road network, each player going from home to work
> Uses a sequence of roads
$>$ The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

The Braess' Paradox

- Parkes-Seuken Example
> 2000 players want to go from 1 to 4
$>1 \rightarrow 2$ and $3 \rightarrow 4$ are "congestible" roads
$>1 \rightarrow 3$ and $2 \rightarrow 4$ are "constant delay" roads

The Braess' Paradox

- Pure Nash equilibrium?
> 1000 take $1 \rightarrow 2 \rightarrow 4,1000$ take $1 \rightarrow 3 \rightarrow 4$
> Each player has cost $10+25=35$
> Anyone switching to the other creates a greater congestion on it, and faces a higher cost

The Braess' Paradox

- What if we add a zero-cost connection $2 \rightarrow 3$?
> Intuitively, adding more roads should only be helpful
> In reality, it leads to a greater delay for everyone in the unique equilibrium!

The Braess' Paradox

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay $=40$!

The Braess' Paradox

- In fact, what we showed is:
> In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each player!

Zero-Sum Games

Zero-Sum Games

- Special case of games
> Total reward to all players is constant in every outcome
> Without loss of generality, sum of rewards = 0
- Remember: rewards to each player can be additively shifted without changing the structure of the game
> Inspired terms like "zero-sum thinking" and "zero-sum situation"
- Focus on two-player zero-sum games ($2 p-z s$)
> "The more I win, the more you lose"

Examples

Zero-sum game: Rock-Paper-Scissor

P1 P2	Rock	Paper	Scissor
Rock	$(\mathbf{0}, \mathbf{0})$	$(\mathbf{- 1}, \mathbf{1)}$	$\mathbf{(1 , - 1)}$
Paper	$(\mathbf{1}, \mathbf{- 1)}$	$\mathbf{(0 , 0)}$	$\mathbf{(- 1 , 1)}$
Scissor	$\mathbf{(- 1 , 1)}$	$(\mathbf{1}, \mathbf{- 1)}$	$\mathbf{(0) , 0)}$

Non-zero-sum game: Prisoner's dilemma

Sam John	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$

Importance

- Why are they interesting?
> Many physical games we play are zero-sum: chess, tic-tac-toe, rock-paper-scissor, ...
> (win, lose), (lose, win), (draw, draw)
> ($1,-1$), ($-1,1$), (0, 0)
- Why are they technically interesting?
> We'll see.

Zero-Sum Games

- Reward for P2 = - Reward for P1
> Only need to write a single entry in each cell (say reward of P1)
- We get a matrix A
> Row player wants to maximize the value, column player wants to minimize it

P1	R2	Paper	Scissor
Rock	$\mathbf{0}$	$\mathbf{- 1}$	$\mathbf{1}$
Paper	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{- 1}$
Scissor	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{0}$

Rewards in Matrix Form

- Reward to the row player when...
> The row player uses mixed strategy $x_{1}=\left(x_{1,1}, x_{1,2}, \ldots\right)$
$>$ The column player uses mixed strategy $x_{2}=\left(x_{2,1}, x_{2,2}, \ldots\right)$
> Given by

$$
x_{1}^{T} A x_{2}=\sum_{i, j} x_{1, i} * x_{2, j} * A_{i, j}
$$

- With probability $x_{1, i} * x_{2, j}$, the row player chooses action i and the column player chooses action j, giving the row player reward $A_{i, j}$
- Reward to the column player is $-x_{1}^{T} A x_{2}$

How would the two players act in this zero-sum game?

John von Neumann, 1928

Maximin Strategy

- Worst-case thinking by the row player...
> If I choose mixed strategy x_{1}, in the worst case the column player might end up choosing x_{2} that minimizes my reward
> Let me choose x_{1} that maximizes this "worst-case reward":

$$
V_{1}^{*}=\max _{x_{1}} \min _{x_{2}} x_{1}^{T} A x_{2}
$$

> $V_{1}^{*}=$ maximin value of the row player
> x_{1}^{*} (maximizer) $=$ maximin strategy of the row player
> Row player guarantee:

- "By playing x_{1}^{*}, I guarantee myself reward at least $V_{1}^{* "}$

Maximin Strategy

- Similar worst-case thinking by the column player...
> If I choose mixed strategy x_{2}, in the worst case the row player ends up choosing x_{1} minimizing my reward (i.e., maximizing her reward)
> Let me choose x_{2} that optimizes this "worst-case":

$$
V_{2}^{*}=\min _{x_{2}} \max _{x_{1}} x_{1}^{T} A x_{2}
$$

> $V_{2}^{*}=$ minimax value of the column player
$>x_{2}^{*}($ maximizer $)=$ minimax strategy of the column player
> Column player guarantee:

- "By playing x_{2}^{*}, I guarantee that the row player gets at most $V_{2}^{* "}$

Maximin vs Minimax

Row player

If I play x_{1}^{*}, I get reward at least V_{1}^{*}

$$
V_{1}^{*}=\max _{x_{1}} \min _{x_{2}} x_{1}^{T} * A * x_{2} \quad V_{2}^{*}=\min _{x_{2}} \max _{x_{1}} x_{1}^{T} * A * x_{2}
$$

Column player

If I play x_{2}^{*}, the row player gets reward at most V_{2}^{*}

Claim: It is easy to see that $V_{1}^{*} \leq V_{2}^{*}$ (Why?)

Maximin vs Minimax

$$
V_{1}^{*}=\max _{x_{1}} \min _{x_{2}} x_{1}^{T} * A * x_{2} \quad V_{2}^{*}=\min _{x_{2}} \max _{x_{1}} x_{1}^{T} * A * x_{2}
$$

- Another way to see this:

$$
\begin{gathered}
V_{1}^{*}=\min _{x_{2}}\left(x_{1}^{*}\right)^{T} * A * x_{2} \leq\left(x_{1}^{*}\right)^{T} * A * x_{2}^{*} \\
\leq \max _{x_{1}} x_{1}^{T} * A * x_{2}^{*}=V_{2}^{*}
\end{gathered}
$$

The Minimax Theorem

- Jon von Neumann [1928]
- Theorem: For any two-player zero-sum game,
$>V_{1}^{*}=V_{2}^{*}=V^{*}$ (called the minimax value of the game)
> Set of Nash equilibria $=$ $\left\{\left(x_{1}^{*}, x_{2}^{*}\right)\right.$: where... $\mathrm{x}_{1}^{*}=$ maximin for row player, $\mathrm{x}_{2}^{*}=$ minimax for column player $\}$
- Corollary: x_{1}^{*} is best response to x_{2}^{*} and vice-versa.

Commitment Interpretation

- Commitment
> x_{1}^{*} is the strategy that the row player would choose if she were to commit to her strategy first, and the column player were to choose his strategy after observing the row player's strategy
> Similarly, x_{2}^{*} is the strategy that the column player would choose if he were to commit to his strategy first, and the row player were to choose her strategy after observing the column player's strategy
- Minimax theorem:
> x_{1}^{*} and x_{2}^{*} are best responses to each other, so in two-player zerosum games, it doesn't matter if one player commits first or if both play simultaneously

The Minimax Theorem

- Jon von Neumann [1928]
"As far as I can see, there could be no theory of games ... without that theorem ...

I thought there was nothing worth publishing until the Minimax Theorem was proved"

Computing Nash Equilibria

- Recall that in general games, computing a Nash equilibrium is hard even with two players.
- For two-player zero-sum games, a Nash equilibrium can be computed in polynomial time.
> Polynomial in \#actions of the two players: m_{1} and m_{2}
> Exploits the fact that Nash equilibrium is simply composed of maximin strategies, which can be computed using linear programming

Computing Nash Equilibria

Maximize v

Subject to

$$
\begin{aligned}
& \left(x_{1}^{T} A\right)_{j} \geq v, j \in\left\{1, \ldots, m_{2}\right\} \\
& x_{1}(1)+\cdots+x_{1}\left(m_{1}\right)=1 \\
& x_{1}(i) \geq 0, i \in\left\{1, \ldots, m_{1}\right\}
\end{aligned}
$$

Minimax Theorem in Real Life?

Kicker	Goalie	L
L	0.58	0.95
R	0.93	0.70

$$
\begin{aligned}
& \text { Kicker } \\
& \text { Maximize } v \\
& \text { Subject to } \\
& 0.58 p_{L}+0.93 p_{R} \geq v \\
& 0.95 p_{L}+0.70 p_{R} \geq v \\
& p_{L}+p_{R}=1 \\
& p_{L} \geq 0, p_{R} \geq 0
\end{aligned}
$$

Goalie

Minimize v
Subject to
$0.58 q_{L}+0.95 q_{R} \leq v$
$0.93 q_{L}+0.70 q_{R} \leq v$
$q_{L}+q_{R}=1$
$q_{L} \geq 0, q_{R} \geq 0$

Minimax Theorem in Real Life?

Goalie	L	R
L	0.58	0.95
R	0.93	0.70

> Kicker
> Maximin:
> $p_{L}=0.38, p_{R}=0.62$
> Reality:
> $p_{L}=0.40, p_{R}=0.60$

Goalie

Maximin:
$q_{L}=0.42, q_{R}=0.58$
Reality:

$$
p_{L}=0.423, q_{R}=0.577
$$

Some evidence that people may play minimax strategies.

Stackelberg Games

Sequential Move Games

- Focus on two players: "leader" and "follower"

1. Leader commits to a (possibly mixed) strategy x_{1}
> Cannot change later
2. Follower learns about x_{1}
> Follower must believe that leader's commitment is credible
3. Follower chooses the best response x_{2}
> Can assume to be a pure strategy without loss of generality
> If multiple actions are best response, break ties in favor of the leader

Sequential Move Games

- Wait. Does this give us anything new?
> Can't I, as player 1 , commit to playing x_{1} in a simultaneous-move game too?
> Player 2 wouldn't believe you.

That's unless...

- You're as convincing as this guy.

How to represent the game?

- Extensive form representation
> Can also represent "information sets", multiple moves, ...

A Curious Case

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$\mathbf{(3 , 0)}$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Q: What are the Nash equilibria of this game?
- Q: You are P1. What is your reward in Nash equilibrium?

A Curious Case

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$\mathbf{(3 , 0)}$	
Up	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(2 , 1)}$	
Down			

- Say that as P1, you have the ability to commit to a pure strategy.
- Q: Which pure strategy would you commit to? And what would your reward be now?

Commitment Advantage

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$(\mathbf{2}, \mathbf{1})$	
Down			

- Reward in the unique Nash equilibrium = 1
- (Higher) reward when committing to Down $=2$

Commitment Advantage

	P2	Left	Right
P1	$(\mathbf{1}, \mathbf{1})$	$(\mathbf{3}, \mathbf{0})$	
Up	$(\mathbf{0}, \mathbf{0})$	$(\mathbf{2}, \mathbf{1})$	
Down			

- Even higher reward in committing to a mixed strategy
> P1 commits to: Up w.p. $0.5-\epsilon$, Down w.p. $0.5+\epsilon$
> P2 is still better off playing Right
> $\mathbb{E}[$ Reward $]$ to $\mathrm{P} 1 \rightarrow 2.5$
> Note: If P1 plays both actions with probability exactly 0.5 , we assume P2 plays Right (break ties in favor of leader)

