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Recap:	PoA &	PoS
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• Price of Anarchy (PoA)

“Worst NE vs optimum”

Max total reward
Min total reward in any NE

or

Max total cost in any NE
Min total cost

• Price of Stability (PoS)

“Best NE vs optimum”

Max total reward
Max total reward in any NE

or

Min total cost in any NE
Min total cost

PoA ≥ PoS ≥ 1



Recap:	Cost	Sharing	Game
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• 𝑛 players on directed weighted graph 𝐺

• Player 𝑖
Ø Wants to go from 𝑠! to 𝑡!
Ø Strategy set 𝑆! = {directed 𝑠! → 𝑡! paths}
Ø Denote his chosen path by 𝑃! ∈ 𝑆!

• Each edge 𝑒 has cost 𝑐! (weight)
Ø Cost is split among all players taking edge 𝑒
Ø That is, among all players 𝑖 with 𝑒 ∈ 𝑃!
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Recap:	Cost	Sharing	Game
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• Given strategy profile 𝑃, cost 𝑐! 𝑃 to 
player 𝑖 is sum of his costs for edges 𝑒 ∈ 𝑃!

• Social cost 𝐶 𝑃 = ∑! 𝑐! 𝑃

• Note: 𝐶 𝑃 = ∑"∈$ % 𝑐", where… 

Ø 𝐸(𝑃)={edges taken in 𝑃 by at least one player}

Ø Why?
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Recap:	PoA of	Cost-Sharing
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• For cost-sharing games, we’ll be looking at PoA
and PoS with respect to pure Nash equilibria.

• Theorem:
Ø Every cost-sharing game has PoA ≤ 𝑛.
Ø There exists a cost-sharing game with PoA = 𝑛

• Before looking at PoS…
Ø Want to argue that every cost-sharing game admits a 

pure Nash equilibrium via “potential” argument
o Will prove that 𝑃𝑜𝑆 = 𝑂 log 𝑛
o Tightness established in tutorial 3
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Good	News
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• Theorem: Every cost-sharing game has a pure Nash 
equilibrium.

• Proof:
Ø Via “potential function” argument



Step	1:	Define	Potential	Fn

CSC304 - Nisarg Shah 7

• Potential function: Φ ∶ ∏$ 𝑆$ → ℝ%
Ø This is a function such that for every pure strategy profile 𝑃 =
𝑃", … , 𝑃# , player 𝑖, and strategy 𝑃!$ of 𝑖,

𝑐! 𝑃!$, 𝑃%! − 𝑐! 𝑃 = Φ 𝑃!$, 𝑃%! −Φ 𝑃

Ø When a single player 𝑖 changes her strategy, the change in potential 
function equals the change in cost to 𝑖!

Ø Note: In contrast, the change in the social cost 𝐶 equals the total 
change in cost to all players.
o Hence, the social cost will often not be a valid potential function.



Step	2:	Potential	Fn→ pure	Nash	Eq
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• A potential function exists ⇒ a pure NE exists.
Ø Consider a 𝑃 that minimizes the potential function.

Ø If player 𝑖 deviates to playing 𝑃!$, then by the definition of the 
potential function:
𝑐! 𝑃!$, 𝑃%! − 𝑐! 𝑃!, 𝑃%! = Φ 𝑃!$, 𝑃%! −Φ 𝑃!, 𝑃%! ≥ 0

Ø The inequality is because Φ 𝑃!, 𝑃%! is the lowest possible.

Ø Hence, player 𝑖’s cost cannot decrease by deviating. 

• Hence, every pure strategy profile minimizing the potential 
function is a pure Nash equilibrium.



Step	3:	Potential	Fn for	Cost-Sharing
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• Recall:	𝐸(𝑃) =	{edges	taken	in	𝑃 by	at	least	one	player}

• Let	𝑛!(𝑃) be	the	number	of	players	taking	𝑒 in	𝑃

Φ 𝑃 = Q
!∈'())

Q
+,"

-!()) 𝑐!
𝑘

• Note: The	cost	of	edge	𝑒 to	each	player	taking	𝑒 is	
𝑐!/𝑛!(𝑃).	But	the	potential	function	includes	all	
fractions:	𝑐"/1,	𝑐"/2,	…,	𝑐"/𝑛" 𝑃 .
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Φ 𝑃 = Q
!∈'())

Q
+,"

-!()) 𝑐!
𝑘

• Why is this a potential function?
Ø If a player changes path, he pays &!

#! ' ("
for each new edge 𝑒, gets 

back 
&"

#" '
for each old edge 𝑓.

Ø This is precisely the change in the potential function too.
Ø So Δ𝑐! = ΔΦ.

∎

Step	3:	Potential	Fn for	Cost-Sharing



Potential	Minimizing	Eq.
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• Minimizing the potential function gives some pure Nash 
equilibrium
Ø Is this equilibrium special? Yes!

• Recall that the price of anarchy can be up to 𝑛.
Ø That is, the worst Nash equilibrium can be up to 𝑛 times worse than 

the social optimum.

• A potential-minimizing pure Nash equilibrium is better!



Potential	Minimizing	Eq.
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J
)∈+(')

𝑐) ≤ Φ 𝑃 = J
)∈+(')

J
./"

#!(') 𝑐)
𝑘

≤ J
)∈+(')

𝑐) ∗J
./"

#
1
𝑘

Social cost

∀𝑃, 𝐶 𝑃 ≤ Φ 𝑃 ≤ 𝐶 𝑃 ∗ 𝐻 𝑛

𝐶 𝑃∗ ≤ Φ 𝑃∗ ≤ Φ 𝑂𝑃𝑇 ≤ 𝐶 𝑂𝑃𝑇 ∗ 𝐻(𝑛)

Harmonic function 𝐻(𝑛)
= ∑!"#$ 1/𝑛 = 𝑂(log 𝑛)

Potential minimizing eq. Social optimum



Potential	Minimizing	Eq.
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• Potential-minimizing PNE is 𝑂(log 𝑛)-approximation to the 
social optimum.

• Thus, in every cost-sharing game, the price of stability is 
𝑂 log 𝑛 .
Ø Compare to the price of anarchy, which can be 𝑛



Congestion	Games
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• Generalize cost sharing games

• 𝑛 players, 𝑚 resources (e.g., edges)

• Each player 𝑖 chooses a set of resources 𝑃$ (e.g., 𝑠$ → 𝑡$
paths)

• When 𝑛8 player use resource 𝑗, each of them get a cost 

𝑓8(𝑛8)

• Cost to player is the sum of costs of resources used



Congestion	Games
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• Theorem [Rosenthal 1973]: Every congestion game is a 
potential game.

• Potential function:

Φ 𝑃 = Q
8∈'())

Q
+,"

-" )

𝑓8 𝑘

• Theorem [Monderer and Shapley 1996]: Every potential 
game is equivalent to a congestion game.



The	Braess’	Paradox
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• In cost sharing, 𝑓8 is decreasing
Ø The more people use a resource, the less the cost to each.

• 𝑓8 can also be increasing
Ø Road network, each player going from home to work
Ø Uses a sequence of roads
Ø The more people on a road, the greater the congestion, the greater 

the delay (cost)

• Can lead to unintuitive phenomena



The	Braess’	Paradox
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• Parkes-Seuken Example
Ø 2000 players want to go from 1 to 4
Ø 1 → 2 and 3 → 4 are “congestible” roads
Ø 1 → 3 and 2 → 4 are “constant delay” roads
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The	Braess’	Paradox
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• Pure Nash equilibrium?
Ø 1000 take 1 → 2 → 4, 1000 take 1 → 3 → 4
Ø Each player has cost 10 + 25 = 35
Ø Anyone switching to the other creates a greater congestion on it, and 

faces a higher cost
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The	Braess’	Paradox
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• What if we add a zero-cost connection 2 → 3?
Ø Intuitively, adding more roads should only be helpful
Ø In reality, it leads to a greater delay for everyone in the unique 

equilibrium!
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The	Braess’	Paradox
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• Nobody chooses 1 → 3 as 1 → 2 → 3 is better irrespective 
of how many other players take it

• Similarly, nobody chooses 2 → 4
• Everyone takes 1 → 2 → 3 → 4, faces delay = 40!

𝑐12
𝑛12

=
𝑛12
100

1 4

2

3

𝑐"3
𝑛"3

=
𝑛"3
100

𝑐32 𝑛32 = 25

𝑐"1 𝑛"1 = 25

𝑐31 𝑛31 = 0



The	Braess’	Paradox
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• In fact, what we showed is:
Ø In the new game, 1 → 2 → 3 → 4 is a strictly dominant strategy for 

each player!
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Zero-Sum Games



Zero-Sum	Games
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• Special case of games
Ø Total reward to all players is constant in every outcome 
Ø Without loss of generality, sum of rewards = 0
o Remember: rewards to each player can be additively shifted 

without changing the structure of the game
Ø Inspired terms like “zero-sum thinking” and “zero-sum situation”

• Focus on two-player zero-sum games (2p-zs)
Ø “The more I win, the more you lose”



Examples
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Sam
John Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)

Non-zero-sum game: Prisoner’s dilemma

Zero-sum game: Rock-Paper-Scissor 

P1
P2 Rock Paper Scissor

Rock (0 , 0) (-1 , 1) (1 , -1)

Paper (1 , -1) (0 , 0) (-1 , 1)

Scissor (-1 , 1) (1 , -1) (0 , 0)



Importance
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• Why are they interesting?
Ø Many physical games we play are zero-sum: chess, tic-tac-toe, rock-

paper-scissor, … 
Ø (win, lose), (lose, win), (draw, draw)
Ø (1, -1), (-1, 1), (0, 0)

• Why are they technically interesting?
Ø We’ll see.



Zero-Sum	Games
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• Reward for P2 = - Reward for P1
Ø Only need to write a single entry in each cell (say reward of P1)
o We get a matrix 𝐴

Ø Row player wants to maximize the value, column player wants to 
minimize it

P1
P2 Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0



Rewards	in	Matrix	Form
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• Reward to the row player when…
Ø The row player uses mixed strategy 𝑥" = (𝑥",", 𝑥",3, … )
Ø The column player uses mixed strategy 𝑥3 = (𝑥3,", 𝑥3,3, … )
Ø Given by 

𝑥"5 𝐴 𝑥3 =J
!,6

𝑥",! ∗ 𝑥3,6 ∗ 𝐴!,6

o With probability 𝑥",! ∗ 𝑥3,6, the row player chooses action 𝑖 and the 
column player chooses action 𝑗, giving the row player reward 𝐴!,6

• Reward to the column player is − 𝑥"9 𝐴 𝑥#
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How would the two players act
in this zero-sum game?

John von Neumann, 1928



Maximin	Strategy
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• Worst-case thinking by the row player…
Ø If I choose mixed strategy 𝑥", in the worst case the column player 

might end up choosing 𝑥3 that minimizes my reward
Ø Let me choose 𝑥" that maximizes this “worst-case reward”:

𝑉"∗ = max
7#

min
7$

𝑥"5 𝐴 𝑥3

Ø 𝑉"∗ = maximin value of the row player
Ø 𝑥"∗ (maximizer) = maximin strategy of the row player
Ø Row player guarantee:
o “By playing 𝑥"∗, I guarantee myself reward at least 𝑉"∗”



Maximin	Strategy
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• Similar worst-case thinking by the column player…
Ø If I choose mixed strategy 𝑥3, in the worst case the row player ends 

up choosing 𝑥" minimizing my reward (i.e., maximizing her reward)
Ø Let me choose 𝑥3 that optimizes this “worst-case”:

𝑉3∗ = min
7$

max
7#

𝑥"5 𝐴 𝑥3

Ø 𝑉3∗ = minimax value of the column player
Ø 𝑥3∗ (maximizer) = minimax strategy of the column player
Ø Column player guarantee:
o “By playing 𝑥3∗, I guarantee that the row player gets at most 𝑉3∗”



Maximin	vs	Minimax
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Row player
If I play 𝑥"∗, I get reward at 
least 𝑉"∗

𝑉"∗ = max
;#

min
;$

𝑥"9 ∗ 𝐴 ∗ 𝑥#

Column player
If I play 𝑥#∗, the row player gets 
reward at most 𝑉#∗

𝑉#∗ = min
;$

max
;#

𝑥"9 ∗ 𝐴 ∗ 𝑥#

Claim: It is easy to see that 𝑉∗ ≤ 𝑉_∗ (Why?) 

𝑥#∗ 𝑥&∗



Maximin	vs	Minimax
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𝑉"∗ = max
;#

min
;$

𝑥"9 ∗ 𝐴 ∗ 𝑥# 𝑉#∗ = min
;$

max
;#

𝑥"9 ∗ 𝐴 ∗ 𝑥#

• Another way to see this:

𝑥#∗ 𝑥&∗

𝑉"∗ = min
;$

𝑥"∗ 9 ∗ 𝐴 ∗ 𝑥# ≤ 𝑥"∗ 9 ∗ 𝐴 ∗ 𝑥#∗

≤ max
;#

𝑥"9 ∗ 𝐴 ∗ 𝑥#∗ = 𝑉#∗



The	Minimax	Theorem
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• Jon von Neumann [1928]

• Theorem: For any two-player zero-sum game,

Ø 𝑉"∗ = 𝑉3∗ = 𝑉∗ (called the minimax value of the game)

Ø Set of Nash equilibria = 

{ x"∗ , x3∗ ∶ where…

x"∗ = maximin for row player, x3∗ = minimax for column player}

• Corollary: 𝑥"∗ is best response to 𝑥#∗ and vice-versa.



Commitment	Interpretation
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• Commitment
Ø 𝑥"∗ is the strategy that the row player would choose if she were to 

commit to her strategy first, and the column player were to choose 
his strategy after observing the row player’s strategy

Ø Similarly, 𝑥3∗ is the strategy that the column player would choose if he 
were to commit to his strategy first, and the row player were to 
choose her strategy after observing the column player’s strategy

• Minimax theorem:
Ø 𝑥"∗ and 𝑥3∗ are best responses to each other, so in two-player zero-

sum games, it doesn’t matter if one player commits first or if both 
play simultaneously



The	Minimax	Theorem
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• Jon von Neumann [1928]

“As far as I can see, there could be no theory of games … without that 
theorem … 

I thought there was nothing worth publishing until the Minimax 
Theorem was proved”



Computing	Nash	Equilibria
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• Recall that in general games, computing a Nash equilibrium 
is hard even with two players.

• For two-player zero-sum games, a Nash equilibrium can be 
computed in polynomial time.
Ø Polynomial in #actions of the two players: 𝑚" and 𝑚3
Ø Exploits the fact that Nash equilibrium is simply composed of 

maximin strategies, which can be computed using linear 
programming 



Computing	Nash	Equilibria
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Maximize 𝑣

Subject to

𝑥"9 𝐴 8 ≥ 𝑣,  𝑗 ∈ 1,… ,𝑚#

𝑥" 1 +⋯+ 𝑥" 𝑚" = 1

𝑥" 𝑖 ≥ 0, 𝑖 ∈ {1,… ,𝑚"}



Minimax	Theorem	in	Real	Life?
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Kicker
Goalie L R

L 0.58 0.95

R 0.93 0.70

Kicker
Maximize 𝑣
Subject to
0.58𝑝= + 0.93𝑝> ≥ 𝑣
0.95𝑝= + 0.70𝑝> ≥ 𝑣
𝑝= + 𝑝> = 1
𝑝= ≥ 0, 𝑝> ≥ 0

Goalie
Minimize 𝑣
Subject to
0.58𝑞= + 0.95𝑞> ≤ 𝑣
0.93𝑞= + 0.70𝑞> ≤ 𝑣
𝑞= + 𝑞> = 1
𝑞= ≥ 0, 𝑞> ≥ 0



Minimax	Theorem	in	Real	Life?
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Kicker
Goalie L R

L 0.58 0.95

R 0.93 0.70

Kicker
Maximin:
𝑝= = 0.38, 𝑝> = 0.62

Reality:
𝑝= = 0.40, 𝑝> = 0.60

Goalie
Maximin:
𝑞= = 0.42, 𝑞> = 0.58

Reality:
𝑝= = 0.423, 𝑞> = 0.577

Some evidence that people may play minimax strategies. 
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Stackelberg Games



Sequential	Move	Games
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• Focus on two players: “leader” and “follower”

1. Leader commits to a (possibly mixed) strategy 𝑥"
Ø Cannot change later

2. Follower learns about 𝑥"
Ø Follower must believe that leader’s commitment is credible

3. Follower chooses the best response 𝑥#
Ø Can assume to be a pure strategy without loss of generality
Ø If multiple actions are best response, break ties in favor of the leader



Sequential	Move	Games
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• Wait. Does this give us anything new?
Ø Can’t I, as player 1, commit to playing 𝑥" in a simultaneous-move 

game too?
Ø Player 2 wouldn’t believe you.

I’ll play 
𝑥%.

No, you won’t. I’m 
playing 𝑥&; 𝑥% is not 

a best response.

Doesn’t 
matter. I’m 

committing.

Yeah 
right.



That’s	unless…
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• You’re as convincing as this guy.



How	to	represent	the	game?
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• Extensive form representation
Ø Can also represent “information sets”, multiple moves, …

Player 1

Player 2 Player 2

Up Down

Le
ft

Le
ftRight

Right

(1,1) (3,0) (0,0) (2,1)



A	Curious	Case
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• Q: What are the Nash equilibria of this game?

• Q: You are P1. What is your reward in Nash equilibrium?

P1
P2 Left Right

Up (1 , 1) (3 , 0)

Down (0 , 0) (2 , 1)



A	Curious	Case

CSC304 - Nisarg Shah 46

• Say that as P1, you have the ability to commit to a pure 
strategy. 

• Q: Which pure strategy would you commit to? And what 
would your reward be now?

P1
P2 Left Right

Up (1 , 1) (3 , 0)

Down (0 , 0) (2 , 1)



Commitment	Advantage

CSC304 - Nisarg Shah 47

• Reward in the unique Nash equilibrium = 1
• (Higher) reward when committing to Down = 2

P1
P2 Left Right

Up (1 , 1) (3 , 0)

Down (0 , 0) (2 , 1)



Commitment	Advantage
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• Even higher reward in committing to a mixed strategy
Ø P1 commits to: Up w.p. 0.5 − 𝜖, Down w.p. 0.5 + 𝜖
Ø P2 is still better off playing Right
Ø 𝔼[Reward] to P1 → 2.5
Ø Note: If P1 plays both actions with probability exactly 0.5, we assume 

P2 plays Right (break ties in favor of leader)

P1
P2 Left Right

Up (1 , 1) (3 , 0)

Down (0 , 0) (2 , 1)


