CSC304

Algorithmic Game Theory \& Mechanism Design

Nisarg Shah

Recap

- Iterated elimination
> Even when no player has a dominant action, we can iteratively eliminate dominated actions of players, which can make some previously undominated actions of other players dominated
> Two versions depending on strict/weak domination
- Nash equilibria
> Pure Nash equilibria via best response diagram
> Mixed Nash equilibria via the indifference principle

Nash Equilibrium

- Nash Equilibrium
> A strategy profile \vec{s} is in Nash equilibrium if s_{i} is the best action for player i given that other players are playing \vec{s}_{-i}

$$
u_{i}\left(s_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \vec{s}_{-i}\right), \forall s_{i}^{\prime}
$$

> Each player's strategy is only best given the strategies of others, and not regardless.
> You can't reason about a single player in isolation. You can only say whether you're in a NE after seeing the entire strategy profile.

Recap: Attend or Not

Professor	Attend	Be Absent
Atudents	$\mathbf{(3 , 1)} \rightleftarrows(\mathbf{1}, \mathbf{- 3})$	
Be Absent	$\mathbf{(- 1 , - 1)} \longrightarrow \mathbf{(0 , 0)}$	

- Pure Nash equilibria
> (Attend, Attend)
> (Be Absent, Be Absent)
- Not pure Nash equilibria
> (Attend, Be Absent)
> (Be Absent, Attend)

Nash's Beautiful Result

- Nash's Theorem:
> Every normal form game has at least one (possibly mixed) Nash equilibrium.
- The Indifference Principle
> If $\left(s_{i}, \vec{s}_{-i}\right)$ is a Nash equilibrium and s_{i} assigns a positive probability to the set of actions T_{i} of player i, then...
...for all actions $a_{i}, a_{i}^{\prime} \in T_{i}$ and $a_{i}^{\prime \prime} \notin T_{i}$
Reward to i for
playing a_{i} w.p. 1 when others play \vec{S}_{-i}

$$
\begin{aligned}
& u_{i}\left(a_{i}, \vec{s}_{-i}\right)=u_{i}\left(a_{i}^{\prime}, \vec{s}_{-i}\right) \geq u_{i}\left(a_{i}^{\prime \prime}, \vec{s}_{-i}\right) \\
& \text { Must be indifferent } \\
& \text { between actions in } T_{i} \quad \text { in } T_{i} \text { to any others }
\end{aligned}
$$

Applying Indifference Principle

- Let S_{1} and S_{2} denote the set of actions of players 1 and 2
- For every $T_{1} \subseteq S_{1}\left(T_{1} \neq \emptyset\right)$ and $T_{2} \subseteq S_{2}\left(T_{2} \neq \emptyset\right)$
> Write generic strategies s_{1} and s_{2} randomizing over T_{1} and T_{2}
> Apply the indifference principle to player 1 to solve for s_{2}
> Apply the indifference principle to player 2 to solve for s_{1}
o Sometimes you obtain multiple (or even infinitely many) solutions, in which case all of them are mixed Nash equilibria

Example

	Player 2	L	R
Player 1	(5,4)	$(0,2)$	
T	$(2,0)$	$(4,1)$	
M	$(3,20)$	$(1,50)$	

- Case of $S_{1}=\{\mathrm{T}, \mathrm{M}\}$ and $S_{2}=\{\mathrm{L}, \mathrm{R}\}$

Let $s_{1}=(\mathrm{T}, \mathrm{M}, \mathrm{B})$ with probabilities $(p, 1-p, 0)$, where $p \in(0,1)$
$>$ Let $s_{2}=(\mathrm{L}, \mathrm{R})$ with probabilities $(q, 1-q)$, where $q \in(0,1)$
> We want to solve for possible values of p and q (if any) by applying the indifference principle

Example

	Player 2	L
Player 1	R	
T	$(5,4)$	$(0,2)$
M	$(2,0)$	$(4,1)$
B	$(3,20)$	$\mathbf{(1 , 5 0)}$

- Indifference principle to player 1
> $u_{1}\left(T, s_{2}\right)=u_{1}\left(M, s_{2}\right) \geq u_{1}\left(B, s_{2}\right)$
$>q \cdot 5+(1-q) \cdot 0=q \cdot 2+(1-q) \cdot 3 \geq q \cdot 3+(1-q) \cdot 1$
> $q=4 / 7$ works
- If player 2 plays (L,R) w.p. $(4 / 7,3 / 7)$, then playing (any) randomization between T and M would be best response for player 1

Example

	Player 2	L
Player 1	R	
T	$(5,4)$	$(0,2)$
M	$(2,0)$	$(4,1)$
B	$(3,20)$	$\mathbf{(1 , 5 0)}$

- Indifference principle to player 2
$>u_{2}\left(s_{1}, L\right)=u_{2}\left(s_{1}, R\right)$
$>p \cdot 4+(1-p) \cdot 0=p \cdot 2+(1-p) \cdot 1$
> $p=1 / 3$ works!
- If player 1 plays (T,M,B) w.p. $(1 / 3,2 / 3,0)$, then playing (any) randomization between L and R would be best response for player 2

Exercise: Rock-Paper-Scissor

- Exercise: Solve for the "fully mixed" case where...
> P1 plays (R,P,S) w.p. $(p, q, 1-p-q)$, where $p>0, q>0, p+q<1$
> P2 plays (R,P,S) w.p. $(x, y, 1-x-y)$, where $x>0, y>0, x+y<1$
> Apply the indifference principle to P 1 to solve for x and y
> Use symmetry to argue that the same calculations hold for p and q
- Exercise: Check that other cases yield no equilibria

P1	P2	Paper	Scissor
Rock	$(\mathbf{0}, \mathbf{0})$	$(\mathbf{- 1}, \mathbf{1})$	$\mathbf{(1 , - 1)}$
Paper	$\mathbf{(1 , - 1)}$	$(\mathbf{0}, \mathbf{0})$	$\mathbf{(- 1 , 1)}$
Scissor	$\mathbf{(- 1 , 1)}$	$\mathbf{(1 , - 1)}$	$\mathbf{(0 , 0)}$

Exercise: Inspect Or Not

Inspector	Inspect	Don't Inspect
Driver	$(-10,-1)$	\longrightarrow
Pay Fare	$\mathbf{(- 1 0 , 0)}$	
Don't Pay Fare	$\mathbf{(0 , - 3 0)}$	

- Game:
> Fare = 10
> Cost of inspection = 1
> Fine if fare not paid $=30$
> Total cost to driver if caught $=90$
- Pure and mixed Nash equilibria?

Exercise: Cunning Airlines

- Two travelers lose their luggage.
- Airline agrees to refund up to $\$ 100$ to each.
- Policy:
> Both travelers would submit a number between 2 and 99 (inclusive).
$>$ If both report the same number, each gets this value.
> If one reports a lower number (s) than the other (t), the former gets $s+2$, the latter gets $s-2$.

Exercise: Ice Cream Shop

- Two brothers, each wants to set up an ice cream shop on the beach [0,1]
- Reward structure:
$>$ If the shops are at s, t (with $s \leq t$), the brother at s gets the customers in $\left[0, \frac{s+t}{2}\right]$ and the other one gets the customers in $\left[\frac{s+t}{2}, 1\right]$
> Reward equals the length of the interval

Computational Complexity

- Pure Nash equilibria
> Existence: Checking the existence of a pure Nash equilibrium can be NP-hard.
> Computation: Computing a pure NE can be PLS-complete, even in games in which a pure NE is guaranteed to exist.
- Mixed Nash equilibria
> Existence: Always exist due to Nash's theorem
> Computation: Computing a mixed NE is PPAD-complete.

Nash Equilibria: Critique

- Noncooperative game theory provides a framework for analyzing rational behavior.
- But it relies on many assumptions that are often violated in the real world.
- Due to this, human actors are observed to play Nash equilibria in some settings, but play something far different in other settings.

Nash Equilibria: Critique

- Assumptions:
> Rationality is common knowledge.
- All players are rational.
o All players know that all players are rational.
- All players know that all players know that all players are rational.
o ... [Aumann, 1976]
- Behavioral economics
> Rationality is perfect = "infinite wisdom"
- Computationally bounded agents
> Full information about what other players are doing.
- Bayes-Nash equilibria

Nash Equilibria: Critique

- Assumptions:
> No binding contracts.
- Cooperative game theory
> No player can commit first.
- Stackelberg games (will study this in a few lectures)
> No external help.
- Correlated equilibria
> Humans reason about randomization using expectations.
- Prospect theory

Nash Equilibria: Critique

- Also, there are often multiple equilibria, and no clear way of "choosing" one over another.
- For many classes of games, finding even a single Nash equilibrium is provably hard.
> Cannot expect humans to find it if your computer cannot.

Nash Equilibria: Critique

- Conclusion:
> For human agents, take it with a grain of salt.
> For Al agents playing against Al agents, perfect!

Prices of Anarchy \& Stability

Worst and Best Nash Equilibria

- What can we say after we identify all Nash equilibria?
> Compute how "good" they are in the best/worst case
- How do we measure "social good"?
> Game with only rewards?
Higher total reward of players = more social good
> Game with only penalties?
Lower total penalty to players = more social good
> Game with rewards and penalties? No clear consensus...

Price of Anarchy and Stability

- Price of Anarchy (PoA) "Worst NE vs optimum"

Max total reward
Min total reward in any NE

- Price of Stability (PoS)
"Best NE vs optimum"

Max total reward
Max total reward in any NE

Min total cost in any NE
Min total cost

$$
\mathrm{PoA} \geq \mathrm{PoS} \geq 1
$$

Revisiting Stag-Hunt

Hunter 2	Stag	Hare
Hunter 1	$(\mathbf{4}, \mathbf{4)}$	$\mathbf{(0 , 2)}$
Stag	$(\mathbf{2}, \mathbf{0})$	$\mathbf{(1 , 1)}$

- Max total reward $=4+4=8$
- Three equilibria
> (Stag, Stag) : Total reward = 8
> (Hare, Hare) : Total reward = 2
$>(1 / 3$ Stag $-2 / 3$ Hare, $1 / 3$ Stag $-2 / 3$ Hare $)$
- Total reward $=\frac{1}{3} * \frac{1}{3} * 8+\left(1-\frac{1}{3} * \frac{1}{3}\right) * 2 \in(2,8)$
- Price of stability? Price of anarchy?

Revisiting Prisoner's Dilemma

Sam	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-\mathbf{2})$

- Min total cost $=1+1=2$
- Only equilibrium:
$>($ Betray, Betray $):$ Total cost $=2+2=4$
- Price of stability? Price of anarchy?

Cost Sharing Game

- n players on directed weighted graph G
- Player i
> Wants to go from s_{i} to t_{i}
> Strategy set $S_{i}=$ \{directed $s_{i} \rightarrow t_{i}$ paths \}
> Denote his chosen path by $P_{i} \in S_{i}$
- Each edge e has cost c_{e} (weight)
> Cost is split among all players taking edge e
$>$ That is, among all players i with $e \in P_{i}$

Cost Sharing Game

- Given strategy profile \vec{P}, cost $c_{i}(\vec{P})$ to player i is sum of his costs for edges $e \in P_{i}$
- Social $\operatorname{cost} C(\vec{P})=\sum_{i} c_{i}(\vec{P})$
- Note: $C(\vec{P})=\sum_{e \in E(\vec{P})} c_{e}$, where...
$>E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
> Why?

Cost Sharing Game

- In the example on the right:
> What if both players take direct paths?
> What if both take middle paths?
> What if one player takes direct path and the other takes middle path?
- Pure Nash equilibria?

Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
> All taking the n-edge: social cost $=n$
> All taking the 1-edge: social cost = 1
- Also the social optimum
- Price of stability: 1
- Price of anarchy: n

> We can show that price of anarchy $\leq n$ in every costsharing game!

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most n.
- Proof:
> Suppose the social optimum is $\left(P_{1}^{*}, P_{2}^{*}, \ldots, P_{n}^{*}\right)$, in which the cost to player i is c_{i}^{*}.
> Take any NE with cost c_{i} to player i.
> Let c_{i}^{\prime} be his cost if he switches to P_{i}^{*}.
> $\mathrm{NE} \Rightarrow c_{i}^{\prime} \geq c_{i} \quad$ (Why?)
> But: $c_{i}^{\prime} \leq n \cdot c_{i}^{*}$ (Why?)
$>c_{i} \leq n \cdot c_{i}^{*}$ for each $i \Rightarrow$ no worse than $n \times$ optimum

Cost Sharing

- Price of anarchy
> Every cost-sharing game: PoA $\leq n$
- Example game with PoA $=n$
$>$ Bound of n is tight.
- Price of stability?
$>$ In the previous game, it was 1 .
$>$ In general, it can be higher. How high?
> We'll answer this after a short detour.

Cost Sharing

- Nash's theorem shows existence of a mixed NE.
> Pure NE may not always exist in general.
- But in both cost-sharing games we saw, there was a PNE.
> What about a more complex game like the one on the right?

10 players: $E \rightarrow C$
27 players: $B \rightarrow D$
19 players: $C \rightarrow D$

