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Recap
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• Iterated elimination
Ø Even when no player has a dominant action, we can iteratively 

eliminate dominated actions of players, which can make some 
previously undominated actions of other players dominated

Ø Two versions depending on strict/weak domination

• Nash equilibria
Ø Pure Nash equilibria via best response diagram
Ø Mixed Nash equilibria via the indifference principle



Nash	Equilibrium
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• Nash Equilibrium
Ø A strategy profile 𝑠 is in Nash equilibrium if 𝑠! is the best action for 

player 𝑖 given that other players are playing 𝑠"!

𝑢! 𝑠!, 𝑠"! ≥ 𝑢! 𝑠!#, 𝑠"! , ∀𝑠!#

Ø Each player’s strategy is only best given the strategies of others, and 
not regardless.

Ø You can’t reason about a single player in isolation. You can only say 
whether you’re in a NE after seeing the entire strategy profile.

No quantifier on 𝑠!"



Recap:	Attend	or	Not
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• Pure Nash equilibria
Ø (Attend, Attend)
Ø (Be Absent, Be Absent)

• Not pure Nash equilibria
Ø (Attend, Be Absent)
Ø (Be Absent, Attend)

Students
Professor Attend Be Absent

Attend (3 , 1) (-1 , -3)

Be Absent (-1 , -1) (0 , 0)



Nash’s	Beautiful	Result
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• Nash’s Theorem:
Ø Every normal form game has at least one (possibly mixed) Nash 

equilibrium.

• The Indifference Principle
Ø If 𝑠!, 𝑠"! is a Nash equilibrium and 𝑠! assigns a positive probability 

to the set of actions 𝑇! of player 𝑖, then…

…for all actions 𝑎!, 𝑎!# ∈ 𝑇! and 𝑎!## ∉ 𝑇!

𝑢! 𝑎!, 𝑠"! = 𝑢!(𝑎!#, 𝑠"!) ≥ 𝑢! 𝑎!##, 𝑠"!
Reward to 𝑖 for 

playing 𝑎" w.p. 1 
when others play 𝑠!"

Must be indifferent 
between actions in 𝑇"

Must prefer actions 
in 𝑇" to any others



Applying	Indifference	Principle
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• Let 𝑆& and 𝑆' denote the set of actions of players 1 and 2

• For every 𝑇& ⊆ 𝑆& (𝑇& ≠ ∅) and 𝑇' ⊆ 𝑆' (𝑇' ≠ ∅)
Ø Write generic strategies 𝑠$ and 𝑠% randomizing over 𝑇$ and 𝑇%
Ø Apply the indifference principle to player 1 to solve for 𝑠%
Ø Apply the indifference principle to player 2 to solve for 𝑠$
o Sometimes you obtain multiple (or even infinitely many) solutions, 

in which case all of them are mixed Nash equilibria



Example
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• Case of 𝑆& = {T,M} and 𝑆' = {L,R}
Ø Let 𝑠$ = (T,M,B) with probabilities (𝑝, 1 − 𝑝, 0), where 𝑝 ∈ (0,1)
Ø Let 𝑠% = (L,R) with probabilities (𝑞,1 − 𝑞), where 𝑞 ∈ (0,1)

Ø We want to solve for possible values of 𝑝 and 𝑞 (if any) by applying 
the indifference principle

Player 1
Player 2 L R

T (5 , 4) (0 , 2)

M (2 , 0) (4 , 1)

B (3, 20) (1, 50)



Example
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• Indifference principle to player 1
Ø 𝑢$ 𝑇, 𝑠% = 𝑢$ 𝑀, 𝑠% ≥ 𝑢$(𝐵, 𝑠%)
Ø 𝑞 ⋅ 5 + 1 − 𝑞 ⋅ 0 = 𝑞 ⋅ 2 + 1 − 𝑞 ⋅ 3 ≥ 𝑞 ⋅ 3 + 1 − 𝑞 ⋅ 1
Ø 𝑞 = ⁄& ' works!
o If player 2 plays (L,R) w.p. ( ⁄# $ , ⁄% $), then playing (any) randomization 

between T and M would be best response for player 1

Player 1
Player 2 L R

T (5 , 4) (0 , 2)

M (2 , 0) (4 , 1)

B (3, 20) (1, 50)



Example
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• Indifference principle to player 2
Ø 𝑢% 𝑠$, 𝐿 = 𝑢%(𝑠$, 𝑅)
Ø 𝑝 ⋅ 4 + 1 − 𝑝 ⋅ 0 = 𝑝 ⋅ 2 + 1 − 𝑝 ⋅ 1
Ø 𝑝 = ⁄$ ( works!
o If player 1 plays (T,M,B) w.p. ( ⁄& % , ⁄' % , 0), then playing (any) 

randomization between L and R would be best response for player 2

Player 1
Player 2 L R

T (5 , 4) (0 , 2)

M (2 , 0) (4 , 1)

B (3, 20) (1, 50)



Exercise:	Rock-Paper-Scissor
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• Exercise: Solve for the “fully mixed” case where…
Ø P1 plays (R,P,S) w.p. (𝑝, 𝑞, 1 − 𝑝 − 𝑞), where 𝑝 > 0, 𝑞 > 0, 𝑝 + 𝑞 < 1
Ø P2 plays (R,P,S) w.p. (𝑥, 𝑦, 1 − 𝑥 − 𝑦), where 𝑥 > 0, 𝑦 > 0, 𝑥 + 𝑦 < 1
Ø Apply the indifference principle to P1 to solve for 𝑥 and 𝑦
Ø Use symmetry to argue that the same calculations hold for 𝑝 and 𝑞

• Exercise: Check that other cases yield no equilibria

P1
P2 Rock Paper Scissor

Rock (0 , 0) (-1 , 1) (1 , -1)

Paper (1 , -1) (0 , 0) (-1 , 1)

Scissor (-1 , 1) (1 , -1) (0 , 0)



Exercise:	Inspect	Or	Not
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• Game:
Ø Fare = 10
Ø Cost of inspection = 1
Ø Fine if fare not paid = 30
Ø Total cost to driver if caught = 90

• Pure and mixed Nash equilibria?

Driver
Inspector Inspect Don’t Inspect

Pay Fare (-10 , -1) (-10 , 0)

Don’t Pay Fare (-90 , 29) (0 , -30)



Exercise:	Cunning	Airlines
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• Two travelers lose their luggage.
• Airline agrees to refund up to $100 to each.
• Policy: 

Ø Both travelers would submit a number between 2 and 99 (inclusive). 
Ø If both report the same number, each gets this value.
Ø If one reports a lower number (𝑠) than the other (𝑡), the former gets 
𝑠+2, the latter gets 𝑠-2.

10099989796
s t

. . . . . . . . . . . 95



Exercise:	Ice	Cream	Shop
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• Two brothers, each wants to set up an ice cream shop on 
the beach [0,1]

• Reward structure:
Ø If the shops are at 𝑠, 𝑡 (with 𝑠 ≤ 𝑡), the brother at 𝑠 gets the 

customers in 0, )*+
%

and the other one gets the customers in )*+
%
, 1

Ø Reward equals the length of the interval

0 1s t



Computational	Complexity
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• Pure Nash equilibria
Ø Existence: Checking the existence of a pure Nash equilibrium can be 

NP-hard.
Ø Computation: Computing a pure NE can be PLS-complete, even in 

games in which a pure NE is guaranteed to exist.

• Mixed Nash equilibria
Ø Existence: Always exist due to Nash’s theorem

Ø Computation: Computing a mixed NE is PPAD-complete.



Nash	Equilibria:	Critique
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• Noncooperative game theory provides a framework for 
analyzing rational behavior.

• But it relies on many assumptions that are often violated in 
the real world.

• Due to this, human actors are observed to play Nash 
equilibria in some settings, but play something far different 
in other settings.



Nash	Equilibria:	Critique
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• Assumptions:

Ø Rationality is common knowledge.
o All players are rational.
o All players know that all players are rational.
o All players know that all players know that all players are rational.
o … [Aumann, 1976]
o Behavioral economics

Ø Rationality is perfect = “infinite wisdom”
o Computationally bounded agents

Ø Full information about what other players are doing.
o Bayes-Nash equilibria



Nash	Equilibria:	Critique
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• Assumptions:

Ø No binding contracts.
o Cooperative game theory

Ø No player can commit first.
o Stackelberg games (will study this in a few lectures)

Ø No external help.
o Correlated equilibria

Ø Humans reason about randomization using expectations.
o Prospect theory



Nash	Equilibria:	Critique
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• Also, there are often multiple equilibria, and no clear way of 
“choosing” one over another.

• For many classes of games, finding even a single Nash 
equilibrium is provably hard. 
Ø Cannot expect humans to find it if your computer cannot.



Nash	Equilibria:	Critique
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• Conclusion:
Ø For human agents, take it with a grain of salt.
Ø For AI agents playing against AI agents, perfect! 
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Prices of Anarchy & Stability



Worst	and	Best	Nash	Equilibria
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• What can we say after we identify all Nash equilibria?
Ø Compute how “good” they are in the best/worst case

• How do we measure “social good”?
Ø Game with only rewards?

Higher total reward of players = more social good

Ø Game with only penalties?
Lower total penalty to players = more social good

Ø Game with rewards and penalties?
No clear consensus…



Price	of	Anarchy	and	Stability
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• Price of Anarchy (PoA)

“Worst NE vs optimum”

Max total reward
Min total reward in any NE

or

Max total cost in any NE
Min total cost

• Price of Stability (PoS)

“Best NE vs optimum”

Max total reward
Max total reward in any NE

or

Min total cost in any NE
Min total cost

PoA ≥ PoS ≥ 1



Revisiting	Stag-Hunt
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• Max total reward = 4 + 4 = 8
• Three equilibria

Ø (Stag, Stag) : Total reward = 8
Ø (Hare, Hare) : Total reward = 2
Ø ( ⁄$ ( Stag – ⁄% ( Hare, ⁄$ ( Stag – ⁄% ( Hare)

o Total reward = $
(
∗ $
(
∗ 8 + 1 − $

(
∗ $
(
∗ 2 ∈ (2,8)

• Price of stability? Price of anarchy?

Hunter 1
Hunter 2 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Revisiting	Prisoner’s	Dilemma
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• Min total cost = 1 + 1 = 2
• Only equilibrium:

Ø (Betray, Betray) : Total cost = 2 + 2 = 4

• Price of stability? Price of anarchy?

Sam
John Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)



Cost	Sharing	Game
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• 𝑛 players on directed weighted graph 𝐺

• Player 𝑖
Ø Wants to go from 𝑠! to 𝑡!
Ø Strategy set 𝑆! = {directed 𝑠! → 𝑡! paths}
Ø Denote his chosen path by 𝑃! ∈ 𝑆!

• Each edge 𝑒 has cost 𝑐+ (weight)
Ø Cost is split among all players taking edge 𝑒
Ø That is, among all players 𝑖 with 𝑒 ∈ 𝑃!

1

1 1

1
𝑠&

𝑡&

10

𝑠'

𝑡'

1010



Cost	Sharing	Game
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• Given strategy profile 𝑃, cost 𝑐! 𝑃 to 
player 𝑖 is sum of his costs for edges 𝑒 ∈ 𝑃!

• Social cost 𝐶 𝑃 = ∑! 𝑐! 𝑃

• Note: 𝐶 𝑃 = ∑"∈$ % 𝑐", where… 

Ø 𝐸(𝑃)={edges taken in 𝑃 by at least one player}

Ø Why?

1

1 1

1
𝑠&

𝑡&

10

𝑠'

𝑡'

1010



Cost	Sharing	Game
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• In the example on the right:
Ø What if both players take direct paths? 
Ø What if both take middle paths?
Ø What if one player takes direct path and the 

other takes middle path?

• Pure Nash equilibria?

1

1 1

1
𝑠&

𝑡&

10

𝑠'

𝑡'

1010



Cost	Sharing:	Simple	Example
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• Example on the right: 𝑛 players

• Two pure NE
Ø All taking the n-edge: social cost = 𝑛
Ø All taking the 1-edge: social cost = 1
o Also the social optimum

• Price of stability: 1
• Price of anarchy: 𝑛

Ø We can show that price of anarchy ≤ 𝑛 in every cost-
sharing game!

s

t

𝑛 1



Cost	Sharing:	PoA

CSC304 - Nisarg Shah 29

• Theorem: The price of anarchy of a cost sharing game is at 
most 𝑛.

• Proof:
Ø Suppose the social optimum is (𝑃$∗, 𝑃%∗, … , 𝑃-∗), in which the cost to 

player 𝑖 is 𝑐!∗.
Ø Take any NE with cost 𝑐! to player 𝑖.
Ø Let 𝑐!# be his cost if he switches to 𝑃!∗. 
Ø NE  ⇒ 𝑐!# ≥ 𝑐! (Why?)
Ø But  :  𝑐!# ≤ 𝑛 ⋅ 𝑐!∗ (Why?)
Ø 𝑐! ≤ 𝑛 ⋅ 𝑐!∗ for each 𝑖 ⇒ no worse than 𝑛× optimum

∎



Cost	Sharing
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• Price of anarchy
Ø Every cost-sharing game: PoA ≤ 𝑛
Ø Example game with PoA = 𝑛
Ø Bound of 𝑛 is tight.

• Price of stability?
Ø In the previous game, it was 1. 
Ø In general, it can be higher. How high?
Ø We’ll answer this after a short detour.



Cost	Sharing
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• Nash’s theorem shows existence of 
a mixed NE.
Ø Pure NE may not always exist in general. 

• But in both cost-sharing games we 
saw, there was a PNE.
Ø What about a more complex game like 

the one on the right?
10 players: 𝐸 → 𝐶
27 players: 𝐵 → 𝐷
19 players: 𝐶 → 𝐷

E D

A

7

B

C
60

12

32

10

20


