CSC304 Algorithmic Game Theory & Mechanism Design

Nisarg Shah

Recap

Iterated elimination

- Even when no player has a dominant action, we can iteratively eliminate dominated actions of players, which can make some previously undominated actions of other players dominated
- > Two versions depending on strict/weak domination

• Nash equilibria

- > Pure Nash equilibria via best response diagram
- > Mixed Nash equilibria via the indifference principle

Nash Equilibrium

- Nash Equilibrium
 - > A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player i given that other players are playing \vec{s}_{-i}

- Each player's strategy is only best *given* the strategies of others, and not *regardless*.
- You can't reason about a single player in isolation. You can only say whether you're in a NE after seeing the entire strategy profile.

Recap: Attend or Not

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 <i>,</i> 0)

- Pure Nash equilibria
 - > (Attend, Attend)
 - (Be Absent, Be Absent)
- Not pure Nash equilibria
 - > (Attend, Be Absent)
 - > (Be Absent, Attend)

Nash's Beautiful Result

• Nash's Theorem:

- Every normal form game has at least one (possibly mixed) Nash equilibrium.
- The Indifference Principle
 - > If (s_i, \vec{s}_{-i}) is a Nash equilibrium and s_i assigns a positive probability to the set of actions T_i of player *i*, then...

...for all actions
$$a_i, a_i' \in T_i$$
 and $a_i'' \notin T_i$

Reward to *i* for playing a_i w.p. 1 when others play \vec{s}_{-i}

$$u_i(a_i, \vec{s}_{-i}) = u_i(a'_i, \vec{s}_{-i}) \ge u_i(a''_i, \vec{s}_{-i})$$

Must be indifferent between actions in T_i

Must prefer actions in T_i to any others

Applying Indifference Principle

- Let S_1 and S_2 denote the set of actions of players 1 and 2
- For every $T_1 \subseteq S_1$ ($T_1 \neq \emptyset$) and $T_2 \subseteq S_2$ ($T_2 \neq \emptyset$)
 - > Write generic strategies s_1 and s_2 randomizing over T_1 and T_2
 - > Apply the indifference principle to player 1 to solve for s_2
 - > Apply the indifference principle to player 2 to solve for s_1
 - Sometimes you obtain multiple (or even infinitely many) solutions, in which case all of them are mixed Nash equilibria

Example

Player 2 Player 1	L	R
т	(5 , 4)	(0 , 2)
М	(2 , 0)	(4 , 1)
В	(3, 20)	(1, 50)

- Case of $S_1 = \{T, M\}$ and $S_2 = \{L, R\}$
 - > Let $s_1 = (T, M, B)$ with probabilities (p, 1 p, 0), where $p \in (0, 1)$
 - > Let $s_2 = (L,R)$ with probabilities (q, 1 q), where $q \in (0,1)$
 - We want to solve for possible values of p and q (if any) by applying the indifference principle

Example

Player 2 Player 1	L	R
т	(5 , 4)	(0 , 2)
М	(2 , 0)	(4 , 1)
В	(3, 20)	(1, 50)

• Indifference principle to player 1

$$u_1(T, s_2) = u_1(M, s_2) ≥ u_1(B, s_2)$$

$$> q \cdot 5 + (1 - q) \cdot 0 = q \cdot 2 + (1 - q) \cdot 3 \ge q \cdot 3 + (1 - q) \cdot 1$$

>
$$q = \frac{4}{7}$$
 works!

○ If player 2 plays (L,R) w.p. $(^{4}/_{7}, ^{3}/_{7})$, then playing (any) randomization between T and M would be best response for player 1

Example

Player 2 Player 1	L	R
т	(5 , 4)	(0 , 2)
М	(2 , 0)	(4 , 1)
В	(3, 20)	(1, 50)

• Indifference principle to player 2

$$\succ u_2(s_1, L) = u_2(s_1, R)$$

>
$$p \cdot 4 + (1-p) \cdot 0 = p \cdot 2 + (1-p) \cdot 1$$

- > $p = \frac{1}{3}$ works!
 - If player 1 plays (T,M,B) w.p. (1/3, 2/3, 0), then playing (any) randomization between L and R would be best response for player 2

Exercise: Rock-Paper-Scissor

• Exercise: Solve for the "fully mixed" case where...

- > P1 plays (R,P,S) w.p. (p,q,1-p-q), where p > 0, q > 0, p + q < 1
- > P2 plays (R,P,S) w.p. (x, y, 1 x y), where x > 0, y > 0, x + y < 1
- > Apply the indifference principle to P1 to solve for x and y
- \succ Use symmetry to argue that the same calculations hold for p and q
- Exercise: Check that other cases yield no equilibria

P2 P1	Rock	Paper	Scissor
Rock	(0 , 0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0,0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0,0)

Exercise: Inspect Or Not

Inspector	Inspect	Don't Inspect
Pay Fare	(-10 , -1)	(-10 , 0)
Don't Pay Fare	(-90 , 29)	(0 , -30)

• Game:

- > Fare = 10
- Cost of inspection = 1
- Fine if fare not paid = 30
- > Total cost to driver if caught = 90
- Pure and mixed Nash equilibria?

Exercise: Cunning Airlines

- Two travelers lose their luggage.
- Airline agrees to refund up to \$100 to each.
- Policy:
 - > Both travelers would submit a number between 2 and 99 (inclusive).
 - > If both report the same number, each gets this value.
 - If one reports a lower number (s) than the other (t), the former gets s+2, the latter gets s-2.

Exercise: Ice Cream Shop

- Two brothers, each wants to set up an ice cream shop on the beach [0,1]
- Reward structure:
 - ▶ If the shops are at *s*, *t* (with $s \le t$), the brother at *s* gets the customers in $\left[0, \frac{s+t}{2}\right]$ and the other one gets the customers in $\left[\frac{s+t}{2}, 1\right]$
 - > Reward equals the length of the interval

Computational Complexity

- Pure Nash equilibria
 - Existence: Checking the existence of a pure Nash equilibrium can be NP-hard.
 - Computation: Computing a pure NE can be PLS-complete, even in games in which a pure NE is guaranteed to exist.
- Mixed Nash equilibria
 - Existence: Always exist due to Nash's theorem
 - Computation: Computing a mixed NE is PPAD-complete.

- Noncooperative game theory provides a framework for analyzing rational behavior.
- But it relies on many assumptions that are often violated in the real world.
- Due to this, human actors are observed to play Nash equilibria in some settings, but play something far different in other settings.

• Assumptions:

Rationality is common knowledge.

 $\,\circ\,$ All players are rational.

 $\,\circ\,$ All players know that all players are rational.

 \circ All players know that all players know that all players are rational.

o ... [Aumann, 1976]

Behavioral economics

- > Rationality is perfect = "infinite wisdom"
 - Computationally bounded agents
- Full information about what other players are doing.
 Bayes-Nash equilibria

- Assumptions:
 - No binding contracts.
 - $\,\circ\,$ Cooperative game theory
 - No player can commit first.
 - Stackelberg games (will study this in a few lectures)
 - No external help.
 - \odot Correlated equilibria
 - Humans reason about randomization using expectations.
 O Prospect theory

- Also, there are often multiple equilibria, and no clear way of "choosing" one over another.
- For many classes of games, finding even a single Nash equilibrium is provably hard.
 - > Cannot expect humans to find it if your computer cannot.

- Conclusion:
 - > For human agents, take it with a grain of salt.
 - For AI agents playing against AI agents, perfect!

Prices of Anarchy & Stability

Worst and Best Nash Equilibria

- What can we say after we identify all Nash equilibria?
 - Compute how "good" they are in the best/worst case
- How do we measure "social good"?
 - Game with only rewards?
 Higher total reward of players = more social good
 - Game with only penalties?
 Lower total penalty to players = more social good
 - Game with rewards and penalties?
 No clear consensus...

Price of Anarchy and Stability

• Price of Anarchy (PoA)

"Worst NE vs optimum"

Max total reward Min total reward in any NE

or

Max total cost in any NE

Min total cost

• Price of Stability (PoS)

"Best NE vs optimum"

Max total reward Max total reward in any NE

or

Min total cost in any NE Min total cost

 $PoA \ge PoS \ge 1$

Revisiting Stag-Hunt

Hunter 2 Hunter 1	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

- Max total reward = 4 + 4 = 8
- Three equilibria
 - > (Stag, Stag) : Total reward = 8
 - > (Hare, Hare) : Total reward = 2

>
$$(1/_3 \text{ Stag} - 2/_3 \text{ Hare, } 1/_3 \text{ Stag} - 2/_3 \text{ Hare})$$

○ Total reward =
$$\frac{1}{3} * \frac{1}{3} * 8 + (1 - \frac{1}{3} * \frac{1}{3}) * 2 \in (2,8)$$

• Price of stability? Price of anarchy?

Revisiting Prisoner's Dilemma

John Sam	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Min total cost = 1 + 1 = 2
- Only equilibrium:

> (Betray, Betray) : Total cost = 2 + 2 = 4

• Price of stability? Price of anarchy?

Cost Sharing Game

- *n* players on directed weighted graph *G*
- Player *i*
 - > Wants to go from s_i to t_i
 - > Strategy set $S_i = \{ \text{directed } s_i \rightarrow t_i \text{ paths} \}$
 - > Denote his chosen path by $P_i \in S_i$
- Each edge *e* has cost *c_e* (weight)
 - Cost is split among all players taking edge e
 - > That is, among all players i with $e \in P_i$

Cost Sharing Game

• Given strategy profile \vec{P} , cost $c_i(\vec{P})$ to player *i* is sum of his costs for edges $e \in P_i$

• Social cost
$$C(\vec{P}) = \sum_{i} c_i(\vec{P})$$

Note: C(P) = ∑_{e∈E(P)} c_e, where...
E(P)={edges taken in P by at least one player}
Why?

Cost Sharing Game

- In the example on the right:
 - > What if both players take direct paths?
 - > What if both take middle paths?
 - What if one player takes direct path and the other takes middle path?
- Pure Nash equilibria?

Cost Sharing: Simple Example

• Example on the right: *n* players

• Two pure NE

- All taking the n-edge: social cost = n
- > All taking the 1-edge: social cost = 1
 - $\,\circ\,$ Also the social optimum
- Price of stability: 1
- Price of anarchy: n
 - ➤ We can show that price of anarchy ≤ n in every costsharing game!

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most n.
- Proof:
 - > Suppose the social optimum is $(P_1^*, P_2^*, ..., P_n^*)$, in which the cost to player *i* is c_i^* .
 - > Take any NE with cost c_i to player *i*.
 - > Let c'_i be his cost if he switches to P_i^* .
 - > NE $\Rightarrow c'_i \ge c_i$ (Why?)
 - > But : $c'_i \leq n \cdot c^*_i$ (Why?)
 - > $c_i \le n \cdot c_i^*$ for each *i* ⇒ no worse than *n*× optimum

Cost Sharing

• Price of anarchy

- > Every cost-sharing game: $PoA \le n$
- \succ Example game with PoA = n
- > Bound of *n* is tight.

• Price of stability?

- > In the previous game, it was 1.
- > In general, it can be higher. How high?
- > We'll answer this after a short detour.

Cost Sharing

- Nash's theorem shows existence of a mixed NE.
 - > Pure NE may not always exist in general.
- But in both cost-sharing games we saw, there was a PNE.
 - What about a more complex game like the one on the right?

