CSC304 Algorithmic Game Theory & Mechanism Design

Nisarg Shah

Announcements

- Office hour slot
 - > Mon, 3-4pm ET, starts next week

Recap: Normal Form Games

Recall: Prisoner's dilemma

 $S = \{\text{Silent,Betray}\}$

Recap: Domination

- Pure strategy s_i dominates pure strategy s'_i if player i is always "better off" playing s_i than s'_i , regardless of the strategies of other players.
- Two variants: weak and strict domination
 - > $u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall \vec{s}_{-i}$ (needed for both)
 - > Strict inequality for some $\vec{s}_{-i} \leftarrow s_i$ weakly dominates s'_i
 - > Strict inequality for all $\vec{s}_{-i} \leftarrow s_i$ strictly dominates s'_i

Recap: Dominant Strategies

- (Pure) strategy s_i is a strictly (weakly) dominant strategy for player i if it strictly (weakly) dominates every other (pure) strategy
- Strict dominance is a strong concept
 - A player who has a strictly dominant strategy has no reason not to play it
 - If every player has a strictly dominant strategy, such strategies will very likely dictate the outcome of the game

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

 Betraying is a strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
 - > No single strategy dominates every other strategy
 - > But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
 - Can remove their dominated strategies
 - > Might reveal a newly dominant strategy
- Two variants depending on what we eliminate:
 - > Only strictly dominated? Or also weakly dominated?

Iterated Elimination

- Toy example:
 - > Microsoft vs Startup
 - Enter the market or stay out?

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- More serious: "Guess 2/3 of average"
 - > Each student guesses a real number between 0 and 100 (inclusive)
 - The student whose number is the closest to 2/3 of the average of all numbers wins!
- In-class poll!
- Recall: We have a unique optimal strategy only if everyone is rational, and everyone thinks everyone is rational, and so on.

Nash Equilibrium

• What if we don't find a unique outcome after iterated elimination of dominated strategies?

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 , 0)

Nash Equilibrium

- Nash Equilibrium
 - > A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player i given that other players are playing \vec{s}_{-i}

- Each player's strategy is only best *given* the strategies of others, and not *regardless*.
- You can't reason about a single player in isolation. You can only say whether you're in a NE after seeing the entire strategy profile.

Pure vs Mixed Nash Equilibria

- A pure strategy *s_i* is deterministic
 - > That is, player *i* plays a single action w.p. 1
- A mixed strategy s_i can possibly randomize over actions
 - In a fully-mixed strategy, every action is played with a positive probability
- A strategy profile \vec{s} is pure if each s_i is pure
 - > These are the "cells" in the normal form representation
- A pure Nash equilibrium (PNE) is a pure strategy profile that is a Nash equilibrium

Recap: Attend or Not

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 , 0)

• Pure Nash equilibria?

Pure Nash Equilibria

• Best response

> The best response of player *i* to others' strategies \vec{s}_{-i} is the highest reward action:

 $s_i^* \in \operatorname{argmax}_{s_i} u_i(s_i, \vec{s}_{-i})$

• Best-response diagram:

> From each cell \vec{s} , for each player *i*, draw an arrow to (s_i^*, \vec{s}_{-i}) , where s_i^* = player *i*'s best response to \vec{s}_{-i}

 \circ unless s_i is already a best response

- Pure Nash equilibria (PNE)
 - > Each player is already playing their best response
 - No outgoing arrows

Example: Stag Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

• Game:

- Each hunter decides to hunt stag or hare
- Stag = 8 days of food, hare = 2 days of food
- > Catching stag requires both hunters, catching hare requires only one
- > If they catch one animal together, they share
- Pure Nash equilibria?

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 <i>,</i> -2)

- Pure Nash equilibria?
- Food for thought:
 - > What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Recap: Microsoft vs Startup

Startup Microsoft	Enter	Stay Out
Enter	(2 , -2)	(4 , 0)
Stay Out	(0 , 4)	(0 , 0)

- Pure Nash equilibria?
- Food for thought:
 - > What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Example Games

Rock-Paper-Scissor : No PNE! Why?

P2 P1	Rock	Paper	Scissor
Rock	(0 , 0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0 , 0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

Nash's Beautiful Result

• Nash's Theorem:

- Every normal form game has at least one (possibly mixed) Nash equilibrium.
- > Proof? We'll prove a special case later.
- We identify pure NE using best-response diagrams.
 > How do we find mixed NE?
- The Indifference Principle
 - > If (s_i, \vec{s}_{-i}) is a Nash equilibrium, then any action to which s_i assigns a positive probability must be a best action given \vec{s}_{-i} .

For each action a_i of player *i* satisfying $\Pr_{s_i}[a_i] > 0$: $u_i(a_i, \vec{s}_{-i}) \ge u_i(a'_i, \vec{s}_{-i})$ for all actions a'_i of player *i*.

Revisiting Stag-Hunt

• Let's solve for symmetric mixed NE

▷ $s_1 = s_2 = ($ Stag w.p. p, Hare w.p. 1 - p), where $p \in (0,1)$

• Indifference principle:

Each player must be receiving equal reward from stag and hare given the other player's mixed strategy

>
$$\mathbb{E}[Stag] = p * 4 + (1 - p) * 0$$

>
$$\mathbb{E}[\text{Hare}] = p * 2 + (1 - p) * 1$$

 $> 4p = 2p + (1-p) \Rightarrow p = 1/3$