CSC304

Algorithmic Game Theory \& Mechanism Design

Nisarg Shah

Announcements

- Office hour slot
> Mon, 3-4pm ET, starts next week

Recap: Normal Form Games

Recall: Prisoner's dilemma $S=\{$ Silent,Betray $\}$

Sam's Actions John's Actions	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$
$u_{\text {Sam }}$ (Betray, Sil		ay, Sil

Recap: Domination

- Pure strategy s_{i} dominates pure strategy s_{i}^{\prime} if player i is always "better off" playing s_{i} than s_{i}^{\prime}, regardless of the strategies of other players.
- Two variants: weak and strict domination
$>u_{i}\left(s_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \vec{s}_{-i}\right), \forall \vec{s}_{-i} \quad$ (needed for both)
> Strict inequality for some $\vec{s}_{-i} \leftarrow s_{i}$ weakly dominates s_{i}^{\prime}
> Strict inequality for all $\vec{s}_{-i} \leftarrow s_{i}$ strictly dominates s_{i}^{\prime}

Recap: Dominant Strategies

- (Pure) strategy s_{i} is a strictly (weakly) dominant strategy for player i if it strictly (weakly) dominates every other (pure) strategy
- Strict dominance is a strong concept
- A player who has a strictly dominant strategy has no reason not to play it
- If every player has a strictly dominant strategy, such strategies will very likely dictate the outcome of the game

Recap: Prisoner's Dilemma

John's Actions	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$

- Betraying is a strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
> No single strategy dominates every other strategy
> But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
> Can remove their dominated strategies
> Might reveal a newly dominant strategy
- Two variants depending on what we eliminate:
> Only strictly dominated? Or also weakly dominated?

Iterated Elimination

- Toy example:
> Microsoft vs Startup
> Enter the market or stay out?

Microsoft	Startup	Enter
Enter	$(2,-2)$	Stay Out
Stay Out	$(0,4)$	$\mathbf{(4 , 0)}$

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- More serious: "Guess $2 / 3$ of average"
> Each student guesses a real number between 0 and 100 (inclusive)
> The student whose number is the closest to $2 / 3$ of the average of all numbers wins!
- In-class poll!
- Recall: We have a unique optimal strategy only if everyone is rational, and everyone thinks everyone is rational, and so on.

Nash Equilibrium

- What if we don't find a unique outcome after iterated elimination of dominated strategies?

Students \quad Professor	Attend	Be Absent
Attend	$\mathbf{(3 , 1)}$	$\mathbf{(- 1 , - 3)}$
Be Absent	$\mathbf{(- 1 , - 1)}$	$\mathbf{(0 , 0)}$

Nash Equilibrium

- Nash Equilibrium
> A strategy profile \vec{s} is in Nash equilibrium if s_{i} is the best action for player i given that other players are playing \vec{s}_{-i}

$$
u_{i}\left(s_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \vec{s}_{-i}\right), \forall s_{i}^{\prime}
$$

> Each player's strategy is only best given the strategies of others, and not regardless.
> You can't reason about a single player in isolation. You can only say whether you're in a NE after seeing the entire strategy profile.

Pure vs Mixed Nash Equilibria

- A pure strategy s_{i} is deterministic
> That is, player i plays a single action w.p. 1
- A mixed strategy s_{i} can possibly randomize over actions
> In a fully-mixed strategy, every action is played with a positive probability
- A strategy profile \vec{s} is pure if each s_{i} is pure
> These are the "cells" in the normal form representation
- A pure Nash equilibrium (PNE) is a pure strategy profile that is a Nash equilibrium

Recap: Attend or Not

Professor	Attend	Be Absent
Attend	$\mathbf{(3 , 1)} \longmapsto$	$(-1,-\mathbf{3})$
Be Absent	$\mathbf{(- 1 , - 1)} \longrightarrow \mathbf{(0 , 0)}$	

- Pure Nash equilibria?

Pure Nash Equilibria

- Best response
> The best response of player i to others' strategies \vec{s}_{-i} is the highest reward action:

$$
s_{i}^{*} \in \operatorname{argmax}_{s_{i}} u_{i}\left(s_{i}, \vec{s}_{-i}\right)
$$

- Best-response diagram:
> From each cell \vec{s}, for each player i, draw an arrow to (s_{i}^{*}, \vec{s}_{-i}), where $s_{i}^{*}=$ player i 's best response to \vec{s}_{-i}
\circ unless s_{i} is already a best response
- Pure Nash equilibria (PNE)
> Each player is already playing their best response
> No outgoing arrows

Example: Stag Hunt

Hunter $\mathbf{2}$	Stag	Hare
Stag	$(4,4)$	$(\mathbf{0}, \mathbf{2})$
Hare	$(\mathbf{2}, \mathbf{0}) \longrightarrow(\mathbf{1}, \mathbf{1})$	

- Game:
> Each hunter decides to hunt stag or hare
> Stag $=8$ days of food, hare $=2$ days of food
> Catching stag requires both hunters, catching hare requires only one
> If they catch one animal together, they share
- Pure Nash equilibria?

Recap: Prisoner's Dilemma

Sam's Actions John's Actions	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	(-2, -2)

- Pure Nash equilibria?
- Food for thought:
> What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Recap: Microsoft vs Startup

	Startup	Enter
Microsoft	Stay Out	
Enter	$(2,-2)$	
Stay Out	$(0,4)$	

- Pure Nash equilibria?
- Food for thought:
> What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Example Games

- Rock-Paper-Scissor : No PNE! Why?

P1	Rock	Paper	Scissor
Rock	$(0,0)$	$(-1,1)$	$(1,-1)$
Paper	$(1,-1)$	$(0,0)$	$(-1,1)$
Scissor	$(-1,1)$	$(1,-1)$	$(0,0)$

Nash's Beautiful Result

- Nash's Theorem:
> Every normal form game has at least one (possibly mixed) Nash equilibrium.
> Proof? We'll prove a special case later.
- We identify pure NE using best-response diagrams.
> How do we find mixed NE?
- The Indifference Principle
> If $\left(s_{i}, \vec{S}_{-i}\right)$ is a Nash equilibrium, then any action to which s_{i} assigns a positive probability must be a best action given \vec{S}_{-i}.

For each action a_{i} of player i satisfying $\operatorname{Pr}_{s_{i}}\left[a_{i}\right]>0$: $u_{i}\left(a_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, \vec{s}_{-i}\right)$ for all actions a_{i}^{\prime} of player i.

Revisiting Stag-Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	$(4,4)$	$(0,2)$
Hare	$(2,0)$	$(1,1)$

- Let's solve for symmetric mixed NE
$>s_{1}=s_{2}=$ (Stag w.p. p, Hare w.p. $1-p$), where $p \in(0,1)$
- Indifference principle:
> Each player must be receiving equal reward from stag and hare given the other player's mixed strategy
$>\mathbb{E}[$ Stag $]=p * 4+(1-p) * 0$
$>\mathbb{E}[$ Hare $]=p * 2+(1-p) * 1$
$\rightarrow 4 p=2 p+(1-p) \Rightarrow p=1 / 3$

