CSC304 Lecture 9

Mechanism Design with Money: More VCG examples; greedy approximation of VCG; sponsored search

VCG Recap

- $f(\tilde{v})=a^{*}=\operatorname{argmax}_{a \in A} \sum_{i} \tilde{v}_{i}(a)$
> Choose the allocation maximizing reported welfare
- $p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]$
> Each agent pays the loss to others due to her presence
- Four properties
> Strategyproofness
> Individual rationality (IR)
> No payments to agents
> Welfare maximization

Seller as Agent

- Seller (S) wants to sell his car (c) to buyer (B)
- Seller has a value for his own car: $v_{S}(c)$
> Individual rationality for the seller mandates that seller must get revenue at least $v_{S}(c)$
- Idea: Add seller as another agent, and make his values part of the welfare calculations!

Seller as Agent

$$
v_{S}(c)=3
$$

$$
v_{B}(c)=5
$$

- What if...
> We give the car to buyer when $v_{B}(c)>v_{S}(c)$ and
> Buyer pays seller $v_{B}(c)$: Not strategyproof for buyer!
>Buyer pays seller $v_{S}(c)$: Not strategyproof for seller!

What would VCG do?

$$
v_{S}(c)=3
$$

$$
v_{B}(c)=5
$$

- Allocation?
> Buyer gets the car (welfare = 5)
- Payment?
> Buyer pays: $3-0=3$
> Seller pays: $0-5=-5$

Mechanism takes \$3 from buyer, and gives $\$ 5$ to the seller!

- Need external subsidy

Problems with VCG

- Difficult to understand
> Need to reason about what welfare maximizing allocation in agent i 's absence
- Does not care about revenue
> Although we can lower bound its revenue
- With sellers as agents, need subsidy
> With no subsidy, cannot get the other three properties
- Might be NP-hard to compute

Single-Minded Bidders

- Combinatorial auction for a set of m items S
- Each agent i has two private values $\left(v_{i}, S_{i}\right)$
$>S_{i} \subseteq S$ is the set of desired items
$>$ When given a bundle of items A_{i}, agent has value v_{i} if $S_{i} \subseteq A_{i}$ and 0 otherwise
> "Single-minded"
- Welfare-maximizing allocation
$>$ Agent i either gets S_{i} or nothing
> Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Weighted Independent Set (WIS) problem
> Given a graph with weights on nodes, find an independent set of nodes with the maximum weight > Known to be NP-hard
- Easy to reduce our problem to WIS
> Not even $\mathrm{O}\left(m^{0.5-\epsilon}\right)$ approximation of welfare unless

$$
N P \subseteq Z P P
$$

- Luckily, there's a simple, \sqrt{m}-approximation greedy algorithm

Greedy Algorithm

- Input: $\left(v_{i}, S_{i}\right)$ for each agent i
- Output: Agents with mutually independent S_{i}
- Greedy Algorithm:
> Sort the agents in a specific order (we'll see).
> Relabel them as $1,2, \ldots, n$ in this order.
$>W \leftarrow \emptyset$
$>$ For $i=1, \ldots, n$:
- If $S_{i} \cap S_{j}=\emptyset$ for every $j \in W$, then $W \leftarrow W \cup\{i\}$
$>$ Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values.
> $v_{1} \geq v_{2} \geq \cdots \geq v_{n} \Rightarrow m$-approximation ©
- But we don't want to exhaust too many items.
$>\frac{v_{1}}{\left|s_{1}\right|} \geq \frac{v_{2}}{\left|S_{2}\right|} \geq \cdots \frac{v_{n}}{\left|S_{n}\right|} \Rightarrow m$-approximation $:$
- \sqrt{m}-approximation : $\frac{v_{1}}{\sqrt{\left|S_{1}\right|}} \geq \frac{v_{2}}{\sqrt{\left|S_{2}\right|}} \geq \cdots \frac{v_{n}}{\sqrt{\left|S_{n}\right|}}$? [Lehmann et al. 2011]

Proof of Approximation

- Definitions
$>O P T=$ Agents satisfied by the optimal algorithm
$>W=$ Agents satisfied by the greedy algorithm
> For $i \in W$,

$$
O P T_{i}=\left\{j \in O P T, j \geq i: S_{i} \cap S_{j} \neq \varnothing\right\}
$$

- Claim 1: OPT $\subseteq \bigcup_{i \in W} O P T_{i}$
- Claim 2: It is enough to show that $\forall i \in W$

$$
\sqrt{m} \cdot v_{i} \geq \Sigma_{j \in O P T_{i}} v_{j}
$$

- Observation: For $j \in O P T_{i}, v_{j} \leq v_{i} \cdot \frac{\sqrt{\left|S_{j}\right|}}{\sqrt{\left|S_{i}\right|}}$

Proof of Approximation

- Summing over all $j \in O P T_{i}$:

$$
\Sigma_{j \in O P T_{i}} v_{j} \leq \frac{v_{i}}{\sqrt{\left|S_{i}\right|}} \cdot \Sigma_{j \in O P T_{i}} \sqrt{\left|S_{j}\right|}
$$

- Using Cauchy-Schwarz $\left(\Sigma_{i} x_{i} y_{i} \leq \sqrt{\Sigma_{i} x_{i}^{2}} \cdot \sqrt{\Sigma_{i} y_{i}^{2}}\right)$
$\Sigma_{j \in O P T_{i}} \sqrt{\left|S_{j}\right| \cdot 1} \leq \sqrt{\left|O P T_{i}\right|} \cdot \sqrt{\Sigma_{j \in O P T_{i}}\left|S_{j}\right|}$

$$
\leq \sqrt{\left|S_{i}\right|} \cdot \sqrt{m}
$$

Strategyproofness

- Agent i pays $p_{i}=v_{j^{*}} \cdot \sqrt{\frac{\left|S_{i}\right|}{\left|S_{j^{*}}\right|}}$
${ }^{\wedge} j^{*}$ is the smallest index $j>i$ such that $S_{j} \cap S_{i} \neq \emptyset$ and $S_{j} \cap S_{k}=\emptyset$ for all $k<j, k \neq i$
- How do I interpret j^{*} and p_{i} ?
$>j^{*}=$ agent such that if agent i reports a value \tilde{v}_{i} low enough to fall below j^{*} in the ordering, she stops winning. Otherwise, she wins.
> $p_{i}=$ lowest value i can report and still win

Strategyproofness

- Critical payment
> Charge each agent the lowest value they can report and still win
- Monotonic allocation
> If agent i wins when reporting $\left(v_{i}, S_{i}\right)$, she must win when reporting $v_{i}^{\prime} \geq v_{i}$ and $S_{i}^{\prime} \subseteq S_{i}$.
> Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
> May look into approximately maximizing welfare
> As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
> Note: approximation is needed for computational reasons
- Later in mechanism design without money...
> We will not be able to use payments to achieve strategyproofness
> Hence, we will need to approximate welfare just to get strategyproofness, even without any computational restrictions

Sponsored Search Auctions GO xig GLE

All	Maps	News	Images	Shopping	More	Settings
About 549,000 results (0.84 seconds)						
Need A Good Tax Accountant? - We are Tax Experts in Toronto. (Ad www.taxsos.ca/Tax-Accountant v Solve Complex Tax Problems Quickly. Service Special. Contact Us Now! Highlights: Team Of Professionals, Free Consultation Available... P 60 Green Lane,, Unit 13, Thornhill, ON - Closing soon - 10:00 AM - 6:00 PM -						
About Us Why Choose Tax SOS				Contact Us		
				Cost of Servi		
Looking For An Accountant? - Get Expert \& Trusted Advice - intuit.ca (Ad) quickbooks.intuit.ca/QBOA - Select From Over 50,000 QuickBooks Pro Advisors Bookkeeping - Accounting Service - Tax \& Financial Planning - Quickbooks Setup • Business						

AZ Accounting Toronto - Specializing in Small Business
Ad www.azaccountingfirm.ca/
Tax Consulting and Finance Services
Services: Financial Statements, Professional Corporations, Self-Employed Individuals.

Specialized Tax Accountant - Best Tax Service For Less Now.
Ad www.crataxrescue.ca/CRATaxProblem/Tax-Accountant v
Quick Relief For CRA Tax Troubles. Get Free Meeting Today
Frequently Asked Question - 3 Easy Steps To Fix Taxes

Sponsored Search Auctions

- A search engine receives a query
- There are k advertisement slots
> "Clickthrough rates" $c_{1} \geq c_{2} \geq \cdots \geq c_{k} \geq c_{k+1}=0$
- There are n advertisers (bidders)
> Bidder i derives value v_{i} per click
> Value to bidder i for slot $j=v_{i} \cdot c_{j}$
> Without loss of generality, $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$
- Question:
> Who gets which slot, and how much do they pay?

Sponsored Search : VCG

- VCG
> Maximize welfare:
- bidder j gets slot j for $1 \leq j \leq k$, other bidders get nothing
> Payment of bidder j ?
- Increase in social welfare to others if j abstains
> Bidders $j+1$ through " $k+1$ " get upgraded by one slot
> Payment of bidder $j=\sum_{i=j+1}^{k+1} v_{i} \cdot\left(c_{i-1}-c_{i}\right)$
$>$ Payment of bidder j per click $=\sum_{i=j+1}^{k+1} v_{i} \cdot \frac{c_{i-1}-c_{i}}{c_{j}}$

Sponsored Search : VCG

- What if all the clickthrough rates are same?

$$
>c_{1}=c_{2}=\cdots=c_{k}>c_{k+1}=0
$$

- Payment of bidder j per click

$$
>\sum_{i=j+1}^{k+1} v_{i} \cdot \frac{c_{i-1}-c_{i}}{c_{j}}=v_{k+1}
$$

- Bidders 1 through k pay the value of bidder $k+1$ > Familiar? VCG for k identical items

Sponsored Search : GSP

- Generalized Second Price Auction (GSP)
> For $1 \leq j \leq k$, bidder j gets slot j and pays the value of bidder $j+1$ per click
> Other bidders get nothing and pay nothing
- Natural extension of the "second price" idea
> We considered this before for two identical slots
> Not strategyproof
> In fact, truth-telling may not even be a Nash equilibrium ©

Sponsored Search : GSP

- But there is a good Nash equilibrium that...
> realizes the VCG outcome, i.e., maximizes welfare, and
> generates as much revenue as VCG © ; [Edelman et al. 2007]
- Even the worst Nash equilibrium...
> gives 1.282-approximation to welfare ($P o A \leq 1.282$) and
> generates at least half of the revenue of VCG [Caragiannis et al. 2011, Dutting et al. 2011, Lucier et al. 2012]
- So if the players achieve an equilibrium, things aren't so bad.

VCG vs GSP

- VCG
> Truthful revelation is a dominant strategy, so there's a higher confidence that players will reveal truthfully and the theoretical welfare/revenue guarantees will hold
> But it is difficult to convey and understand
- GSP
> Need to rely on players reaching a Nash equilibrium
> But has good welfare and revenue guarantees and is easy to convey and understand
- Industry is split on this issue too!

From Theory to Reality

- Value is proportional to clickthrough rate?
$>$ Could it be that users clicking on the $2^{\text {nd }}$ slot are more likely buyers than those clicking on the $1^{\text {st }}$ slot?
- Misaligned values of advertisers and ad engines?
> An advertiser having a high value for a slot does not necessarily mean their ad is appropriate for the slot
- Market competition?
> What if there are other ad engines deploying other mechanisms and advertisers are strategic about which ad engines to participate in?

