CSC304 Lecture 8

Mechanism Design with Money: VCG mechanism

RECAP: Game Theory

- Simultaneous-move Games
- Nash equilibria
- Prices of anarchy and stability
- Cost-sharing games, congestion games, Braess' paradox
- Zero-sum games and the minimax theorem
- Stackelberg games

Mechanism Design with Money

- Design the game structure in order to induce the desired behavior from the agents
- Desired behavior?
> We will mostly focus on incentivizing agents to truthfully reveal their private information
- With money
> Can pay agents or ask agents for money depending on what the agents report

Mathematical Setup

- A set of outcomes A
> A might depend on which agents are participating.
- Each agent i has a private valuation $v_{i}: A \rightarrow \mathbb{R}$
- Auctions:
> A has a nice structure.
- Selling one item to n buyers $=n$ outcomes ("give to i ")
- Selling m items to n buyers $=n^{m}$ outcomes
> Agents only care about which items they receive
$\circ A_{i}=$ bundle of items allocated to agent i
- Use $v_{i}\left(A_{i}\right)$ instead of $v_{i}(A)$ for notational simplicity
>But for now, we'll look at the general setup.

Mathematical Setup

- Agent i might lie, and report \tilde{v}_{i} instead of v_{i}
- Mechanism: (f, p)
> Input: reported valuations $\tilde{v}=\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)$
$>f(\tilde{v}) \in A$ decides what outcome is implemented
$>p(\tilde{v})=\left(p_{1}, \ldots, p_{n}\right)$ decides how much each agent pays
- Note that each p_{i} is a function of all reported valuations
- Utility to agent $i: u_{i}(\tilde{v})=v_{i}(f(\tilde{v}))-p_{i}(\tilde{v})$ > "Quasi-linear utilities"

Mathematical Setup

- Our goal is to design the mechanism (f, p)
$>f$ is called the social choice function
$>p$ is called the payment scheme
> We want to several things from our mechanism
- Truthfulness/strategyproofness
$>$ For all agents i and for all \tilde{v},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq u_{i}(\tilde{v})
$$

> An agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report

Mathematical Setup

- Our goal is to design the mechanism (f, p)
$>f$ is called the social choice function
$>p$ is called the payment scheme
> We want to several things from our mechanism
- Individual rationality
$>$ For all agents i and for all \tilde{v}_{-i},

$$
u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \geq 0
$$

>An agent doesn't regret participating if she tells the truth.

Mathematical Setup

- Our goal is to design the mechanism (f, p)
$>f$ is called the social choice function
$>p$ is called the payment scheme
> We want to several things from our mechanism
- No payments to agents
$>$ For all agents i and for all \tilde{v},

$$
p_{i}(\tilde{v}) \geq 0
$$

> Agents pay the center. Not the other way around.

Mathematical Setup

- Our goal is to design the mechanism (f, p)
$>f$ is called the social choice function
$>p$ is called the payment scheme
> We want to several things from our mechanism
- Welfare maximization
$>$ Maximize $\sum_{i} v_{i}(f(\tilde{v}))$
- In many contexts, payments are less important (e.g. ad auctions)
- Or think of the auctioneer as another agent with utility $\sum_{i} p_{i}(\tilde{v})$
- Then, the total utility of all agents (including the auctioneer) is precisely the objective written above

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 1: Each would tell me his/her value. I'll give it to the one with the higher value.

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 2: Each would tell me his/her value. $I^{\prime} l l$ give it to the one with the higher value, but they have to pay me that value.

Single-Item Auction

Objective: The one who really needs it more should have it.

Implements the desired outcome.
But not truthfully.

Single-Item Auction

Objective: The one who really needs it more should have it.

Rule 3: Each would tell me his/her value. I'll give it to the one with the highest value, and charge them the second highest value.

Single-item Vickrey Auction

- Simplifying notation: $v_{i}=$ value of agent i for the item
- $f(\tilde{v})$: give the item to agent $i^{*} \in \operatorname{argmax}_{i} \tilde{v}_{i}$
- $p(\tilde{v}): p_{i^{*}}=\max _{j \neq i^{*}} \tilde{v}_{j}$, other agents pay nothing

Theorem:

Single-item Vickrey auction is strategyproof.

Vickrey Auction: Identical Items

- Two identical xboxes
> Each agent i only wants one, has value v_{i}
> Goal: give to the agents with the two highest values
- Attempt 1
> To agent with highest value, charge $2^{\text {nd }}$ highest value.
> To agent with $2^{\text {nd }}$ highest value, charge $3^{\text {rd }}$ highest value.
- Attempt 2
> To agents with highest and $2^{\text {nd }}$ highest values, charge the $3^{\text {rd }}$ highest value.
- Question: Which attempt(s) would be strategyproof?
>Both, 1, 2, None?

VCG Auction

- Recall the general setup:
$>A=$ set of outcomes, $v_{i}=$ valuation of agent $i, \tilde{v}_{i}=$ what agent i reports, f chooses the outcome, p decides payments
- VCG (Vickrey-Clarke-Groves Auction)
$>f(\tilde{v})=a^{*} \in \operatorname{argmax}_{a \in A} \sum_{i} \tilde{v}_{i}(a) \longleftarrow \quad$ Maximize welfare
$>p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]$

A Note About Payments

- $p_{i}(\tilde{v})=\left[\max _{a} \sum_{j \neq i} \tilde{v}_{j}(a)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]$
- In the first term...
> Maximum is taken over alternatives that are feasible when i does not participate.
> Agent i cannot affect this term, so can ignore in calculating incentives.
> Could be replaced with any function $h_{i}\left(\tilde{v}_{-i}\right)$
- This specific function has advantages (we'll see)

Properties of VCG Auction

- Strategyproofness:
> Suppose agents other than i report \tilde{v}_{-i}.
> Agent i reports $\tilde{v}_{i} \Rightarrow$ outcome chosen is $f(\tilde{v})=a$
$>$ Utility to agent $i=v_{i}(a)-\left(\square-\sum_{j \neq i} \tilde{v}_{j}(a)\right)$
Term that agent i cannot affect
$>$ Agent i wants a to maximize $v_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
$>f$ chooses a to maximize $\tilde{v}_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
$>$ Hence, agent i is best off reporting $\tilde{v}_{i}=v_{i}$
$\circ f$ chooses a that maximizes the utility to agent i

Properties of VCG Auction

- Individual rationality:
$>a^{*} \in \operatorname{argmax}_{a \in A} v_{i}(a)+\sum_{j \neq i} \tilde{v}_{j}(a)$
$>\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_{j}(a)$

$$
\begin{aligned}
& u_{i}\left(v_{i}, \tilde{v}_{-i}\right) \\
& =v_{i}\left(a^{*}\right)-\left(\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})-\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right) \\
& =\left[v_{i}\left(a^{*}\right)+\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right)\right]-\left[\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})\right] \\
& =\text { Max welfare to all agents } \\
& \geq 0 \\
& \text { - max welfare to others when } i \text { is absent }
\end{aligned}
$$

Properties of VCG Auction

- No payments to agents:
> Suppose the agents report \tilde{v}
$>a^{*} \in \operatorname{argmax}_{a \in A} \sum_{j} \tilde{v}_{j}(a)$
$>\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_{j}(a)$

$$
\begin{aligned}
& p_{i}(\tilde{v}) \\
& =\sum_{j \neq i} \tilde{v}_{j}(\tilde{a})-\sum_{j \neq i} \tilde{v}_{j}\left(a^{*}\right) \\
& =\text { Max welfare to others when } i \text { is absent } \\
& \geq 0
\end{aligned}
$$

Properties of VCG Auction

- Welfare maximization:
> By definition, since f chooses the outcome maximizing the sum of reported values
- Informal result:
> Under minimal assumptions, VCG is the unique auction satisfying these properties.

VCG: Simple Example

- Suppose each agent has a value XBox and a value for PS4.
- Their value for $\{X B o x, P S 4\}$ is the max of their two values.

Q: Who gets the xbox and who gets the PS4?
Q: How much do they pay?

VCG: Simple Example

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of $7+6=13$

VCG: Simple Example

Payments:

- Zero payments charged to A1 and A2
> "Deleting" either does not change the outcome/payments for others
- Can also be seen by individual rationality

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 3=11-7=4$
> Max welfare to others if A3 absent: $7+4=11$
- Give XBox to A4 and PS4 to A1
> Welfare to others if A3 present: 7

VCG: Simple Example

Payments:

- Payment charged to $\mathrm{A} 4=12-6=6$
> Max welfare to others if A4 absent: $8+4=12$
- Give XBox to A3 and PS4 to A1
> Welfare to others if A4 present: 6

VCG: Simple Example

Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets $6-4=2$, A4 gets $7-6=1$

