CSC304 Lecture 4

Game Theory

(Cost sharing \& congestion games, Potential function, Braess' paradox)

Recap

- Nash equilibria (NE)
> No agent wants to change their strategy
$>$ Guaranteed to exist if mixed strategies are allowed
> Could be multiple
- Pure NE through best-response diagrams
- Mixed NE through the indifference principle

Worst and Best Nash Equilibria

- What can we say after we identify all Nash equilibria?
> Compute how "good" they are in the best/worst case
- How do we measure "social good"?
> Game with only rewards? Higher total reward of players = more social good
> Game with only penalties? Lower total penalty to players = more social good
> Game with rewards and penalties? No clear consensus...

Price of Anarchy and Stability

- Price of Anarchy (PoA)
"Worst NE vs optimum"
$\frac{\text { Max total reward }}{\text { Min total reward in any NE }}$
or
Max total cost in any NE Min total cost
- Price of Stability (PoS)
"Best NE vs optimum"
$\frac{\text { Max total reward }}{\text { Max total reward in any NE }}$
or
Min total cost in any NE
Min total cost

$$
\mathrm{PoA} \geq \mathrm{PoS} \geq 1
$$

Revisiting Stag-Hunt

	Hunter 2	Stag
Hunter 1	(4, 4)	Hare
Stag	$\mathbf{(0 , 2)}$	
Hare	$\mathbf{(2 , 0)}$	$\mathbf{(1 , 1)}$

- Max total reward $=4+4=8$
- Three equilibria
$>$ (Stag, Stag) : Total reward $=8$
> (Hare, Hare) : Total reward = 2
$>(1 / 3$ Stag $-2 / 3$ Hare, $1 / 3$ Stag $-2 / 3$ Hare $)$
- Total reward $=\frac{1}{3} * \frac{1}{3} * 8+\left(1-\frac{1}{3} * \frac{1}{3}\right) * 2 \in(2,8)$
- Price of stability? Price of anarchy?

Revisiting Prisoner's Dilemma

Sam John	Stay Silent	Betray
Stay Silent	$(-1,-\mathbf{1})$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$

- Min total cost $=1+1=2$
- Only equilibrium:
$>$ (Betray, Betray) : Total cost $=2+2=4$
- Price of stability? Price of anarchy?

Cost Sharing Game

- n players on directed weighted graph G
- Player i
$>$ Wants to go from s_{i} to t_{i}
$>$ Strategy set $S_{i}=\left\{\right.$ directed $s_{i} \rightarrow t_{i}$ paths $\}$
> Denote his chosen path by $P_{i} \in S_{i}$
- Each edge e has $\operatorname{cost} c_{e}$ (weight)
> Cost is split among all players taking edge e
> That is, among all players i with $e \in P_{i}$

Cost Sharing Game

- Given strategy profile \vec{P}, cost $c_{i}(\vec{P})$ to player i is sum of his costs for edges $e \in P_{i}$
- Social $\operatorname{cost} C(\vec{P})=\sum_{i} c_{i}(\vec{P})$
- Note: $C(\vec{P})=\sum_{e \in E(\vec{P})} c_{e}$, where...
$>E(\vec{P})=\{$ edges taken in \vec{P} by at least one player\}
> Why?

Cost Sharing Game

- In the example on the right:
> What if both players take direct paths?
> What if both take middle paths?
> What if one player takes direct path and the other takes middle path?
- Pure Nash equilibria?

Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
> All taking the n-edge: social cost $=n$ > All taking the 1-edge: social cost $=1$
- Also the social optimum
- Price of stability: 1
- Price of anarchy: n

$>$ We can show that price of anarchy $\leq n$ in every cost-sharing game!

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most n.
- Proof:
> Suppose the social optimum is $\left(P_{1}^{*}, P_{2}^{*}, \ldots, P_{n}^{*}\right)$, in which the cost to player i is c_{i}^{*}.
$>$ Take any NE with $\operatorname{cost} c_{i}$ to player i.
$>$ Let c_{i}^{\prime} be his cost if he switches to P_{i}^{*}.
$>\mathrm{NE} \Rightarrow c_{i}^{\prime} \geq c_{i} \quad$ (Why?)
$>$ But : $c_{i}^{\prime} \leq n \cdot c_{i}^{*}$ (Why?)
$>c_{i} \leq n \cdot c_{i}^{*}$ for each $i \Rightarrow$ no worse than $n \times$ optimum

Cost Sharing

- Price of anarchy
> Every cost-sharing game: PoA $\leq n$
> Example game with PoA $=n$
> Bound of n is tight.
- Price of stability?
$>$ In the previous game, it was 1.
> In general, it can be higher. How high?
> We'll answer this after a short detour.

Cost Sharing

- Nash's theorem shows existence of a mixed NE.
> Pure NE may not always exist in general.
- But in both cost-sharing games we saw, there was a PNE.
> What about a more complex game like the one on the right?

10 players: $E \rightarrow C$
27 players: $B \rightarrow D$
19 players: $C \rightarrow D$

Good News

- Theorem: Every cost-sharing game have a pure Nash equilibrium.
- Proof:
> Via "potential function" argument

Step 1: Define Potential Fn

- Potential function: $\Phi: \prod_{i} S_{i} \rightarrow \mathbb{R}_{+}$
> This is a function such that for every pure strategy profile $\vec{P}=\left(P_{1}, \ldots, P_{n}\right)$, player i, and strategy P_{i}^{\prime} of i,

$$
c_{i}\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-c_{i}(\vec{P})=\Phi\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-\Phi(\vec{P})
$$

> When a single player i changes her strategy, the change in potential function equals the change in cost to i !
> In contrast, the change in the social cost C equals the total change in cost to all players.

- Hence, the social cost will often not be a valid potential function.

Step 2: Potential $\mathrm{F}^{\mathrm{n}} \rightarrow$ pure Nash Eq

- A potential function exists \Rightarrow a pure NE exists.
> Consider a \vec{P} that minimizes the potential function.
> Deviation by any single player i can only (weakly) increase the potential function.
> But change in potential function = change in cost to i.
$>$ Hence, there is no beneficial deviation for any player.
- Hence, every pure strategy profile minimizing the potential function is a pure Nash equilibrium.

Step 3: Potential F^{n} for Cost-Sharing

- Recall: $E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
- Let $n_{e}(\vec{P})$ be the number of players taking e in \vec{P}

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Note: The cost of edge e to each player taking e is $c_{e} / n_{e}(\vec{P})$. But the potential function includes all fractions: $c_{e} / 1, c_{e} / 2, \ldots, c_{e} / n_{e}(\vec{P})$.

Step 3: Potential F^{n} for Cost-Sharing

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Why is this a potential function?
> If a player changes path, he pays $\frac{c_{e}}{n_{e}(\vec{P})+1}$ for each new edge e, gets back $\frac{c_{f}}{n_{f}(\vec{P})}$ for each old edge f.
$>$ This is precisely the change in the potential function too.
$>$ So $\Delta c_{i}=\Delta \Phi$.

Potential Minimizing Eq.

- Minimizing the potential function gives some pure Nash equilibrium
> Is this equilibrium special? Yes!
- Recall that the price of anarchy can be up to n.
> That is, the worst Nash equilibrium can be up to n times worse than the social optimum.
- A potential-minimizing pure Nash equilibrium is better!

Potential Minimizing Eq.

$$
\forall \vec{P}, C(\vec{P}) \leq \Phi(\vec{P}) \leq C(\vec{P}) * H(n) \quad \longleftarrow \quad \begin{aligned}
& \text { Harmonic function } H(n) \\
& =\sum_{k=1}^{n} 1 / n=O(\log n)
\end{aligned}
$$

$$
C\left(\vec{P}^{*}\right) \leq \Phi\left(\vec{P}^{*}\right) \leq \Phi(O P T) \leq C(O P T) * H(n)
$$

Potential Minimizing Eq.

- Potential-minimizing PNE is $O(\log n)$-approximation to the social optimum.
- Thus, in every cost-sharing game, the price of stability is $O(\log n)$.
> Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- n players, m resources (e.g., edges)
- Each player i chooses a set of resources P_{i} (e.g., $s_{i} \rightarrow t_{i}$ paths)
- When n_{j} player use resource j, each of them get a cost $f_{j}\left(n_{j}\right)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$
\Phi(\vec{P})=\sum_{j \in E(\vec{P})} \sum_{k=1}^{n_{j}(\vec{P})} f_{j}(k)
$$

- Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

Potential Functions

- Potential functions are useful for deriving various results
> E.g., used for analyzing amortized complexity of algorithms
- Bad news: Finding a potential function that works may be hard.

The Braess' Paradox

- In cost sharing, f_{j} is decreasing
> The more people use a resource, the less the cost to each.
- f_{j} can also be increasing
> Road network, each player going from home to work
> Uses a sequence of roads
> The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

The Braess' Paradox

- Parkes-Seuken Example:
>2000 players want to go from 1 to 4
$>1 \rightarrow 2$ and $3 \rightarrow 4$ are "congestible" roads
$>1 \rightarrow 3$ and $2 \rightarrow 4$ are "constant delay" roads

The Braess' Paradox

- Pure Nash equilibrium?
> 1000 take $1 \rightarrow 2 \rightarrow 4,1000$ take $1 \rightarrow 3 \rightarrow 4$
> Each player has cost $10+25=35$
> Anyone switching to the other creates a greater congestion on it, and faces a higher cost

The Braess' Paradox

- What if we add a zero-cost connection $2 \rightarrow 3$?
> Intuitively, adding more roads should only be helpful
$>$ In reality, it leads to a greater delay for everyone in the unique equilibrium!

The Braess' Paradox

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay $=40$!

The Braess' Paradox

- In fact, what we showed is:
$>$ In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each player!

