
CSC304 Lecture 4

Game Theory 
(Cost sharing & congestion games, 

Potential function, Braess’ paradox)
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Recap
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• Nash equilibria (NE)

➢ No agent wants to change their strategy

➢ Guaranteed to exist if mixed strategies are allowed

➢ Could be multiple

• Pure NE through best-response diagrams

• Mixed NE through the indifference principle



Worst and Best Nash Equilibria
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• What can we say after we identify all Nash equilibria?

➢ Compute how “good” they are in the best/worst case

• How do we measure “social good”?

➢ Game with only rewards?
Higher total reward of players = more social good

➢ Game with only penalties?
Lower total penalty to players = more social good

➢ Game with rewards and penalties?
No clear consensus…



Price of Anarchy and Stability
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• Price of Anarchy (PoA)

“Worst NE vs optimum”

Max total reward

Min total reward in any NE

or

Max total cost in any NE

Min total cost

• Price of Stability (PoS)

“Best NE vs optimum”

Max total reward

Max total reward in any NE

or

Min total cost in any NE

Min total cost

PoA ≥ PoS ≥ 1



Revisiting Stag-Hunt
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• Max total reward = 4 + 4 = 8

• Three equilibria

➢ (Stag, Stag) : Total reward = 8

➢ (Hare, Hare) : Total reward = 2

➢ ( Τ1
3 Stag – Τ2

3 Hare, Τ1
3 Stag – Τ2

3 Hare)

o Total reward = 
1

3
∗

1

3
∗ 8 + 1 −

1

3
∗

1

3
∗ 2 ∈ (2,8)

• Price of stability? Price of anarchy?

Hunter 1
Hunter 2 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Revisiting Prisoner’s Dilemma
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• Min total cost = 1 + 1 = 2

• Only equilibrium:

➢ (Betray, Betray) : Total cost = 2 + 2 = 4

• Price of stability? Price of anarchy?

Sam
John Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)



Cost Sharing Game
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• 𝑛 players on directed weighted graph 𝐺

• Player 𝑖

➢ Wants to go from 𝑠𝑖 to 𝑡𝑖

➢ Strategy set 𝑆𝑖 = {directed 𝑠𝑖 → 𝑡𝑖 paths}

➢ Denote his chosen path by 𝑃𝑖 ∈ 𝑆𝑖

• Each edge 𝑒 has cost 𝑐𝑒 (weight)

➢ Cost is split among all players taking edge 𝑒

➢ That is, among all players 𝑖 with 𝑒 ∈ 𝑃𝑖

1

1 1

1
𝑠1

𝑡1

10

𝑠2

𝑡2

1010



Cost Sharing Game
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• Given strategy profile 𝑃, cost 𝑐𝑖 𝑃 to 

player 𝑖 is sum of his costs for edges 𝑒 ∈ 𝑃𝑖

• Social cost 𝐶 𝑃 = σ𝑖 𝑐𝑖 𝑃

• Note: 𝐶 𝑃 = σ
𝑒∈𝐸 𝑃

𝑐𝑒, where… 

➢ 𝐸(𝑃)={edges taken in 𝑃 by at least one player}

➢ Why?

1

1 1

1
𝑠1

𝑡1

10

𝑠2

𝑡2

1010



Cost Sharing Game
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• In the example on the right:

➢ What if both players take direct paths? 

➢ What if both take middle paths?

➢ What if one player takes direct path and the 
other takes middle path?

• Pure Nash equilibria?

1

1 1

1
𝑠1

𝑡1

10

𝑠2

𝑡2

1010



Cost Sharing: Simple Example
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• Example on the right: 𝑛 players

• Two pure NE

➢ All taking the n-edge: social cost = 𝑛

➢ All taking the 1-edge: social cost = 1
o Also the social optimum

• Price of stability: 1

• Price of anarchy: 𝑛

➢ We can show that price of anarchy ≤ 𝑛 in 
every cost-sharing game!

s

t

𝑛 1



Cost Sharing: PoA
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• Theorem: The price of anarchy of a cost sharing game is at 
most 𝑛.

• Proof:

➢ Suppose the social optimum is (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑛
∗), in which 

the cost to player 𝑖 is 𝑐𝑖
∗.

➢ Take any NE with cost 𝑐𝑖 to player 𝑖.

➢ Let 𝑐𝑖
′ be his cost if he switches to 𝑃𝑖

∗. 

➢ NE  ⇒ 𝑐𝑖
′ ≥ 𝑐𝑖 (Why?)

➢ But  :  𝑐𝑖
′ ≤ 𝑛 ⋅ 𝑐𝑖

∗ (Why?)

➢ 𝑐𝑖 ≤ 𝑛 ⋅ 𝑐𝑖
∗ for each 𝑖 ⇒ no worse than 𝑛 × optimum

∎



Cost Sharing
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• Price of anarchy

➢ Every cost-sharing game: PoA ≤ 𝑛

➢ Example game with PoA = 𝑛

➢ Bound of 𝑛 is tight.

• Price of stability?

➢ In the previous game, it was 1. 

➢ In general, it can be higher. How high?

➢ We’ll answer this after a short detour.



Cost Sharing
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• Nash’s theorem shows existence of 
a mixed NE.

➢ Pure NE may not always exist in 
general. 

• But in both cost-sharing games we 
saw, there was a PNE.

➢ What about a more complex 
game like the one on the right?

10 players: 𝐸 → 𝐶
27 players: 𝐵 → 𝐷
19 players: 𝐶 → 𝐷

E
D

A

7

B

C
60

12

32

10

20



Good News
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• Theorem: Every cost-sharing game have a pure Nash 
equilibrium.

• Proof:

➢ Via “potential function” argument



Step 1: Define Potential Fn
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• Potential function: Φ ∶ ς𝑖 𝑆𝑖 → ℝ+

➢ This is a function such that for every pure strategy profile 
𝑃 = 𝑃1, … , 𝑃𝑛 , player 𝑖, and strategy 𝑃𝑖

′ of 𝑖,

𝑐𝑖 𝑃𝑖
′, 𝑃−𝑖 − 𝑐𝑖 𝑃 = Φ 𝑃𝑖

′, 𝑃−𝑖 − Φ 𝑃

➢ When a single player 𝑖 changes her strategy, the change 
in potential function equals the change in cost to 𝑖!

➢ In contrast, the change in the social cost 𝐶 equals the 
total change in cost to all players.
o Hence, the social cost will often not be a valid potential function.



Step 2: Potential Fn → pure Nash Eq
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• A potential function exists ⇒ a pure NE exists.

➢ Consider a 𝑃 that minimizes the potential function.

➢ Deviation by any single player 𝑖 can only (weakly) increase 
the potential function.

➢ But change in potential function = change in cost to 𝑖.

➢ Hence, there is no beneficial deviation for any player.

• Hence, every pure strategy profile minimizing the potential 
function is a pure Nash equilibrium.



Step 3: Potential Fn for Cost-Sharing

CSC304 - Nisarg Shah 17

• Recall: 𝐸(𝑃) = {edges taken in 𝑃 by at least one player}

• Let 𝑛𝑒 (𝑃) be the number of players taking 𝑒 in 𝑃

Φ 𝑃 = 

𝑒∈𝐸(𝑃)


𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Note: The cost of edge 𝑒 to each player taking 𝑒 is 

𝑐𝑒/𝑛𝑒(𝑃). But the potential function includes all 

fractions: 𝑐𝑒/1, 𝑐𝑒/2, …, 𝑐𝑒/𝑛𝑒 𝑃 .
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Φ 𝑃 = 

𝑒∈𝐸(𝑃)


𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Why is this a potential function?

➢ If a player changes path, he pays 
𝑐𝑒

𝑛𝑒 𝑃 +1
for each new 

edge 𝑒, gets back 
𝑐𝑓

𝑛𝑓 𝑃
for each old edge 𝑓.

➢ This is precisely the change in the potential function too.

➢ So Δ𝑐𝑖 = ΔΦ.

∎

Step 3: Potential Fn for Cost-Sharing



Potential Minimizing Eq.
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• Minimizing the potential function gives some pure Nash 
equilibrium

➢ Is this equilibrium special? Yes!

• Recall that the price of anarchy can be up to 𝑛.

➢ That is, the worst Nash equilibrium can be up to 𝑛 times 
worse than the social optimum.

• A potential-minimizing pure Nash equilibrium is better!



Potential Minimizing Eq.
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𝑒∈𝐸(𝑃)

𝑐𝑒 ≤ Φ 𝑃 = 

𝑒∈𝐸(𝑃)



𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘
≤ 

𝑒∈𝐸(𝑃)

𝑐𝑒 ∗ 

𝑘=1

𝑛
1

𝑘

Social cost

∀𝑃, 𝐶 𝑃 ≤ Φ 𝑃 ≤ 𝐶 𝑃 ∗ 𝐻 𝑛

𝐶 𝑃∗ ≤ Φ 𝑃∗ ≤ Φ 𝑂𝑃𝑇 ≤ 𝐶 𝑂𝑃𝑇 ∗ 𝐻(𝑛)

Harmonic function 𝐻(𝑛)
= σ𝑘=1

𝑛 1/𝑛 = 𝑂(log 𝑛)

Potential minimizing eq. Social optimum



Potential Minimizing Eq.
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• Potential-minimizing PNE is 𝑂(log 𝑛)-approximation to the 

social optimum.

• Thus, in every cost-sharing game, the price of stability is 

𝑂 log 𝑛 .

➢ Compare to the price of anarchy, which can be 𝑛



Congestion Games
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• Generalize cost sharing games

• 𝑛 players, 𝑚 resources (e.g., edges)

• Each player 𝑖 chooses a set of resources 𝑃𝑖 (e.g., 𝑠𝑖 → 𝑡𝑖

paths)

• When 𝑛𝑗 player use resource 𝑗, each of them get a cost 

𝑓𝑗(𝑛𝑗)

• Cost to player is the sum of costs of resources used



Congestion Games
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• Theorem [Rosenthal 1973]: Every congestion game is a 
potential game.

• Potential function:

Φ 𝑃 = 

𝑗∈𝐸(𝑃)


𝑘=1

𝑛𝑗 𝑃

𝑓𝑗 𝑘

• Theorem [Monderer and Shapley 1996]: Every potential 
game is equivalent to a congestion game.



Potential Functions
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• Potential functions are useful for deriving various results

➢ E.g., used for analyzing amortized complexity of 
algorithms

• Bad news: Finding a potential function that works may be 
hard.



The Braess’ Paradox
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• In cost sharing, 𝑓𝑗 is decreasing

➢ The more people use a resource, the less the cost to each.

• 𝑓𝑗 can also be increasing

➢ Road network, each player going from home to work

➢ Uses a sequence of roads

➢ The more people on a road, the greater the congestion, 
the greater the delay (cost)

• Can lead to unintuitive phenomena



The Braess’ Paradox
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• Parkes-Seuken Example:

➢ 2000 players want to go from 1 to 4

➢ 1 → 2 and 3 → 4 are “congestible” roads

➢ 1 → 3 and 2 → 4 are “constant delay” roads

1 4

2

3



The Braess’ Paradox
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• Pure Nash equilibrium?
➢ 1000 take 1 → 2 → 4, 1000 take 1 → 3 → 4
➢ Each player has cost 10 + 25 = 35
➢ Anyone switching to the other creates a greater 

congestion on it, and faces a higher cost

1 4

2

3



The Braess’ Paradox
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• What if we add a zero-cost connection 2 → 3?

➢ Intuitively, adding more roads should only be helpful

➢ In reality, it leads to a greater delay for everyone in the 
unique equilibrium!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• Nobody chooses 1 → 3 as 1 → 2 → 3 is better irrespective 
of how many other players take it

• Similarly, nobody chooses 2 → 4

• Everyone takes 1 → 2 → 3 → 4, faces delay = 40!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• In fact, what we showed is:

➢ In the new game, 1 → 2 → 3 → 4 is a strictly dominant 
strategy for each player!

1 4

2

3

𝑐23 𝑛23 = 0


