CSC304 Lecture 3

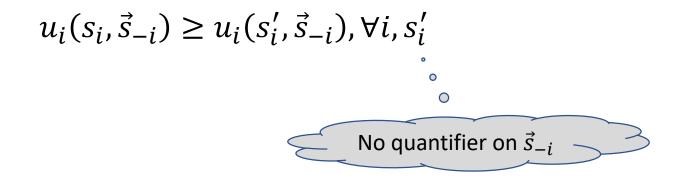
Game Theory (More examples, PoA, PoS)

Recap

- Normal form games
- Domination among strategies
 > Weak/strict domination
- Hope 1: Find a weakly/strictly dominant strategy
- Hope 2: Iterated elimination of dominated strategies
- Guarantee 3: Nash equilibria
 - > Pure may be none, unique, or multiple
 - $\circ\,$ Identified using best response diagrams
 - > Mixed at least one!
 - \circ Identified using the indifference principle

Recap: Nash Equilibrium (NE)

- Nash Equilibrium
 - > A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player *i* given that other players are playing \vec{s}_{-i}



> Each player's strategy is only best given the strategies of others, and not regardless.

Pure vs Mixed Nash Equilibria

- A pure strategy *s_i* is deterministic
 - > That is, player *i* plays a single action w.p. 1
- A mixed strategy s_i can possibly randomize over actions
 > In a fully-mixed strategy, every action is played with a positive probability
- A strategy profile s is pure if each s_i is pure
 These are the "cells" in the normal form representation
- A pure Nash equilibrium (PNE) is a pure strategy profile that is a Nash equilibrium

Pure Nash Equilibria

• Best response

> The best response of player *i* to others' strategies \vec{s}_{-i} is the highest reward action:

 $s_i^* \in \operatorname{argmax}_{s_i} u_i(s_i, \vec{s}_{-i})$

- Best-response diagram:
 - > From each cell \vec{s} , for each player *i*, draw an arrow to (s_i^*, \vec{s}_{-i}) , where s_i^* = player *i*'s best response to \vec{s}_{-i} \circ unless s_i is already a best response
- Pure Nash equilibria (PNE)
 - > Each player is already playing their best response
 - No outgoing arrows

Example Games

• Stag Hunt: (Stag, Stag) and (Hare, Hare) are PNE

Hunter 2 Hunter 1	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

Rock-Paper-Scissor : No PNE! Why?

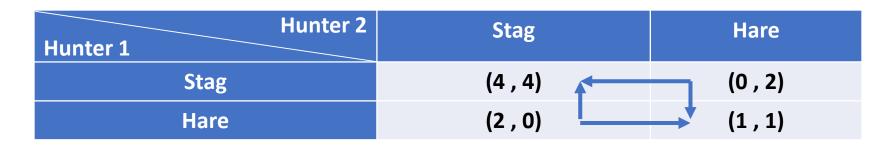
P2 P1	Rock	Paper	Scissor
Rock	(0 , 0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0 , 0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

Nash's Beautiful Result

• Nash's Theorem:

- Every normal form game has at least one (possibly mixed) Nash equilibrium.
- > Proof? We'll prove a special case later.
- We identify pure NE using best-response diagrams.
 > How do we find mixed NE?
- The Indifference Principle
 - > If (s_i, \vec{s}_{-i}) is a Nash equilibrium and s_i randomizes over a set of actions T_i , then each action in T_i must be the best action best given \vec{s}_{-i} .

Revisiting Stag-Hunt



- Symmetric: $s_1 = s_2 = \{ \text{Stag w.p. } p, \text{ Hare w.p. } 1 p \}$
- Indifference principle:
 - Equal expected reward for Stag and Hare given the other hunter's strategy
 - > $\mathbb{E}[Stag] = p * 4 + (1 p) * 0$
 - > $\mathbb{E}[\text{Hare}] = p * 2 + (1 p) * 1$

$$> 4p = 2p + (1-p) \Rightarrow p = 1/3$$

Revisiting Rock-Paper-Scissor

- Blackboard derivation of a special case:
 - "Fully mixed"

 $\,\circ\,$ Each player uses all actions with some probability

> Symmetric

• Exercise:

> Check if other cases provide any mixed NE

P2 P1	Rock	Paper	Scissor
Rock	(0,0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0,0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0 , 0)

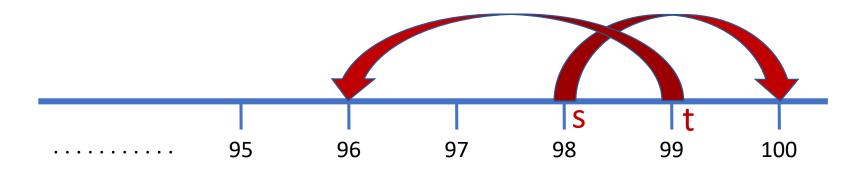
Extra Fun 1: Inspect Or Not

Inspector Driver	Inspect	Don't Inspect
Pay Fare	(-10 , -1)	(-10 , 0)
Don't Pay Fare	(-90 , 29)	(0 , -30)

- Game:
 - > Fare = 10
 - Cost of inspection = 1
 - > Fine if fare not paid = 30
 - > Total cost to driver if caught = 90
- Nash equilibrium?

Extra Fun 2: Cunning Airlines

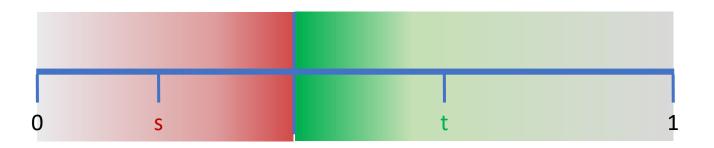
- Two travelers lose their luggage.
- Airline agrees to refund up to \$100 to each.
- Policy: Both travelers would submit a number between 2 and 99 (inclusive).
 - > If both report the same number, each gets this value.
 - If one reports a lower number (s) than the other (t), the former gets s+2, the latter gets s-2.



Extra Fun 3: Ice Cream Shop

- Two brothers, each wants to set up an ice cream shop on the beach ([0,1]).
- If the shops are at s, t (with $s \leq t$)

> The brother at s gets $\left[0, \frac{s+t}{2}\right]$, the other gets $\left[\frac{s+t}{2}, 1\right]$



Computational Complexity

- Pure Nash equilibria
 - Existence: Checking the existence of a pure Nash equilibrium can be NP-hard.
 - Computation: Computing a pure NE can be PLS-complete, even in games in which a pure NE is guaranteed to exist.
- Mixed Nash equilibria
 - Existence: Always exist due to Nash's theorem
 - Computation: Computing a mixed NE is PPAD-complete.

- Noncooperative game theory provides a framework for analyzing rational behavior.
- But it relies on many assumptions that are often violated in the real world.
- Due to this, human actors are observed to play Nash equilibria in some settings, but play something far different in other settings.

• Assumptions:

> Rationality is common knowledge.

- $\,\circ\,$ All players are rational.
- $\,\circ\,$ All players know that all players are rational.
- \circ All players know that all players know that all players are rational.
- o ... [Aumann, 1976]
- Behavioral economics
- > Rationality is perfect = "infinite wisdom"
 - Computationally bounded agents
- Full information about what other players are doing.
 Bayes-Nash equilibria

- Assumptions:
 - > No binding contracts.
 - Cooperative game theory
 - > No player can commit first.
 - Stackelberg games (will study this in a few lectures)
 - > No external help.
 - \odot Correlated equilibria
 - Humans reason about randomization using expectations.
 Prospect theory

- Also, there are often multiple equilibria, and no clear way of "choosing" one over another.
- For many classes of games, finding even a single Nash equilibrium is provably hard.
 - > Cannot expect humans to find it if your computer cannot.

- Conclusion:
 - > For human agents, take it with a grain of salt.
 - > For AI agents playing against AI agents, perfect!

