CSC304 Lecture 20

Fair Division 2: Cake-cutting, Indivisible goods

Recall: Cake-Cutting

- A heterogeneous, divisible good
 - > Represented as [0,1]
- Set of players $N = \{1, ..., n\}$
 - \triangleright Each player i has valuation V_i

- Allocation $A = (A_1, ..., A_n)$
 - > Disjoint partition of the cake

Recall: Cake-Cutting

We looked at two measures of fairness:

- Proportionality: $\forall i \in N: V_i(A_i) \geq 1/n$
 - > "Every agent should get her fair share."

- Envy-freeness: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
 - > "No agent should prefer someone else's allocation."

Four More Desiderata

Equitability

 $> V_i(A_i) = V_j(A_j)$ for all i, j.

Perfect Partition

- $> V_i(A_k) = 1/n$ for all i, k.
- > Implies equitability.
- > Guaranteed to exist [Lyapunov '40] and can be found using only poly(n) cuts [Alon '87].

Four More Desiderata

Pareto Optimality

> We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_i(B_i) \ge V_i(A_i)$ for all i and $V_i(B_i) > V_i(A_i)$ for some i.

Strategyproofness

No agent can misreport her valuation and increase her (expected) value for her allocation.

Strategyproofness

- Deterministic
 - > Bad news!
 - Theorem [Menon & Larson '17]: No deterministic SP mechanism is (even approximately) proportional.
- Randomized
 - > Good news!
 - Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that always returns an envyfree allocation.

Strategyproofness

Randomized SP Mechanism:

 \succ Compute a perfect partition, and assign the n bundles to the n players uniformly at random.

Why is this EF?

- \gt Every agent has value $^1/_n$ for her own as well as for every other agent's allocation.
- Note: We want EF in every realized allocation, not only in expectation.

Why is this SP?

> An agent is assigned a random bundle, so her expected utility is 1/n, irrespective of what she reports.

Pareto Optimality (PO)

• Definition: We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_i(B_i) \ge V_i(A_i)$ for all i and $V_i(B_i) > V_i(A_i)$ for some i.

- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

PO + EF

- Theorem [Weller '85]:
 - > There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - ▶ Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is non-trivial.
 - > This is named after John Nash.
 - Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

Example:

- > Green player has value 1 distributed evenly over $[0, \frac{2}{3}]$
- > Blue player has value 1 distributed evenly over [0,1]
- > Without loss of generality (why?) suppose:
 - Green player gets [0, x] for $x \le \frac{2}{3}$
 - Blue player gets $[x, \frac{2}{3}] \cup [\frac{2}{3}, 1] = [x, 1]$
- > Green's utility = $\frac{x}{\frac{2}{3}}$, blue's utility = 1 x
- > Maximize: $\frac{3}{2}x \cdot (1-x) \Rightarrow x = \frac{1}{2}$

Allocation
$$0$$
 1

Green has utility $\frac{3}{4}$ Blue has utility $\frac{1}{2}$

Problem

- Difficult to compute in general
 - ➤ I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz & Ye '14]:
 - > For *piecewise constant* valuations, the Nash-optimal solution can be computed in polynomial time.

- Goods cannot be shared / divided among players
 - > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Indivisible Goods: Setting

8	7	20	5
9	11	12	8
9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{\mathbb{Z}}(\{\ \square\ , \ggg\})=8+7=15$

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

Envy-freeness up to one good (EF1):

$$\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$$

- \triangleright Technically, $\exists g \in A_i$ only applied if $A_i \neq \emptyset$.
- \succ "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."

Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in a cyclic order, say 1,2,...,n,1,2,...,n,...
 - > An agent, in her turn, picks the good that she likes the most among the goods still not picked by anyone.
 - ➤ [Assignment Problem] This yields an EF1 allocation regardless of how you order the agents.
- Sadly, the allocation returned may not be Pareto optimal.

EF1+PO?

- Nash welfare to the rescue!
- Theorem [Caragiannis et al. '16]:
 - Maximizing Nash welfare achieves both EF1 and PO.
 - > But what if there are two goods and three players?
 - All allocations have zero Nash welfare (product of utilities).
 - But we cannot give both goods to a single player.
 - > Algorithm in detail:
 - Step 1: Choose a subset of players $S \subseteq N$ with the largest |S| such that it is possible to give every player in S positive utility simultaneously.
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$

Integral Nash Allocation

8	7	20	5
9	11	12	8
9	10	18	3

20 * 8 * (9+10) = 3040

8	7	20	5
9	11	12	8
9	10	18	3

(8+7) * 8 * 18 = 2160

8	7	20	5
9	11	12	8
9	10	18	3

8 * (12+8) * 10 = 1600

8	7	20	5
9	11	12	8
9	10	18	3

20 * (11+8) * 9 = 3420

8	7	20	5
9	11	12	8
9	10	18	3

Computation

- For indivisible goods, Nash-optimal solution is strongly NP-hard to compute
 - > That is, remains NP-hard even if all values are bounded.

- Open Question: Can we find an allocation that is both EF1 and PO in polynomial time?
 - > A recent paper provides a pseudo-polynomial time algorithm, i.e., its time is polynomial in n, m, and $\max_{i,g} V_i(\{g\})$.

Stronger Fairness Guarantees

- Envy-freeness up to the least valued good (EFx):
 - $\Rightarrow \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \succ "If i envies j, then removing any good from j's bundle eliminates the envy."
 - > Open question: Is there always an EFx allocation?
- Contrast this with EF1:
 - $\Rightarrow \forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - \succ "If i envies j, then removing some good from j's bundle eliminates the envy."
 - > We know there is always an EF1 allocation that is also PO.

Stronger Fairness

- To clarify the difference between EF1 and EFx:
 - > Suppose there are two players and three goods with values as follows.

	Α	В	С
P1	5	1	10
P2	0	1	10

- > If you give $\{A\}$ → P1 and $\{B,C\}$ → P2, it's EF1 but not EFx.
 - EF1 because if P1 removes C from P2's bundle, all is fine.
 - Not EFx because removing B doesn't eliminate envy.
- \succ Instead, {A,B} → P1 and {C} → P2 would be EFx.