CSC304 Lecture 20

Fair Division 2:
Cake-cutting, Indivisible goods

Recall: Cake-Cutting

- A heterogeneous, divisible good
> Represented as $[0,1]$
- Set of players $N=\{1, \ldots, n\}$
> Each player i has valuation V_{i}

- Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$
> Disjoint partition of the cake

Recall: Cake-Cutting

- We looked at two measures of fairness:
- Proportionality: $\forall i \in N: V_{i}\left(A_{i}\right) \geq 1 / n$ > "Every agent should get her fair share."
- Envy-freeness: $\forall i, j \in N: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)$
> "No agent should prefer someone else's allocation."

Four More Desiderata

- Equitability
$>V_{i}\left(A_{i}\right)=V_{j}\left(A_{j}\right)$ for all i, j.
- Perfect Partition
$>V_{i}\left(A_{k}\right)=1 / n$ for all i, k.
$>$ Implies equitability.
> Guaranteed to exist [Lyapunov '40] and can be found using only poly (n) cuts [Alon '87].

Four More Desiderata

- Pareto Optimality
$>$ We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_{i}\left(B_{i}\right) \geq V_{i}\left(A_{i}\right)$ for all i and $V_{i}\left(B_{i}\right)>$ $V_{i}\left(A_{i}\right)$ for some i.
- Strategyproofness
> No agent can misreport her valuation and increase her (expected) value for her allocation.

Strategyproofness

- Deterministic
> Bad news!
> Theorem [Menon \& Larson '17]: No deterministic SP mechanism is (even approximately) proportional.
- Randomized
> Good news!
> Theorem [Chen et al. '13, Mossel \& Tamuz '10]: There is a randomized SP mechanism that always returns an envyfree allocation.

Strategyproofness

- Randomized SP Mechanism:
> Compute a perfect partition, and assign the n bundles to the n players uniformly at random.
- Why is this EF?
> Every agent has value $1 / n$ for her own as well as for every other agent's allocation.
> Note: We want EF in every realized allocation, not only in expectation.
- Why is this SP?
> An agent is assigned a random bundle, so her expected utility is $1 / n$, irrespective of what she reports.

Pareto Optimality (PO)

- Definition: We say that A is Pareto optimal if for any other allocation B, it cannot be that $V_{i}\left(B_{i}\right) \geq$ $V_{i}\left(A_{i}\right)$ for all i and $V_{i}\left(B_{i}\right)>V_{i}\left(A_{i}\right)$ for some i.
- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

$\mathrm{PO}+\mathrm{EF}$

- Theorem [Weller '85]:
> There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
> Nash-optimal allocation: $\operatorname{argmax}_{A} \prod_{i \in N} V_{i}\left(A_{i}\right)$
$>$ Obviously, this is PO. The fact that it is EF is non-trivial.
$>$ This is named after John Nash.
- Nash social welfare = product of utilities
- Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

- Example:
> Green player has value 1 distributed evenly over $[0,2 / 3]$
> Blue player has value 1 distributed evenly over [0,1]
> Without loss of generality (why?) suppose:
- Green player gets $[0, x]$ for $x \leq 2 / 3$
- Blue player gets $[x, 2 / 3] \cup[2 / 3,1]=[x, 1]$
> Green's utility $=\frac{x}{2 / 3}$, blue's utility $=1-x$
- Maximize: $\frac{3}{2} x \cdot(1-x) \Rightarrow x=1 / 2$

Green has utility $\frac{3}{4}$
Blue has utility $\frac{1}{2}$

Problem

- Difficult to compute in general
> I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz \& Ye '14]:
> For piecewise constant valuations, the Nash-optimal solution can be computed in polynomial time.

The density function of a piecewise constant
valuation looks like this

Indivisible Goods

- Goods cannot be shared / divided among players > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Indivisible Goods：Setting

		0	捡	Y
雨	8	7	20	5
R	9	11	12	8
2	9	10	18	3

Given such a matrix of numbers，assign each good to a player． We assume additive values．So，e．g．，$V_{-2}(\{$ 国 $\})=8+7=15$

Indivisible Goods

	11	0	枹	Y
2	8	7	20	5
Q	9	11	12	8
2	9	10	18	3

Indivisible Goods

	11	0	枹	Y
率	8	7	20	5
A	9	11	12	8
2	9	10	18	3

Indivisible Goods

	11	0	枹	Y
率	8	7	20	5
A	9	11	12	8
2	9	10	18	3

Indivisible Goods

	1	0	成	Y
2	8	7	20	5
R	9	11	12	8
2.	9	10	18	3

Indivisible Goods

- Envy-freeness up to one good (EF1):

$$
\forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)
$$

$>$ Technically, $\exists g \in A_{j}$ only applied if $A_{j} \neq \emptyset$.
> "I i envies j, there must be some good in j 's bundle such that removing it would make i envy-free of j."

- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
> Agents take turns in a cyclic order, say $1,2, \ldots, n, 1,2, \ldots, n, \ldots$
> An agent, in her turn, picks the good that she likes the most among the goods still not picked by anyone.
> [Assignment Problem] This yields an EF1 allocation regardless of how you order the agents.
- Sadly, the allocation returned may not be Pareto optimal.

$\mathrm{EF} 1+\mathrm{PO}$?

- Nash welfare to the rescue!
- Theorem [Caragiannis et al. '16]:
> Maximizing Nash welfare achieves both EF1 and PO.
$>$ But what if there are two goods and three players?
- All allocations have zero Nash welfare (product of utilities).
- But we cannot give both goods to a single player.
> Algorithm in detail:
- Step 1: Choose a subset of players $S \subseteq N$ with the largest $|S|$ such that it is possible to give every player in S positive utility simultaneously.
- Step 2: Choose $\operatorname{argmax}_{A} \prod_{i \in S} V_{i}\left(A_{i}\right)$

Integral Nash Allocation

	18	0	成	Y
28	8	7	20	5
R	9	11	12	8
20	9	10	18	3

$20 * 8 *(9+10)=3040$

	13	-0	120	Y
\%	8	7	20	5
0	9	11	12	8
200	9	10	18	3

$$
(8+7) * 8 * 18=2160
$$

	18	en		Y
*	8	7	20	5
R	9	11	12	8
0	9	10	18	3

$$
8 *(12+8) * 10=1600
$$

	18	en		Y
\%	8	7	20	5
\%	9	11	12	8
-20	9	10	18	3

$20 *(11+8) * 9=3420$

	5	－0	俭	Y
	8	7	20	5
2	9	11	12	8
	9	10	18	3

Computation

- For indivisible goods, Nash-optimal solution is strongly NP-hard to compute
$>$ That is, remains NP-hard even if all values are bounded.
- Open Question: Can we find an allocation that is both EF1 and PO in polynomial time?
> A recent paper provides a pseudo-polynomial time algorithm, i.e., its time is polynomial in n, m, and $\max _{i, g} V_{i}(\{g\})$.

Stronger Fairness Guarantees

- Envy-freeness up to the least valued good (EFx):
$\Rightarrow \forall i, j \in N, \forall g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)$
$>$ "If i envies j, then removing any good from j 's bundle eliminates the envy."
> Open question: Is there always an EFx allocation?
- Contrast this with EF1:
$\Rightarrow \forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)$
$>$ "If i envies j, then removing some good from j 's bundle eliminates the envy."
> We know there is always an EF1 allocation that is also PO.

Stronger Fairness

- To clarify the difference between EF1 and EFx: > Suppose there are two players and three goods with values as follows.

$>$ If you give $\{A\} \rightarrow P 1$ and $\{B, C\} \rightarrow P 2$, it's EF1 but not EFx.
- EF1 because if P1 removes C from P2's bundle, all is fine.
- Not EFx because removing B doesn't eliminate envy.
$>$ Instead, $\{\mathrm{A}, \mathrm{B}\} \rightarrow \mathrm{P} 1$ and $\{\mathrm{C}\} \rightarrow \mathrm{P} 2$ would be EFx.

