CSC304 Lecture 2

Game Theory (Basic Concepts)

Game Theory

- How do rational, self-interested agents act?
- Each agent has a set of possible actions
- Rules of the game:
> Rewards for the agents as a function of the actions taken by different agents
- We focus on noncooperative games
> No external force or agencies enforcing coalitions

Normal Form Games

- A set of players $\mathrm{N}=\{1, \ldots, n\}$
- A set of actions S
> Action of player $i \rightarrow s_{i}$
> Action profile $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$
- For each player i, utility function $u_{i}: S^{n} \rightarrow \mathbb{R}$
$>$ Given action profile $\vec{s}=\left(s_{1}, \ldots, s_{n}\right)$, each player i gets reward $u_{i}\left(s_{1}, \ldots, s_{n}\right)$

Normal Form Games

Recall: Prisoner's dilemma
$S=\{$ Silent,Betray $\}$

John's Actions	Stay Silent	Betray
Sam's Actions	$(-1,-1)$	$(-3,0)$
Stay Silent	$(0,-3)$	$(-2,-2)$
Betray		
$u_{\text {Sam }}($ Betray, Silent $)$		

Player Strategies

- Pure strategy
> Choose an action to play
> E.g., "Betray"
> For our purposes, simply an action.
- In repeated or multi-move games (like Chess), need to choose an action to play at every step of the game based on history.
- Mixed strategy
> Choose a probability distribution over actions
> Randomize over pure strategies
> E.g., "Betray with probability 0.3, and stay silent with probability 0.7"

Domination among Strategies

- s_{i} dominates s_{i}^{\prime} if player i is always "better off" playing s_{i} than s_{i}^{\prime}, regardless of the strategies of other players.
- Two variants: weak and strict domination
$>u_{i}\left(s_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \vec{s}_{-i}\right), \forall \vec{s}_{-i} \quad$ (needed for both)
> Strict inequality for some $\vec{s}_{-i} \leftarrow s_{i}$ weakly dominates s_{i}^{\prime}
> Strict inequality for all $\vec{s}_{-i} \quad \leftarrow s_{i}$ strictly dominates s_{i}^{\prime}

Example

	P2	b_{1}
P1	$(2,3)$	$(4,1)$
a_{1}	$(2,5)$	$(6,3)$
a_{2}	$(3,1)$	$(5,2)$
a_{3}		

- P1
$>a_{1}$ vs a_{2} ?
$>a_{1}$ vs a_{3} ?
$>a_{2}$ Vs a_{3} ?
- P2
$>b_{1}$ vs b_{2} ?

Dominant Strategies

- s_{i} is a strictly (weakly) dominant strategy for player i if it strictly (weakly) dominates every other strategy
- Strict dominance is a strong concept
> A player who has a strictly dominant strategy has no reason not to play it
> If every player has a strictly dominant strategy, such strategies will very likely dictate the outcome of the game

Example

	P2	b_{1}
P1	$(2,3)$	$(4,1)$
a_{1}	$(2,5)$	$(6,3)$
a_{2}	$(3,1)$	$(5,2)$
a_{3}		

- Does either player have a dominant strategy?

Example

	P2	b_{1}	b_{2}	b_{3}
a_{1}	$(2,3)$	$(4,1)$	$(2,3)$	
a_{2}	$(2,5)$	$(6,3)$	$(3,5)$	
a_{3}	$(3,1)$	$(5,2)$	$(4,3)$	

- How about now?

Example

	P2	b_{1}	b_{2}	b_{3}
a_{1}	$(2,3)$	$(4,1)$	$(2,4)$	
a_{2}	$(2,5)$	$(6,3)$	$(3,6)$	
a_{3}	$(3,1)$	$(5,2)$	$(4,3)$	

- How about now?

Example: Prisoner's Dilemma

- Recap:

John's Actions	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$

- Betraying is a strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
> No single strategy dominates every other strategy
> But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
> Can remove their dominated strategies
> Might reveal a newly dominant strategy
- Two variants depending on what we eliminate: > Only strictly dominated? Or also weakly dominated?

Iterated Elimination

- Toy example:
> Microsoft vs Startup
> Enter the market or stay out?

Microsoft	Startup	Enter
Enter	$(2,-2)$	$\mathbf{(4 , 0)}$
Stay Out	$(0,4)$	$(0,0)$

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- More serious: "Guess $2 / 3$ of average"
> Each student guesses a real number between 0 and 100 (inclusive)
> The student whose number is the closest to $2 / 3$ of the average of all numbers wins!
- In-class poll!
- Recall: We have a unique optimal strategy only if everyone is rational, and everyone thinks everyone is rational, and so on.

Nash Equilibrium

- What if we don't find a unique outcome after iterated elimination of dominated strategies?

Students	Professor	Attend
Attend	$\mathbf{(3 , 1)}$	Be Absent
Be Absent	$\mathbf{(- 1 , - 1)}$	$\mathbf{(0 , - 3)}$

Nash Equilibrium

- Nash Equilibrium
$>$ A strategy profile \vec{s} is in Nash equilibrium if s_{i} is the best action for player i given that other players are playing \vec{s}_{-i}

$$
u_{i}\left(s_{i}, \vec{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \vec{s}_{-i}\right), \forall s_{i}^{\prime}
$$

> Each player's strategy is only best given the strategies of others, and not regardless.

Recap: Prisoner's Dilemma

Sam's Actions John's Actions	Stay Silent	Betray
Stay Silent	$(-1,-1)$	$(-3,0)$
Betray	$(0,-3)$	$(-2,-2)$

- Nash equilibrium?
- Food for thought:
> What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Recap: Microsoft vs Startup

Startup	Enter	Stay Out
Microsoft	$(2,-2)$	
Enter	$(0,4)$	$(0,0)$
Stay Out	$(0,0)$	

- Nash equilibrium?

Recap: Attend or Not

Professor	Attend	Be Absent
Attend	$(\mathbf{3}, \mathbf{1})$	$\longrightarrow \mathbf{(- 1 , - 3)}$
Be Absent	$\mathbf{(- 1 , - 1)} \longrightarrow \mathbf{(0 , 0)}$	

- Nash equilibrium?

Example: Stag Hunt

Hunter 2 Hunter 1	Stag	Hare
Stag	$(4,4)$	$(0,2)$
Hare	$(2,0)$	$(1,1)$

- Game:
> Each hunter decides to hunt stag or hare
> Stag $=8$ days of food, hare $=2$ days of food
> Catching stag requires both hunters, catching hare requires only one
> If they catch one animal together, they share
- Nash equilibrium?

