CSC304 Lecture 2

Game Theory (Basic Concepts)

Game Theory

- How do rational, self-interested agents act?
- Each agent has a set of possible actions
- Rules of the game:
 - Rewards for the agents as a function of the actions taken by different agents

We focus on noncooperative games
 No external force or agencies enforcing coalitions

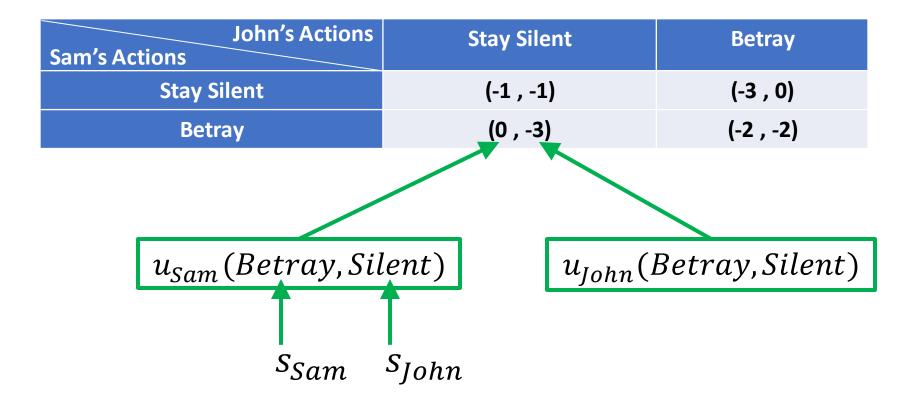
Normal Form Games

- A set of players $N = \{1, ..., n\}$
- A set of actions S
 - > Action of player $i \rightarrow s_i$
 - > Action profile $\vec{s} = (s_1, ..., s_n)$
- For each player *i*, utility function $u_i: S^n \to \mathbb{R}$
 - > Given action profile $\vec{s} = (s_1, ..., s_n)$, each player i gets reward $u_i(s_1, ..., s_n)$

Normal Form Games

Recall: Prisoner's dilemma

$$S = \{\text{Silent}, \text{Betray}\}$$



Player Strategies

- Pure strategy
 - > Choose an action to play
 - ≻ E.g., "Betray"
 - > For our purposes, simply an action.
 - In repeated or multi-move games (like Chess), need to choose an action to play at every step of the game based on history.
- Mixed strategy
 - > Choose a probability distribution over actions
 - > Randomize over pure strategies
 - E.g., "Betray with probability 0.3, and stay silent with probability 0.7"

Domination among Strategies

- s_i dominates s'_i if player *i* is always "better off" playing s_i than s'_i , regardless of the strategies of other players.
- Two variants: weak and strict domination

> $u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall \vec{s}_{-i}$ (needed for both)

> Strict inequality for some $\vec{s}_{-i} \leftarrow s_i$ weakly dominates s'_i

> Strict inequality for all $\vec{s}_{-i} \leftarrow s_i$ strictly dominates s'_i

P2 P1	b ₁	b ₂
<i>a</i> ₁	(2 , 3)	(4 , 1)
<i>a</i> ₂	(2 , 5)	(6 , 3)
<i>a</i> ₃	(3 , 1)	(5 , 2)

- P1
 - > $a_1 vs a_2$? > $a_1 vs a_3$? > $a_2 vs a_3$?
- P2

$> b_1 \text{ vs } b_2 ?$

Dominant Strategies

- *s_i* is a strictly (weakly) dominant strategy for player
 i if it strictly (weakly) dominates every other
 strategy
- Strict dominance is a strong concept
 - > A player who has a strictly dominant strategy has no reason *not* to play it
 - If every player has a strictly dominant strategy, such strategies will very likely dictate the outcome of the game

P2 P1	b ₁	b ₂
<i>a</i> ₁	(2 , 3)	(4 , 1)
<i>a</i> ₂	(2 , 5)	(6 , 3)
<i>a</i> ₃	(3 , 1)	(5 , 2)

• Does either player have a dominant strategy?

P2 P1	b ₁	b ₂	b ₃
<i>a</i> ₁	(2 , 3)	(4 , 1)	(2 , 3)
<i>a</i> ₂	(2 , 5)	(6 , 3)	(3 , 5)
<i>a</i> ₃	(3 , 1)	(5 , 2)	(4 , 3)

• How about now?

P2 P1	b ₁	b ₂	b ₃
<i>a</i> ₁	(2 , 3)	(4 , 1)	(2,4)
<i>a</i> ₂	(2 , 5)	(6 , 3)	(3,6)
<i>a</i> ₃	(3 , 1)	(5 , 2)	(4 , 3)

• How about now?

Example: Prisoner's Dilemma

• Recap:

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

• Betraying is a strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
 - No single strategy dominates every other strategy
 - > But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
 Can remove their dominated strategies
 Might reveal a newly dominant strategy
- Two variants depending on what we eliminate:
 > Only strictly dominated? Or also weakly dominated?

Iterated Elimination

- Toy example:
 - > Microsoft vs Startup
 - Enter the market or stay out?

Startup	Enter	Stay Out
Enter	(2 , -2)	(4 , 0)
Stay Out	(0,4)	(0 , 0)
Stay Out	(0,4)	(0,0)

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- More serious: "Guess 2/3 of average"
 - > Each student guesses a real number between 0 and 100 (inclusive)
 - The student whose number is the closest to 2/3 of the average of all numbers wins!
- In-class poll!
- Recall: We have a unique optimal strategy only if everyone is rational, and everyone thinks everyone is rational, and so on.

Nash Equilibrium

• What if we don't find a unique outcome after iterated elimination of dominated strategies?

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 , 0)

Nash Equilibrium

- Nash Equilibrium
 - > A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player *i* given that other players are playing \vec{s}_{-i}

$$u_{i}(s_{i}, \vec{s}_{-i}) \geq u_{i}(s_{i}', \vec{s}_{-i}), \forall s_{i}'$$
No quantifier on \vec{s}_{-i}

Each player's strategy is only best given the strategies of others, and not regardless.

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Nash equilibrium?
- Food for thought:
 - > What is the relation between iterated elimination of weakly/strictly dominated strategies and Nash equilibria?

Recap: Microsoft vs Startup

Startup Microsoft	Enter	Stay Out
Enter	(2 , -2)	(4 , 0)
Stay Out	(0 , 4)	(0 , 0)

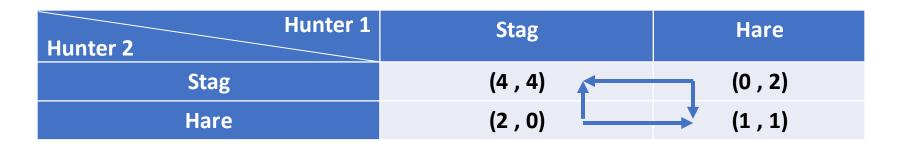
• Nash equilibrium?

Recap: Attend or Not

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0 <i>,</i> 0)

• Nash equilibrium?

Example: Stag Hunt



• Game:

- > Each hunter decides to hunt stag or hare
- Stag = 8 days of food, hare = 2 days of food
- Catching stag requires both hunters, catching hare requires only one
- If they catch one animal together, they share
- Nash equilibrium?