CSC304 Lecture 19

Fair Division 1: Cake-Cutting

[Image and Illustration Credit: Ariel Procaccia]

CSC304 - Nisarg Shah

Cake-Cutting

- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]
 - > Almost without loss of generality
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$

> A finite union of disjoint intervals

Agent Valuations

- Each player *i* has a valuation V_i that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X$ s.t. $V_i(Y) = \lambda V_i(X)$

Fairness Goals

- Allocation: disjoint partition A = (A₁, ..., A_n)
 > A_i = piece of the cake given to player i
- Desired fairness properties:

> Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

> Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N$: $V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. **Prop** \Rightarrow EF
 - 2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 players
- Player 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.
- This is envy-free and therefore proportional.
 > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for *n* players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which require infinite bits to encode.
- We want running time as a function of *n*.

Robertson-Webb Model

- We restrict access to valuation V_i through two types of queries:
 - > $Eval_i(x, y)$ returns $\alpha = V_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha)$ returns any y such that $V_i([x, y]) = \alpha$ \circ If $V_i([x, 1]) < \alpha$, return 1.

Robertson-Webb Model

- Two types of queries:
 - > $\operatorname{Eval}_i(x, y) = V_i([x, y])$ > $\operatorname{Cut}_i(x, \alpha) = y$ s.t. $V_i([x, y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n = 2?
- Answer: 2

- Protocol for finding a proportional allocation for n players
- Referee starts at 0, and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth 1/n to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

- Robertson-Webb model? Cut-Eval queries?
 Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value 1/n from the smallest next piece.
 - > Ask each remaining player a cut query to mark a point where her value is 1/n from the current point.
 - Directly move the knife to the leftmost mark, and give that piece to that player.

- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - $(3.) \quad \Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

EVEN-PAZ (RECURSIVE)

- Input: Interval [x, y], number of players n
 For simplicity, assume n = 2^k for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player *i* mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be mark n/2 from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.

Even-Paz

- Theorem: EVEN-PAZ returns a Prop allocation.
- Inductive Proof:
 - ▶ Hypothesis: With *n* players, EVEN-PAZ ensures that for each player *i*, $V_i(A_i) \ge (1/n) \cdot V_i([x, y])$

• Prop follows because initially $V_i([x, y]) = V_i([0, 1]) = 1$

- > Base case: n = 1 is trivial.
- > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
- > Take the 2^{k-1} left players.
 - Every left player *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$
 - If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Theorem: EVEN-PAZ uses $O(n \log n)$ queries.
- Simple Proof:
 - > Protocol runs for log *n* rounds.
 - > In each round, each player is asked one cut query.
 - > QED!

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs Ω(n log n) operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.

n

- > [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
- Last year, the long-standing major open question of "bounded EF protocol" was resolved!

Next Lecture

- More desiderata
- Allocation of indivisible goods