CSC304 Lecture 19

Fair Division 1: Cake-Cutting

[Image and Illustration Credit: Ariel Procaccia]

Cake-Cutting

- A heterogeneous, divisible good
> Heterogeneous: it may be valued differently by different individuals
> Divisible: we can share/divide it between individuals
- Represented as $[0,1]$
> Almost without loss of generality

- Set of players $N=\{1, \ldots, n\}$
- Piece of cake $X \subseteq[0,1]$
> A finite union of disjoint intervals

Agent Valuations

- Each player i has a valuation V_{i} that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y=\emptyset$,

$$
V_{i}(X)+V_{i}(Y)=V_{i}(X \cup Y)
$$

- Normalized: $V_{i}([0,1])=1$
- Divisible: $\forall \lambda \in[0,1]$ and X, $\exists Y \subseteq X$ s.t. $V_{i}(Y)=\lambda V_{i}(X)$

Fairness Goals

- Allocation: disjoint partition $A=\left(A_{1}, \ldots, A_{n}\right)$ $>A_{i}=$ piece of the cake given to player i
- Desired fairness properties:
> Proportionality (Prop):

$$
\forall i \in N: V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

> Envy-Freeness (EF):

$$
\forall i, j \in N: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

Fairness Goals

- Prop: $\forall i \in N: V_{i}\left(A_{i}\right) \geq 1 / n$
- EF: $\forall i, j \in N: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)$
- Question: What is the relation between proportionality and EF?

1. Prop $\Rightarrow E F$
2.) $\mathrm{EF} \Rightarrow$ Prop
2. Equivalent
3. Incomparable

Cut-And-Choose

- Algorithm for $n=2$ players
- Player 1 divides the cake into two pieces X, Y s.t.

$$
V_{1}(X)=V_{1}(Y)=1 / 2
$$

- Player 2 chooses the piece she prefers.
- This is envy-free and therefore proportional. > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for n players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_{i}, which require infinite bits to encode.
- We want running time as a function of n.

Robertson-Webb Model

- We restrict access to valuation V_{i} through two types of queries:
$>\operatorname{Eval}_{i}(x, y)$ returns $\alpha=V_{i}([x, y])$
$>\operatorname{Cut}_{i}(x, \alpha)$ returns any y such that $V_{i}([x, y])=\alpha$
- If $V_{i}([x, 1])<\alpha$, return 1 .

Robertson-Webb Model

- Two types of queries:
$>\operatorname{Eval}_{i}(x, y)=V_{i}([x, y])$
$>\operatorname{Cut}_{i}(x, \alpha)=y$ s.t. $V_{i}([x, y])=\alpha$
- Question: How many queries are needed to find an EF allocation when $n=2$?
- Answer: 2

DUBINS-SPANIER

- Protocol for finding a proportional allocation for n players
- Referee starts at 0 , and moves a knife to the right.
- Repeat: When the piece to the left of the knife is worth $1 / n$ to some player, the player shouts "stop", gets that piece, and exits.
- The last player gets the remaining piece.

DUBINS-SPANIER

DUBINS-SpANIER

- Robertson-Webb model? Cut-Eval queries?
> Moving knife is not really needed.
- At each stage, we want to find the remaining player that has value $1 / n$ from the smallest next piece.
> Ask each remaining player a cut query to mark a point where her value is $1 / n$ from the current point.
> Directly move the knife to the leftmost mark, and give that piece to that player.

Visual Proof of Proportionality

DUBINS-SPANIER

- Question: What is the complexity of the DubinsSpanier protocol in the Robertson-Webb model?

1. $\Theta(n)$
2. $\Theta(n \log n)$
(3.) $\Theta\left(n^{2}\right)$
3. $\Theta\left(n^{2} \log n\right)$

Even-Paz (Recursive)

- Input: Interval $[x, y]$, number of players n
> For simplicity, assume $n=2^{k}$ for some k
- If $n=1$, give $[x, y]$ to the single player.
- Otherwise, let each player i mark z_{i} s.t.

$$
V_{i}\left(\left[x, z_{i}\right]\right)=\frac{1}{2} V_{i}([x, y])
$$

- Let z^{*} be mark $n / 2$ from the left.
- Recurse on $\left[x, z^{*}\right]$ with the left $n / 2$ players, and on $\left[z^{*}, y\right]$ with the right $n / 2$ players.

Even-Paz

Even-Paz

- Theorem: Even-Paz returns a Prop allocation.
- Inductive Proof:
> Hypothesis: With n players, Even-Paz ensures that for each player $i, V_{i}\left(A_{i}\right) \geq(1 / n) \cdot V_{i}([x, y])$
- Prop follows because initially $V_{i}([x, y])=V_{i}([0,1])=1$
> Base case: $n=1$ is trivial.
$>$ Suppose it holds for $n=2^{k-1}$. We prove for $n=2^{k}$.
> Take the 2^{k-1} left players.
- Every left player i has $V_{i}\left(\left[x, z^{*}\right]\right) \geq(1 / 2) V_{i}([x, y])$
- If it gets A_{i}, by induction, $V_{i}\left(A_{i}\right) \geq \frac{1}{2^{k-1}} V_{i}\left(\left[x, z^{*}\right]\right) \geq \frac{1}{2^{k}} V_{i}([x, y])$

Even-Paz

- Theorem: Even-Paz uses $O(n \log n)$ queries.
- Simple Proof:
> Protocol runs for $\log n$ rounds.
> In each round, each player is asked one cut query. > QED!

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.
- Thus, the Even-Paz protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For n-player EF cake-cutting:
> [Brams and Taylor, 1995] give an unbounded EF protocol.
$>$ [Procaccia 2009] shows $\Omega\left(n^{2}\right)$ lower bound for EF.
> Last year, the long-standing major open question of "bounded EF protocol" was resolved!
$>$ [Aziz and Mackenzie, 2016]: $O\left(n^{n^{n^{n^{n}}}}\right)$ protocol! - Yes, it's not a typo!

Next Lecture

- More desiderata
- Allocation of indivisible goods

