CSC304 Lecture 18

Voting 4: Impartial selection

Recap

- The Gibbard-Satterthwaite theorem says that we cannot design strategyproof voting rules that are also nondictatorial and onto.
- Restricted settings (e.g., facility location on a line)
> There exist strategyproof, nondictatorial, and onto rules.
> They can be used to (perfectly or approximately) optimize the societal goal
- Today, we will study another interesting setting called impartial selection

Impartial Selection

- "How can we select k people out of n people?"
> Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...
- Model
> Input: a directed graph $G=(V, E)$
> Nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$ are the n people
> Edge $e=\left(v_{i}, v_{j}\right) \in E$: v_{i} supports/approves of v_{j}
- We do not allow or ignore self-edges $\left(v_{i}, v_{i}\right)$
$>$ Output: a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right|=k$
$>k \in\{1, \ldots, n-1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if $v_{i} \in$ $f(G)$ does not depend on the outgoing edges of v_{i} $>v_{i}$ cannot manipulate his outgoing edges to get selected
$>\mathrm{Q}$: But the definition says v_{i} can neither go from $v_{i} \notin f(G)$ to $v_{i} \in f(G)$, nor from $v_{i} \in f(G)$ to $v_{i} \notin f(G)$. Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)}|i n(v)|$
$>\operatorname{in}(v)=$ set of nodes that have an edge to v
$>\operatorname{out}(v)=$ set of nodes that v has an edge to
$>$ Note: OPT will pick the k nodes with the highest indegrees

Optimal $=$ Impartial

- An optimal 1 -selecton rule must select v_{1} or v_{2}
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q : For $k=1$, what about the following rule?

Rule: "Select the lowest index vertex in out (v_{1}). If $\operatorname{out}\left(v_{1}\right)=\emptyset$, select v_{2}."
> A. Impartial + constant approximation
-B. Impartial + bad approximation
> C. Not impartial + constant approximation
> D. Not impartial + bad approximation

No Finite Approximation $:$

- Theorem [Alon et al. 2011] For every $k \in\{1, \ldots, n-1\}$, there is no impartial k selection rule with a finite approximation ratio.
- Proof:
> For small k, this is trivial. E.g., consider $k=1$.
- What if G has two nodes v_{1} and v_{2} that point to each other, and there are no other edges?
o For finite approximation, the rule must choose either v_{1} or v_{2}
- Say it chooses v_{1}. If v_{2} now removes his edge to v_{1}, the rule must choose v_{2} for any finite approximation.
o Same argument as before. But applies to any "finite approximation rule", and not just the optimal rule.

No Finite Approximation $)^{\circ}$

- Theorem [Alon et al. 2011] For every $k \in\{1, \ldots, n-1\}$, there is no impartial k selection rule with a finite approximation ratio.
- Proof:
> Proof is more intricate for larger k. Let's do $k=n-1$.
- $k=n-1$: given a graph, "eliminate" a node.
> Suppose for contradiction that there is such a rule f.
> W.l.o.g., say v_{n} is eliminated in the empty graph.
> Consider a family of graphs in which a subset of $\left\{v_{1}, \ldots, v_{n-1}\right\}$ have edges to v_{n}.

No Finite Approximation $:$

- Proof ($k=n-1$ continued):
> Consider star graphs in which a non-empty subset of $\left\{v_{1}, \ldots, v_{n-1}\right\}$ have edge to v_{n}, and there are no other edges
- Represented by bit strings $\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\}$
> v_{n} cannot be eliminated in any star graph

- Otherwise we have infinite approximation
$>f$ maps $\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\}$ to $\{1, \ldots, n-1\}$
o "Who will be eliminated?"
- Impartiality: $f(\vec{x})=i \Leftrightarrow f\left(\vec{x}+\vec{e}_{i}\right)=i$
- \vec{e}_{i} has 1 at $i^{\text {th }}$ coordinate, 0 elsewhere
- In words, i cannot prevent elimination by adding or removing his edge to v_{n}

No Finite Approximation $)^{\circ}$

- $\operatorname{Proof}(k=n-1$ continued):
$>f:\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\} \rightarrow\{1, \ldots, n-1\}$
$>f(\vec{x})=i \Leftrightarrow f\left(\vec{x}+\vec{e}_{i}\right)=i$
$\circ \vec{e}_{i}$ has 1 only in $i^{\text {th }}$ coordinate
> Pairing implies...
- The number of strings on which f outputs i is even, for every i.
- Thus, total number of strings in the domain must be even too.
- But total number of strings is $2^{n-1}-1$ (odd)
> So impartiality must be violated for some pair of \vec{x} and $\vec{x}+\vec{e}_{i}$

Back to Impartial Selection

- Question: So what can we do to select impartially?
- Answer: Randomization!
> Impartiality now requires that the probability of an agent being selected be independent of his outgoing edges.
- Examples: Randomized Impartial Mechanisms
> Choose k nodes uniformly at random
- Sadly, this still has arbitrarily bad approximation.
- Imagine having k special nodes with indegree $n-1$, and all other nodes having indegree 0.
- Mechanism achieves $(k / n) * O P T \Rightarrow$ approximation $=n / k$
- Good when k is comparable to n, but bad when k is small.

Random Partition

- Idea:
$>$ What if we partition V into V_{1} and V_{2}, and select k nodes from V_{1} based only on edges coming to them from V_{2} ?
- Mechanism:
> Assign each node to V_{1} or V_{2} i.i.d. with probability $1 / 2$
$>$ Choose $V_{i} \in\left\{V_{1}, V_{2}\right\}$ at random
$>$ Choose k nodes from V_{i} that have most incoming edges from nodes in V_{3-i}

Random Partition

- Analysis:
> Goal: approximate $I=\#$ edges incoming to OPT.
$\circ I_{1}=\#$ edges $V_{2} \rightarrow O P T \cap V_{1}, I_{2}=\#$ edges $V_{1} \rightarrow O P T \cap V_{2}$
$>$ Note: $E\left[I_{1}+I_{2}\right]=I / 2$. (WHY?)
$>$ W.p. $1 / 2$, we pick k nodes in V_{1} with the most incoming edges from $V_{2} \Rightarrow$ \# incoming edges $\geq I_{1}$ (WHY?)
$\circ\left|O P T \cap V_{1}\right| \leq k ; O P T \cap V_{1}$ has I_{1} incoming edges from V_{2}
$>$ W.p. $1 / 2$, we pick k nodes in V_{2} with the most incoming edges from $V_{1} \Rightarrow$ \# incoming edges $\geq I_{2}$
$>\mathrm{E}[\#$ incoming edges $] \geq E\left[\left(\frac{1}{2}\right) \cdot I_{1}+\left(\frac{1}{2}\right) \cdot I_{2}\right]=\frac{I}{4}$

Random Partition

- Improvement
> More generally, we can divide into ℓ parts, and pick k / ℓ nodes from each part based on incoming edges from all other parts.
- Theorem [Alon et al. 2011]:
$>\ell=2$ gives a 4-approximation.
> For $k \geq 2, \ell \sim k^{1 / 3}$ gives $1+O\left(\frac{1}{k^{1 / 3}}\right)$ approximation.

Better Approximations

- [Alon et al. 2011] conjectured that for randomized impartial 1-selection...
> (For which their mechanism is a 4-approximation)
$>$ It should be possible to achieve a 2-approximation.
> Recently proved by [Fischer \& Klimm, 2014]
> Permutation mechanism:
- Select a random permutation $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of the vertices.
- Start by selecting $y=\pi_{1}$ as the "current answer".

○ At any iteration t, let $y \in\left\{\pi_{1}, \ldots, \pi_{t}\right\}$ be the current answer.
○ From $\left\{\pi_{1}, \ldots, \pi_{t}\right\} \backslash\{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y=\pi_{t+1}$.

Better Approximations

- 2-approximation is tight.
$>$ In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges.
> Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.
- The best impartial mechanism selects u and v with probability $1 / 2$ in every case, and achieves 2 -approximation.
- But this is because $n-2$ nodes are not voting!
$>$ What if every node must have an outgoing edge?
> [Fischer \& Klimm]:
○ Permutation mechanism gives $12 / 7=1.714$ approximation.
- No mechanism gives better than 2/3 approximation.
- Open question to achieve better than $12 / 7$.

The rest of this lecture is not part of the syllabus.

PageRank

- An extension of the impartial selection problem
> Instead of selecting k nodes, we want to rank all nodes
- The PageRank Problem: Given a directed graph, rank all nodes by their "importance".
> Think of the web graph, where nodes are webpages, and a directed (u, v) edge means u has a link to v.
- Questions:
> What properties do we want from such a rule?
> What rule satisfies these properties?

PageRank

- Here is the PageRank Algorithm:
> Start from any node in the graph.
> At each iteration, choose an outgoing edge of the current node, uniformly at random among all its outgoing edges.
> Move to the neighbor node on that edge.
$>$ In the limit of $T \rightarrow \infty$ iterations, measure the fraction of time the "random walk" visits each node.
> Rank the nodes by these "stationary probabilities".
- Google uses (a version of) this algorithm
> It's seems a reasonable algorithm.
> What nice axioms might it satisfy?

Axioms

- Axiom 1 (Isomorphism)
> Permuting node names permutes the final ranking.
- Axiom 2 (Vote by Committee)
> Voting through intermediate fake nodes cannot change the ranking.
- Axiom 3 (Self Edge)
$>v$ adding a self edge cannot change the ordering of the other nodes.
- Axiom 4 (Collapsing)
> Merging identically voting nodes cannot change the ordering of the other nodes.
 iom 5 (Proxy)
> If a set of nodes with equal score vote for v through a proxy, it should not be different than voting directly.

PageRank

- Theorem [Altman and Tennenholtz, 2005]: The PageRank algorithm satisfies these five axioms, and is the unique algorithm to satisfy all five axioms.
- That is, any algorithm that satisfies all five axioms must output the ranking returned by PageRank on every single graph.

