CSC304 Lecture 18

Voting 4: Impartial selection

Recap

- The Gibbard-Satterthwaite theorem says that we cannot design strategyproof voting rules that are also nondictatorial and onto.
- Restricted settings (e.g., facility location on a line)
 - > There exist strategyproof, nondictatorial, and onto rules.
 - > They can be used to (perfectly or approximately) optimize the societal goal
- Today, we will study another interesting setting called *impartial selection*

Impartial Selection

• "How can we select k people out of n people?"

> Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

Model

- > Input: a *directed* graph G = (V, E)
- > Nodes $V = \{v_1, \dots, v_n\}$ are the *n* people
- ≻ Edge $e = (v_i, v_j) \in E: v_i$ supports/approves of v_j

 \circ We do not allow or ignore self-edges (v_i, v_i)

- > Output: a subset $V' \subseteq V$ with |V'| = k
- ≻ $k \in \{1, ..., n 1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if v_i ∈ f(G) does not depend on the outgoing edges of v_i
 v_i cannot manipulate his outgoing edges to get selected
 Q: But the definition says v_i can neither go from v_i ∉ f(G) to v_i ∈ f(G), nor from v_i ∈ f(G) to v_i ∉ f(G). Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)} |in(v)|$

in(v) = set of nodes that have an edge to v

- > out(v) = set of nodes that v has an edge to
- Note: OPT will pick the k nodes with the highest indegrees

Optimal \neq Impartial

- An optimal 1-selecton rule must select v_1 or v_2
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For k = 1, what about the following rule? Rule: "Select the lowest index vertex in $out(v_1)$. If $out(v_1) = \emptyset$, select v_2 ."
 - A. Impartial + constant approximation
 B. Impartial + bad approximation
 C. Not impartial + constant approximation
 - D. Not impartial + bad approximation

No Finite Approximation $\ensuremath{\mathfrak{S}}$

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- > For small k, this is trivial. E.g., consider k = 1.
 - \circ What if G has two nodes v_1 and v_2 that point to each other, and there are no other edges?
 - \circ For finite approximation, the rule must choose either v_1 or v_2
 - \circ Say it chooses v_1 . If v_2 now removes his edge to v_1 , the rule must choose v_2 for any finite approximation.
 - Same argument as before. But applies to any "finite approximation rule", and not just the optimal rule.

No Finite Approximation $\ensuremath{\mathfrak{S}}$

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- > Proof is more intricate for larger k. Let's do k = n 1. $\circ k = n - 1$: given a graph, "eliminate" a node.
- > Suppose for contradiction that there is such a rule f.
- > W.I.o.g., say v_n is eliminated in the empty graph.
- > Consider a family of graphs in which a subset of $\{v_1, \dots, v_{n-1}\}$ have edges to v_n .

No Finite Approximation 😁

• Proof (k = n - 1 continued):

> Consider *star graphs* in which a non-empty subset of $\{v_1, \dots, v_{n-1}\}$ have edge to v_n , and there are no other edges

 \circ Represented by bit strings $\{0,1\}^{n-1}\setminus\{\overline{0}\}$

- $> v_n$ cannot be eliminated in any star graph • Otherwise we have infinite approximation
- > f maps $\{0,1\}^{n-1} \setminus \{\vec{0}\}$ to $\{1, ..., n-1\}$ ○ "Who will be eliminated?"
- > Impartiality: $f(\vec{x}) = i \Leftrightarrow f(\vec{x} + \vec{e}_i) = i$ $\circ \vec{e}_i$ has 1 at i^{th} coordinate, 0 elsewhere • In words, *i* cannot prevent elimination by adding or removing his edge to v_n

No Finite Approximation $\ensuremath{\mathfrak{S}}$

• Proof (k = n - 1 continued):

$$\succ f: \{0,1\}^{n-1} \backslash \{ \overrightarrow{0} \} \rightarrow \{1, \dots, n-1\}$$

>
$$f(\vec{x}) = i \iff f(\vec{x} + \vec{e}_i) = i$$

○ \vec{e}_i has 1 only in i^{th} coordinate

- > Pairing implies...
 - The number of strings on which *f* outputs *i* is even, for every *i*.
 - Thus, total number of strings in the domain must be even too.
 - \circ But total number of strings is $2^{n-1} 1$ (odd)
- > So impartiality must be violated for some pair of \vec{x} and $\vec{x} + \vec{e}_i$

Back to Impartial Selection

- Question: So what *can* we do to select impartially?
- Answer: Randomization!
 - Impartiality now requires that the probability of an agent being selected be independent of his outgoing edges.
- Examples: Randomized Impartial Mechanisms
 - > Choose k nodes uniformly at random
 - $\,\circ\,$ Sadly, this still has arbitrarily bad approximation.
 - \circ Imagine having k special nodes with indegree n 1, and all other nodes having indegree 0.
 - Mechanism achieves $(k/n) * OPT \Rightarrow approximation = n/k$
 - \circ Good when k is comparable to n, but bad when k is small.

Random Partition

• Idea:

> What if we partition V into V_1 and V_2 , and select k nodes from V_1 based only on edges coming to them from V_2 ?

• Mechanism:

- > Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
- ≻ Choose $V_i \in \{V_1, V_2\}$ at random
- Choose k nodes from V_i that have most incoming edges from nodes in V_{3-i}

Random Partition

• Analysis:

> Goal: approximate I = # edges incoming to OPT.

 $\circ \ I_1 = \# \text{ edges } V_2 \rightarrow OPT \cap V_1, I_2 = \# \text{ edges } V_1 \rightarrow OPT \cap V_2$

> Note: $E[I_1 + I_2] = I/2$. (WHY?)

> W.p. $\frac{1}{2}$, we pick k nodes in V_1 with the most incoming edges from V_2 ⇒ # incoming edges ≥ I_1 (WHY?)

○ $|OPT \cap V_1| \le k$; $OPT \cap V_1$ has I_1 incoming edges from V_2

> W.p. $\frac{1}{2}$, we pick k nodes in V_2 with the most incoming edges from $V_1 \Rightarrow \#$ incoming edges $\geq I_2$

> E[#incoming edges]
$$\geq E\left[\left(\frac{1}{2}\right) \cdot I_1 + \left(\frac{1}{2}\right) \cdot I_2\right] = \frac{I}{4}$$

Random Partition

Improvement

- More generally, we can divide into *l* parts, and pick k/*l* nodes from each part based on incoming edges from all other parts.
- Theorem [Alon et al. 2011]:

▶
$$\ell = 2$$
 gives a 4-approximation.
 ▶ For $k \ge 2$, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation.

Better Approximations

- [Alon et al. 2011] conjectured that for randomized impartial 1-selection...
 - > (For which their mechanism is a 4-approximation)
 - > It should be possible to achieve a 2-approximation.
 - > Recently proved by [Fischer & Klimm, 2014]
 - > Permutation mechanism:
 - Select a random permutation $(\pi_1, \pi_2, ..., \pi_n)$ of the vertices.
 - Start by selecting $y = \pi_1$ as the "current answer".
 - At any iteration *t*, let $y \in \{\pi_1, ..., \pi_t\}$ be the current answer.
 - From $\{\pi_1, \dots, \pi_t\} \setminus \{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y = \pi_{t+1}$.

Better Approximations

- 2-approximation is tight.
 - In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges.
 - > Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.

 \circ The best impartial mechanism selects u and v with probability $\frac{1}{2}$ in every case, and achieves 2-approximation.

- But this is because n-2 nodes are not voting!
 - > What if every node must have an outgoing edge?
 - Fischer & Klimm]:
 - \circ Permutation mechanism gives $^{12}/_7 = 1.714$ approximation.
 - \circ No mechanism gives better than 2/3 approximation.
 - \circ Open question to achieve better than $^{12}/_{7}$.

The rest of this lecture is not part of the syllabus.

PageRank

- An extension of the impartial selection problem
 > Instead of selecting k nodes, we want to rank all nodes
- The PageRank Problem: Given a directed graph, rank all nodes by their "importance".
 - Think of the web graph, where nodes are webpages, and a directed (u, v) edge means u has a link to v.
- Questions:
 - > What properties do we want from such a rule?
 - > What rule satisfies these properties?

PageRank

- Here is the PageRank Algorithm:
 - > Start from any node in the graph.
 - > At each iteration, choose an outgoing edge of the current node, uniformly at random among all its outgoing edges.
 - > Move to the neighbor node on that edge.
 - > In the limit of $T \rightarrow \infty$ iterations, measure the fraction of time the "random walk" visits each node.
 - > Rank the nodes by these "stationary probabilities".
- Google uses (a version of) this algorithm
 - > It's seems a reasonable algorithm.
 - > What nice axioms might it satisfy?

Axioms

- Axiom 1 (Isomorphism)
 - Permuting node names permutes the final ranking.
- Axiom 2 (Vote by Committee)
 - Voting through intermediate fake nodes cannot change the ranking.
- Axiom 3 (Self Edge)
 - v adding a self edge cannot change the ordering of the *other* nodes.
- Axiom 4 (Collapsing)
 - Merging identically voting nodes cannot change the ordering of the *other* nodes.
- Axiom 5 (Proxy)
 - If a set of nodes with equal score vote for v through a proxy, it should not be different than voting directly.

PageRank

- Theorem [Altman and Tennenholtz, 2005]: The PageRank algorithm satisfies these five axioms, and is the unique algorithm to satisfy all five axioms.
- That is, any algorithm that satisfies all five axioms must output the ranking returned by PageRank on every single graph.