CSC304 Lecture 16

Voting 2: Gibbard-Satterthwaite Theorem

Recap

We introduced a plethora of voting rules

> Plurality

Plurality with runoff

Borda

Kemeny

Vetok-Approval

> Copeland

> STV

> Maximin

- All these rules do something reasonable on a given preference profile
 - > Only makes sense if preferences are truthfully reported

Recap

- Set of voters $N = \{1, \dots, n\}$
- Set of alternatives A, |A| = m
- Voter i has a preference ranking \succ_i over the alternatives

1	2	3
а	С	b
b	а	а
С	b	С

- Preference profile \Rightarrow = collection of all voter rankings
- Voting rule (social choice function) f
 - > Takes as input a preference profile >
 - \triangleright Returns an alternative $a \in A$

Strategyproofness

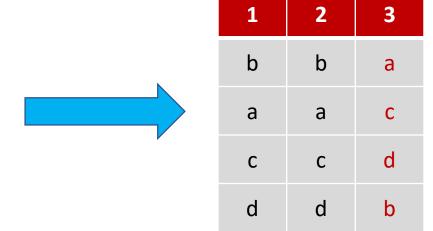
 Would any of these rules incentivize voters to report their preferences truthfully?

- A voting rule f is strategyproof if for every
 - \rightarrow preference profiles \Rightarrow ,
 - \triangleright voter i, and
 - \gt preference profile $\overrightarrow{\gt}'$ such that $\gt'_j = \gt_j$ for all $j \neq i$
 - \square it is not the case that $f(\overrightarrow{>}') >_i f(\overrightarrow{>})$

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count
 - > In the true profile, b wins
 - \triangleright Voter 3 can make a win by pushing b to the end

	_	_	
	b	b	а
Winner	а	а	b
b	С	С	С
	А	А	Ч



Borda's Response to Critics

My scheme is intended only for honest men!

Random 18th century
French dude

Strategyproofness

- Are there any strategyproof rules?
 - > Sure
- Dictatorial voting rule
 - > The winner is always the most preferred alternative of voter *i*
- Constant voting rule
 - > The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

Three Requirements

Strategyproof: Already defined. No voter has an incentive to misreport.

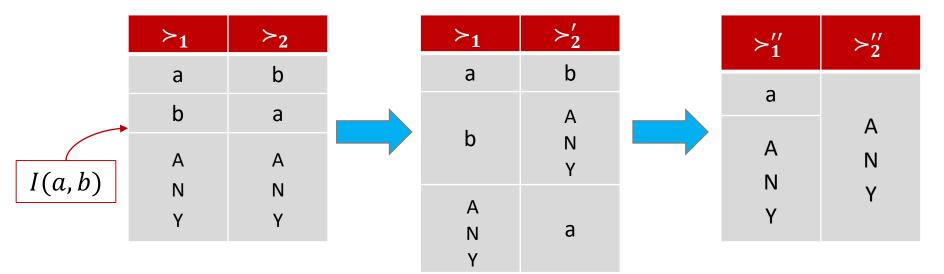
 Onto: Every alternative can win under some preference profile.

• Nondictatorial: There is no voter i such that $f(\overrightarrow{>})$ is always the top alternative for voter i.

- Theorem: For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously \mathfrak{S}
- Proof: We will prove this for n=2 voters.
 - Step 1: Show that SP is equivalent to "strong monotonicity" [HW 3?]
 - > Strong Monotonicity (SM): If $f(\vec{>}) = a$, and $\vec{>}'$ is such that $\forall i \in N, x \in A$: $a >_i x \Rightarrow a >_i' x$, then $f(\vec{>}') = a$.
 - \circ If a still defeats every alternative it defeated in every vote in \Rightarrow , it should still win.

- Theorem: For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously \otimes
- Proof: We will prove this for n=2 voters.
 - Step 2: Show that SP+onto implies "Pareto optimality" [HW 3?]
 - ➤ Pareto Optimality (PO): If $a >_i b$ for all $i \in N$, then $f(\overrightarrow{>}) \neq b$.
 - If there is a different alternative that everyone prefers, your choice is not Pareto optimal (PO).

• Proof for n=2: Consider problem instance I(a,b)



Say
$$f(\succ_1, \succ_2) = a$$

• PO:
$$f(>_1,>_2) \in \{a,b\}$$

$$f(\succ_1,\succ_2')=a$$

• PO:
$$f(\succ_1, \succ_2') \in \{a, b\}$$

• SP:
$$f(>_1,>_2') \neq b$$

$$f(\succ'') = a$$

 Due to strong monotonicity

- Proof for n=2:
 - > If f outputs a on instance I(a, b), voter 1 can get a elected whenever she puts a first.
 - \circ In other words, voter 1 becomes dictatorial for a.
 - \circ Denote this by D(1, a).
 - \triangleright If f outputs b on I(a,b)
 - \circ Voter 2 becomes dictatorial for b, i.e., we have D(2,b).
- For every I(a, b), we have D(1, a) or D(2, b).

Proof for n=2:

- > On some $I(a^*, b^*)$, suppose $D(1, a^*)$ holds.
- > Then, we show that voter 1 is a dictator. That is, D(1,x) must hold for every other x as well.
- > Take $x \neq a^*$. Because $|A| \geq 3$, there exists $y \in A \setminus \{a^*, x\}$.
- > Consider I(x, y). We either have D(1, x) or D(2, y).
- > But D(2, y) is incompatible with $D(1, a^*)$
 - \circ Who wins if voter 1 puts a^* first and voter 2 puts y first?
- > Thus, we have D(1,x), as required.
- > QED!

Randomization

- > Gibbard characterized all randomized strategyproof rules
- > Somewhat better, but still too restrictive

Restricted preferences

- Median for facility location (more generally, for singlepeaked preferences on a line)
- > Will see other such settings later

Money

> E.g., VCG is nondictatorial, onto, and strategyproof, but charges payments to agents

- Equilibrium analysis
 - > Maybe good alternatives still win under Nash equilibria?
- Lack of information
 - > Maybe voters don't know how other voters will vote?

- Computational complexity (Bartholdi et al.)
 - Maybe the rule is manipulable, but it is NP-hard to find a successful manipulation?
 - > Groundbreaking idea! NP-hardness can be good!!
- Not NP-hard: plurality, Borda, veto, Copeland, maximin, ...
- NP-hard: Copeland with a peculiar tie-breaking, STV, ranked pairs, ...

- Computational complexity
 - > Unfortunately, NP-hardness just says it is hard for *some* worst-case instances.
 - > What if it is actually easy for most practical instances?
 - \triangleright Many rules admit polynomial time manipulation algorithms for fixed #alternatives (m)
 - Many rules admit polynomial time algorithms that find a successful manipulation on almost all profiles (the fraction of profiles converges to 1)

 Interesting open problems regarding the design of voting rules that are hard to manipulate on average

Social Choice

- Let's forget incentives for now.
- Even if voters reveal their preferences truthfully, we do not have a "right" way to choose the winner.

- Who is the right winner?
 - On profiles where the prominent voting rules have different outputs, all answers seem reasonable [HW3].

Axiomatic Approach

Define axiomatic properties we may want from a voting rule

- We already defined some:
 - Majority consistency
 - > Condorcet consistency
 - > Ontoness
 - > Strategyproofness
 - Strong monotonicity (equivalent to SP)
 - Pareto optimality

Axiomatic Approach

- We will see four more:
 - > Unanimity
 - Weak monotonicity
 - Consistency (!)
 - > Independence of irrelevant alternatives (IIA)

Problem?

- Cannot satisfy many interesting combinations of properties
- > Arrow's impossibility result
- > Other similar impossibility results

Other Approaches?

Statistical

- > There exists an objectively true answer
 - E.g., say the question is: "Sort the candidates by the #votes they will receive in an upcoming election."
- > Every voter is trying to estimate the true ranking
- > Goal is to find the most likely ground truth given votes

Utilitarian

Back to "numerical" welfare maximization, but we still ask voters to only report ranked preferences

$$\circ a \succ_i b \succ_i c$$
 simply means $v_i(a) \ge v_i(b) \ge v_i(c)$

How well can we maximize welfare subject to such partial information?